

Instructions for use

How to use the 2020 General Catalogue

To facilitate using our catalogue, a new page layout is being introduced with this new version to help reading and simplify consultation. We will see in detail how:

New for 2020

UPDATE

New product ranges are highlighted in red and have NEW beside them.

Product families that interested by important updates or new options compared to the 2019 version.

Series presentation page

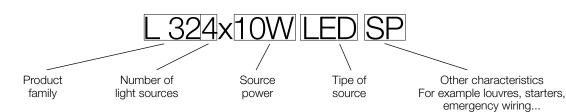
In this section the product series are presented, with the characteristics and concepts common to the various versions specified.

Descriptions, articles, codes and prices

In these pages, all products are presented, divided by code, article and price.

The specific accessories for the version are also specified. Accessories common to the whole series are grouped in a page at the end of the series.

Legend


This appendix helps understand the information given in the catalogue's pages.

It contains the key to the symbols and codes used and a summary.

It is part of the back cover and opens out.

How to interpret our product Articles

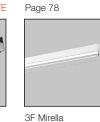
Consulting our product Articles could not be simpler - here's how:

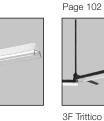
Legend

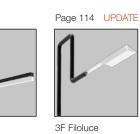
Symbols

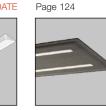
IP20	Overall IP rating	╼	EP Fuse
IP20 IP23	IP rating of recessed part IP rating of exposed part		Luminaires with electronic wiring and limited surface temperature
650°C	SL VT 960°C Glow wire resistance temperature		Protection against electric shock - appliance class
K 03	Certification	Driver/LED SELV	Safety Extra-Low Voltage Separated power source (Class III)
<u>\</u>	Luminaire suitable for offices	A++ A+ A	Energy class
K 03	ENEC Certified product	HACCP	Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard)
6,5J	VT 6,5J Overall IK rating	Q	Resistance against ball impacts in accordance with DIN 18032-3

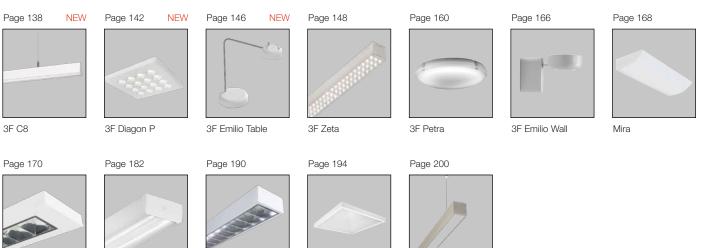
Colors


Acronyms


lx -> 6x	Number of sources		Flat Diffuser Microprismatic	RVS	Flow recuperator and molded glass
	specular louvre	FP	Version for Plasterboard	RVSS	Flux recuperator and laminated mould
2MG	specular louvre, high efficiency	GSP	Glare Screen Prismatic		glass
2S	semi-specular louvre	HCL	Human centric lighting (see the section	s	Structure
2US	semi-glossy louvre		"Management of light")	Sensor	Sensor (refer to the "Management of
3AO	Matt silver decorative louvre	HF	Electronic wiring		light")
3DEC	White decorative louvre	но	High Output	Sensor CF	Sensor with corridor function (refer to
AB	White trim	HS	Hard Skin - high chemical resistant body		"Management of light")
AC	Low height	HST	Glass stabilised via heat soak test	SF	Soft opal screen
AMPIO	Wide flow recuperator	нт	High temperature	SK	Low glaring optic
AR	High energy savings	IC	Luminaire to be installed between two	SL	Flat smooth diffuser in methacrylate
AS	Asymmetric		IFC products	SMP	Flat cover microprismatic
BA	Aluminium edge	Ice	Version suitable for refrigeration cells	so	Pendant luminaire
BAT	Batwing distribution - dual asymmetric	IFC	Luminaire to start or finish a lighting	SOP	Opal PMMA flat diffuser
BL	Wide edge		channel	SP	Flat diffuser, prismatic in methacrylate
BS	Prominent edge	11	Class ii	SP PC	Flat PMMA prismatic cover
CLO	Constant light output (see the section	IKxx	Impact resistance	SPA	Flat diffuser, prismatic methacrylate, I
	"Management of light")	IND	Indirect light output		in installation
CONC	Concentrated flow recuperator	INT	Internal	SPM	Flat diffuser, prismatic methacrylate,
CR	Fast connection	IPxx	Liquid ingress protection		microperforated
D	Curved diffuser	L	Lenses	ST	Narrow body
D1-10V	Dimmable 1 - 10 volt wiring	LA	Wide version luminaire	sx	Left
	Twin-circuit	LED	Light emitting diode	тw	Tunable White
DALI	Dali digital dimmable wiring	LGS	Flat PMMA, with low luminance	UGR	Luminance control lens
	Dual emission		microprismatic cover	UR95	Resistent to relative humidity up to 9
DEC	Decorative	Lxxxx	Appliance length xxxx millimetres	VDT	Optic suitable for use in environments
DI	Direct – indirect light output		No power line		with monitor
	Rectangular diffuser		Optics Control Black - LEED Compliant	VOP	Opal enamelled glass
	Right		Optics Control White - LEED Compliant		Moulded glass
	Efficiency		Opal		Laminated moulded glass
	Energy efficiency index		Surface luminaire		Transparent glass
	Non-permanent emergency lighting		Polycarbonate		Transparent laminated glass
	Permanent emergency lighting		Recessed version		Wall washer distribution
	External		90% efficiency		
	Version for metal panels with high		White steel flow recuperator		
	structures		Semi-polished aluminium flow		
FCL	Version for metal panels with low		recuperator		
	structures	REMG	High-efficiency specular aluminium flow		
FD	Fixture suitable FDP or FDO	111 14/0	recuperator		
	Flat Diffuser Opal		Flow recuperator with prismatic screen		


Product range


3F Architectural



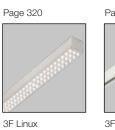
3F Sound Lux

Surface luminaires and suspensions

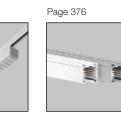
3F Travetta

Filigare P 200

P 250


Barraluce P

Recessed luminaires



Systems and track-mounted products

Binario 3F

Waterproof and corrosion-proof

Page 418 UPDATE

Page 444 Page 464

Beta 235

Beta A3F - i3F

3F Cub

3F LEM

NEW

3F Linda

Outdoor

3F Manta

Light Management

Page 508	Light Management	Page 535	Wired control systems
Page 510	3F Easy Dim	Page 538	3F Bluetooth control system
Page 514	3F Sensor	Page 541	3F & KNX
Page 520	3F Smart Dimming	Page 542	3F CLO
Page 532	3F HCL for Tunable White fixtures	Page 544	3F Wireless

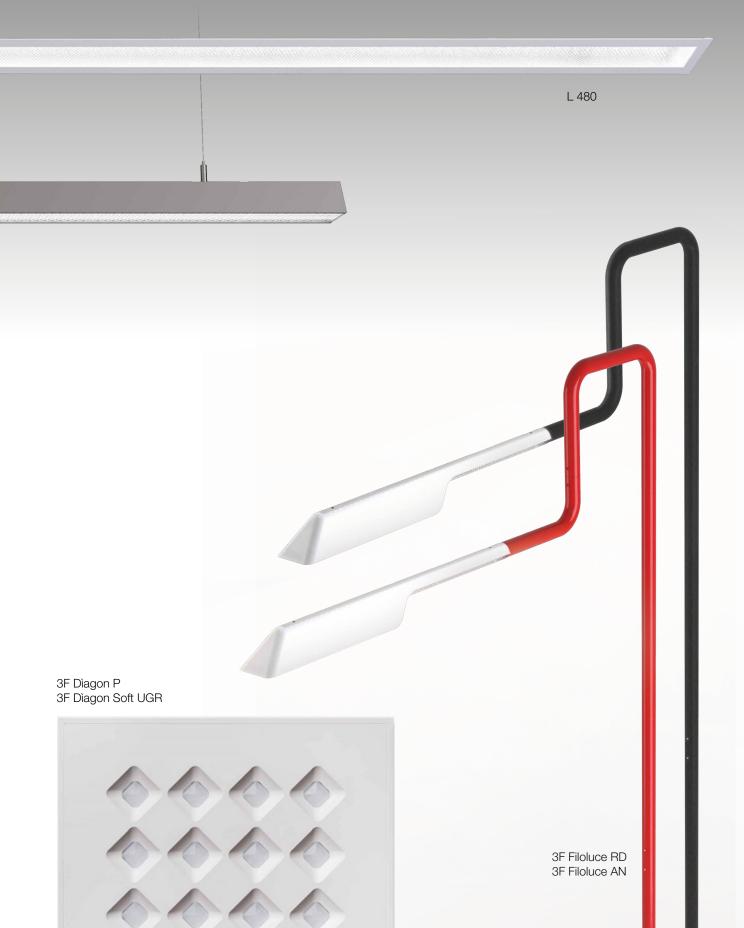
Infopoint

Page 552	3F LED Technology
Page 564	Lighting engineering
Page 575	Electrical engineering and Electronics
Page 578	Mechanics
Page 583	Analytical guide

This "LED catalogue 2020" is an informative product which is distributed free of charge.

While all efforts have been taken to ensure the accuracy of its contents, 3F Filippi shall not under any circumstances be held liable for errors, omissions, interruptions or

The data listed in this Catalogue may be approximate: please visit our website at **www.3f-filippi.com** or contact our Sales network to check for any updates. As 3F Filippi S.p.A. are constantly striving to improve our products, we reserve the right to modify the contents of this publication and the technical specifications of products contained herein without prior notice.



L 360

Applications

		F	P		Ľ.	÷	8888	Q	
38	3F HD - Single		•	•	•	•	•		
46	3F HD - Channel		•	•	•	•	•		
50	3F HD Direct/Indirect - Single		•	•	•	•	•		
56	3F HD Direct/Indirect - Channel		•	•	•	•	•		
60	3F HD R Recessed - Single		•	•	•	•	•		
66	3F HD R Recessed - Channel		•	•	•	•	•		
88	3F Mirella		•	•	•		•		
92	3F Mirella Direct/Indirect		•	•	•		•		
96	3F Mirella Soft		•	•	•		•		
98	3F Mirella Soft Direct/Indirect		•	•	•		•		
100	3F Mirella Floor		•	•	•		•		
110	3F Trittico		•	•	•				
122	3F Filoluce		•	•	•				
132	3F Sound Lux		•	•	•		•		•
134	3F Sound Lux Direct/Indirect		•	•	•		•		•
138	3F C8		•	•	•	•	•		
140	3F C8 Direct/Indirect		•	•	•	•	•		
142	3F Dìagon P		•	•	•	•	•		
144	3F Diagon P Tunable White		•	•	•	•	•		
146	3F Emilio Table		•	•	•				
148	3F Zeta L		•	•		•	•		
152	3F Zeta D		•	•		•	•		
154	3F Zeta DR		•	•		•	•		
160	3F Petra LED	•				•	•	•	
162	3F Petra LED Sensor	•				•	•	•	
164	3F Petra Suspended LED	•				•	•	•	
166	3F Emilio Wall		•	•	•				
168	Mira Wall LED			•		•	•		
170	3F Travetta LED		•	•		•	•		
174	3F Travetta LED DI		•	•		•	•		
176	3F Travetta LED Tunable White		•	•		•	•		
182	Filigare 180 LED						•		
190	P 200 LED		•		•	•	•		
192	P 200 LED IP54		•		•	•	•		
194	P 250 LED		•		•	•			
198	P 250 LED Diffused Light		•		•	•			
200	Barraluce P LED		•	•			•		
212	3F Reno White		•	•	•	•	•		
220	3F Reno Black		•	•	•	•	•		
228	3F Emilio R		•	•	•				
238	3F Dìagon Lay-in installation		•	•	•	•	٠		
242	3F Diagon Tunable White Lay-in installation		•	•	•	•	٠		
246	3F Diagon Pull-up installation		•	•	•	•	•		
252	L 320 LED		•	•	•	•	•		
258	L 320 LED Diffused Light		•	•	•	•	•		
262	L 320 LED Tunable White		•	•	•	•	•		
264	L 320 LED Sensor		•	•	•	•	•		
270	L 350 LED		•		•				
274	L 360		•	•	•	٠	•		
276	L 480		•	•	•	٠	٠		

	£ P		Ľ.	÷	 8888		
--	-----	--	----	---	----------	--	--

280	L 560 LED		•			•	•		
284	L 580 LED IP54	•	•			•			
288	L 590 LED IP65	•			•	•			
292	Barraluce L LED		•	•			•		
296	Lucequadro LED		•	•	•	•	•		
300	Galassia 220		•	•	•	•	•		
312	3F Six Track	•			•			•	•
316	3F Six Blindo	•			•			•	•
330	3F Linux S IP40	•	•	•	•				
332	3F Linux S IP54	•	•	•	•				
334	3F Linux L Light modules	•	•	•	•				
344	3F Linux D Light modules	•	•	•	•				
346	3F Linux DR Light modules	•	٠	٠	٠				
350	3F Linux Track	•	٠	٠	٠				
364	3F Emilio Track		٠	٠	٠				
370	3F Emilio Track DALI		٠	٠	٠				
372	3F Emilio Track Bluetooth		•	•	•				
374	3F Zeta Track L				•				
378	Binario 3F			•	•				
396	3F LEM	٠			•				
400	3F LEM DALI Sensor	٠			•				
404	3F LEM High Output	٠			٠				
408	3F LEM High Temperature	٠			٠				
412	3F LEM Sport						٠	٠	
424	3F Linda LED	٠			•			•	•
430	3F Linda LED HS	٠			٠			٠	•
432	3F Linda LED Transparent	٠			٠			٠	٠
434	3F Linda LED Ice	٠			٠			•	•
436	3F Linda LED Sensor	٠			•			•	•
450	Beta 235 LED Steel	٠			٠			•	•
458	Beta 235 LED Stainless Steel	٠			٠			•	•
464	Beta i3F 75-76 LED	٠						•	•
468	Beta Ice LED	٠						٠	•
470	Kit LED Retrofit for Beta 2x	•							
476	Beta 430 LED	•						•	
478	Kit LED Retrofit for Beta 430	•							
484	3F Cub LED	•						•	
500	3F Manta	•			•			•	•
504	3F 66 LED								٠

📶 Industry

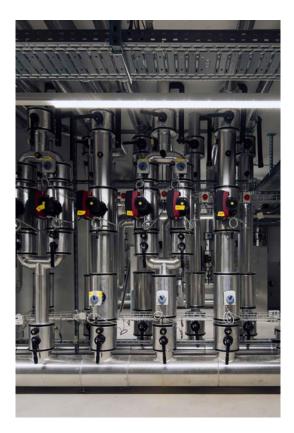
Architecture

🔀 Retail

Healthcare

🚡 Transport

Quality


Absolute transparency with the market is one of our most abiding values. Ever since it was founded, our company has always offered fixtures that offer **guaranteed performance**, establishing itself as a reliable partner for the creation of any lighting project.

Our products are at the heart of everything. Each of them is created to have the best possible performance and durability, and are **tested and verified in our laboratories.** In fact, 3F Filippi uses cutting-edge systems like the Goniophotometer to perform photometric calculations with absolute precision and invests a significant portion of its resources in Research and Development to stay up-to-date on the latest technological innovations available on the market.

Our employees are highly **motivated**, **knowledgeable**, **and passionate**: this is the starting point for obtaining customer satisfaction.

Our sales force is always ready to support you so you can obtain the best results. From the initial phases of your project, we provide information on our fixtures, processes, prices, and services. We are at your disposal to create custom solutions for your experience.

Our values

Reliability and technique come first

3F Filippi's commitment is to offer its customers the best technology available on the market so that every single Watt used is optimised to give the highest level of illumination.

Whenever they pick one of our products, customers must be certain they are choosing **the best on the market** in terms of technical performance, reduced energy consumption, and reliability.

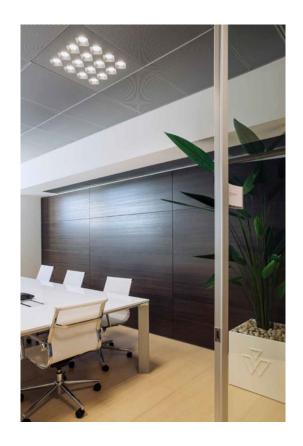
Listening to the customer always proves out.

Customers are the ideal partners when we talk about ideas, environmental topics, and increasingly green technical solutions. They help us analyse the present and imagine the future, considering several points of view.

Quick and easy installation have always been a benchmark for 3F Filippi, so we take the installers' feedback very seriously. In response to their observations we have developed, for example, the Fast Wiring for 3F Linus and 3F HD, as well as the Quick Connection for our industrial products.

All of these are optimisations that help those working in the construction site to save time, effort, and money.

We believe in the rules


The interpretation of the architectural spaces and the lighting effects within them must always follow the current standards. These rules derive from the experience of competent professionals, able to design a healthy and comfortable environment for those who experience it.

That is why, since 1952, 3F Filippi has been developing cuttingedge systems and instruments to **respond to the requirements** of the strictest standards, often before they become mandatory: We feel that we cannot show respect for the customer if we do not respect the rules.

Improving people's lives

Light is a physical phenomenon that profoundly impacts every aspect of our lives. People spend most of their day indoors and 3F Filippi products are there to light up the hospitals where you were born, the schools you attended, the companies and offices where you work, and the shops you frequent.

Since this lighting accompanies every moment of your life, we feel it is our fundamental duty to **offer the best light for your wellbeing**. And nothing could make us happier.

Laboratory Tests

Goniophotometer

Research and Development plays a fundamental role in 3F Filippi's growth strategy.

This is why the company dedicates a significant portion of its resources each year to always be up-to-date with the most recent innovations available, like **the rotating mirror Goniophotometer**, i.e., the most technologically advanced instruments in the industry to perform extremely precise checks.

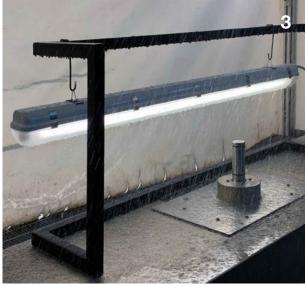
All measurements are done inside a laboratory that occupies 210 m² of surface area, with a height of 8 m, and in which all the different parameters are continuously checked, including electrical stability, air speed, humidity, and temperature.

3F Filippi is one of the few European companies to possess this type of instrumentation and, therefore, can certify its products according to the recent standards, UNI EN 13032 and IES LM-79.

The use of this technology allows us to guarantee quality, reliability, and the authenticity of the data reported.

Tests that can be carried out:

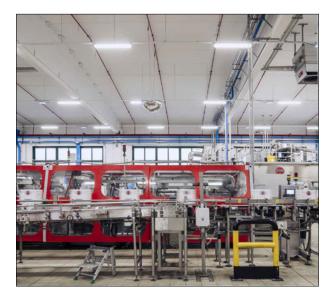
- Photometric measurements (intensity, distribution, luminance, etc.)
- Colorimetric measurements (light spectrum, colour temperatures, colour yields, etc.).
- Precise thermal measurements on the internal components of the device


The photometric laboratory, which is CTF – Stage 2 certified by a Third Party (certification can be downloaded from www.3F-Filippi.com), is subject to IMQ monitoring and allows all photometric and colorimetric measurements of the products in the catalogue, according to the various international standards.

Tests and inspections


3F Filippi devices are built and tested in compliance with current national standard CEI 34-21, European standard EN 60598-1, and international standard IEC 60598-1. This allows us to independently perform the **valid tests for product Certification**: this significantly speeds up the development phases, to the customer's advantage, ensuring the safety, quality, and long life of the fixtures.

This is why the company constantly invests in updating its laboratories, which are IMQ certified (certifications can be downloaded from www.3F-Filippi.com), where the following tests are performed: Temperature Electromagnetic compatibility UL Conformity: Rain and Sprinkler EMC Compatibility: Burst and Surge Liquid seal tests Ball impact resistance (DIN 18032-3) Dust seal Resistance to salt spray Impact Resistance


We work hard each day to give our best

3F Filippi works alongside the best specialists, providing them with the most advanced instruments and the support of its lighting office (whose activity is ISO 9001 certified).

The company works through a close-knit network of regional and foreign offices in the European, Latin American, Asian, and Oceanian markets and impeccable logistics supported by a modern fleet of company vehicles allows 3F Filippi to optimise its delivery times and shipping of fixtures to its customers throughout the world. Since 2018, 3F Filippi and Targetti, two companies that made the history of lighting in Italy, represent a cohesive unit that acts as a unique partner to professionals and planners looking for quality solutions. With decades of experience and

the combination of skills in the technical and architectural lighting areas, the group responds and meets any type of need and design approach. Our partner can count on a vast selection, from the highly technical and functional products in the 3F Filippi catalogue to Targetti fixtures for indoor and outdoor architectural lighting, and up to the range of LED sources and fixtures offered by the Duralamp brand.

3F Filippi

Since 1952, 3F Filippi S.p.A has been a benchmark in the field of efficient technical lighting fixture design and manufacturing. The products, which are designed and created exclusively in the Pian di Macina - Pianoro (Bologna) facilities, are an expression of the company's ability to combine the traditional and the modern, craftsmanship and technology, appearance and functionality, and efficiency and sustainability.

τΛRGEΤΤΙ

Targetti has been designing and producing indoor and outdoor architectural lighting fixtures since 1928. For over ninety years, its products have been illuminating prized artistic and architectural works throughout the world and are the expression of innovation, research, and attention to detail.

The company has always placed its experience and expertise at the disposal of architects, designers, and professionals in the lighting world.

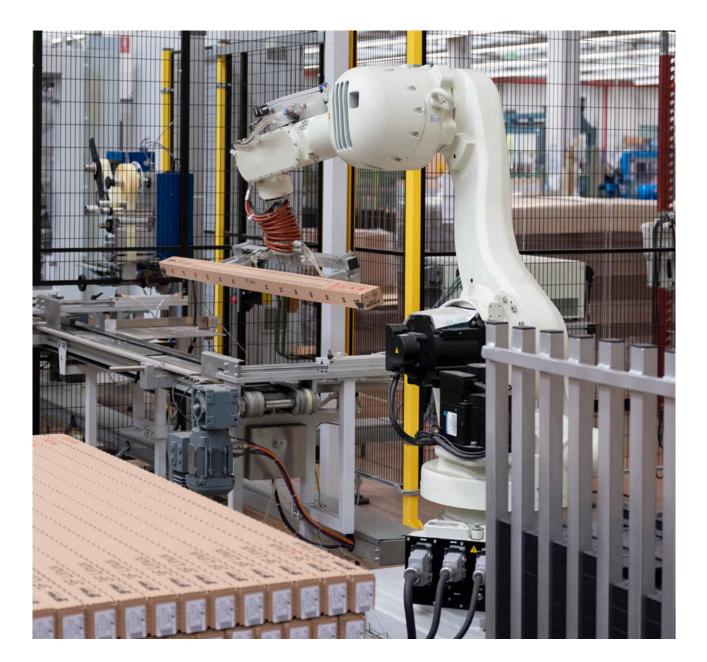
With decades of experience and solid technical skill, Duralamp offers a wide range of high quality and efficient products. Thanks to its expertise, it selects the latest generation components, engineering reliable products, with an offer that includes sources, LED strips, and lighting fixtures.

Sustainability

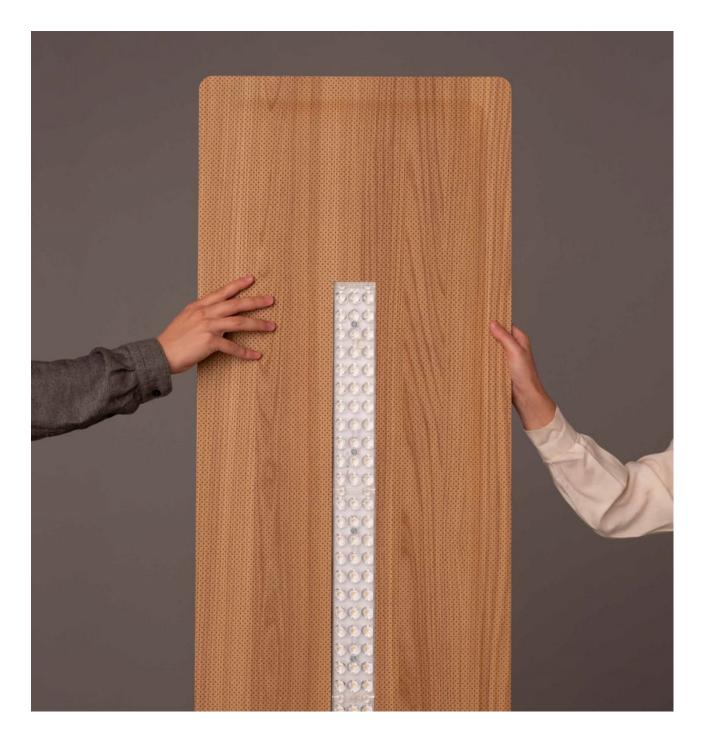
3F Filippi wants to contribute to spreading and development a new consumption model that is not based on a "disposable" economy but on products that can be updated over time and on which maintenance can be performed, as needed. Our products have always been built as platforms that can adapt to the customer's needs and technological development, for solutions that are always more efficient. To reach this goal, we focus **on increasing the performance of the products and reducing the environmental impact** of the manufacturing processes.

3F Filippi actively collaborates with Lighting Europe to develop increasingly advanced systems, in line with European and International standards.

It is also a member of ASSIL (Italian Association of Lighting Manufacturers), a partner and institutional supporter of IES (Illuminating Engineering Society of North America), AIDI (Italian Lighting Association), and APIL (Association of Lighting Professionals) with whom it shares the values of the Carta della Luce (Light Charter).


Keyword: optimise

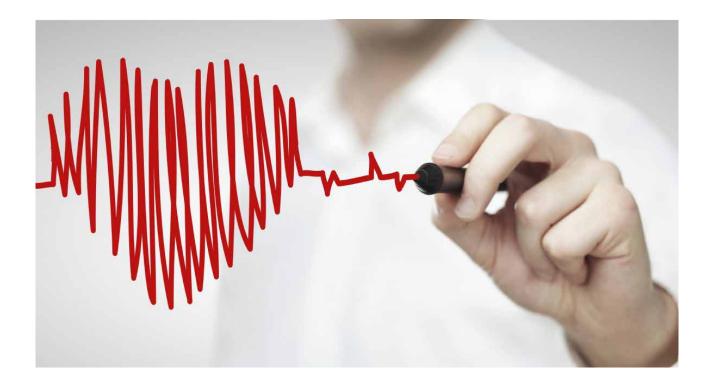
At 3F Filippi, we work to produce **increasingly efficient products with less impact on the environment**,


throughout all phases of the life cycle. Here is what we are already doing today:

- Here is what we are already doing today:
- We choose the **best** and most efficient components on the market
- We manufacture **exclusively** in two facilities located in the same district (Pian di Macina - Pianoro - Bologna).
- We use **photovoltaic panels** that cover 30% of the energy needs, with the remaining 70% from **certified renewable energy sources**
- If quality is equal, we choose the closest supplier to our facility

- **ISO 14001** certified, we reorganise and rationalise the company's environmental management
- We apply the **Lean Production** system that aims to minimise waste, with the goal of removing it
- We use green packaging that is highly recyclable and in the most compact sizes possible. This has a significant positive impact on transport and stocking of our products

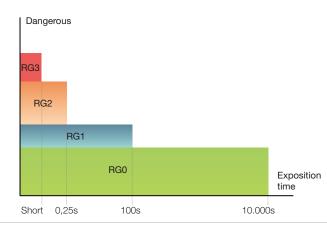
Networking and collaborate


To activate effective **green policies**, a company must be considered inside an ecosystem made up of a complex context of environmental, social, political, and economic elements.

Involving our partners in the development of the product is a lever for innovation for us. The combination of each skill can lead to results that greatly exceed expectations.

BY listening to our partners' needs, we succeed in **anticipating trends** and the related national and international standards.

Taking care of and selecting suppliers and, more generally, the supply chain based on a shared green awareness contributes to giving more power to what we do, increasing the effectiveness of our environmental efforts.


LEDs: photobiological safety Is LED technology safe for health?

Among 3F Filippi's top priorities is the well-being of those who are illuminated by our products. For this reason, we pay a great deal of attention to photo-biological safety, using the best sources with a low impact on human health.

Unfortunately, some less scrupulous manufacturers use low-quality sources during prolonged exposure, emit radiation which is damaging to organs of the human body, such as the eyes and skin.

A number of Photobiological Safety Risk Groups (IEC62471) have now been defined for the amount of radiation emitted from all sources in the range of wavelengths from 200 nm to 3000 nm, providing a clear indication of the limits of maximum exposure for each group.

Risk classes

In accordance with Paragraph 6.1 of EN 62471: 2010, the risk groups (for blue light) are defined as follows:

- RG0 (Risk Exempt): The source does not cause any photobiological risk. Requirement met by any lamp that does not cause a blue light (BL) retinal risk with an exposure time of up to 10,000 s (about 2.8 h).
- RG1 (Low Risk): The source does not cause risk due to normal operating limitations on exposure. Requirement met by any source that exceeds the limits of the Exempt Group but does not cause a blue light (BL) retinal risk with an exposure time of up to 100 s.
- RG2 (Moderate Risk): The source does not cause a risk due to an instinctive reaction when looking at very bright light sources (or due to a sensation of thermal discomfort.) Requirement met by any source that exceeds the limits of Risk 1 Group but does not cause a blue light (BL) retinal risk with an exposure time of up to 0.25 s (aversion response).
- RG3 (High Risk): The source can constitute a risk even due to momentary or brief exposure.
- Sources that exceed the limits of Risk Group 2 are included in Risk Group 3.

Notes

The current standard EN 60598-1 concerning indoor luminaires indicates that RG0 or RG1 risk groups are acceptable for safety purposes. With the publication of standard EN 60598-1: 2015 (Luminaires - Part 1: General requirements and tests), the acceptable levels for safety purposes were definitively established.

In Paragraph 4.24.2 (Blue light retinal risk), the following is indicated:

"For luminaires that use light sources from risk group RG0 (unlimited) or RG1 (unlimited), in accordance with IEC/ TR 62778, or which have been judged as being finished products ready for use, belonging to risk group RG0 (unlimited) or RG1 (unlimited), the requirements concerning blue light retinal risk do not apply."

For luminaires that have an ETHR illuminance threshold, evaluated in accordance with IEC/TR 62778, additional requirements are applied for evaluating how far the product is from the threshold between RG2 and RG1. In such cases, although the luminaire cannot be considered to be dangerous, warnings and markings are used to alert the installer or user to the possible risks associated with direct and prolonged viewing of the source.

From a technical perspective, RG0 and RG1 groups cannot be said to be equivalent, or to be both considered as "exempt". The two photobiological risk groups are in fact distinguished as follows:

- RG0 (Risk Absent): the source does not present any photobiological risk.
- RG1 (Low risk): The source does not cause risk due to normal operating limitations on exposure.

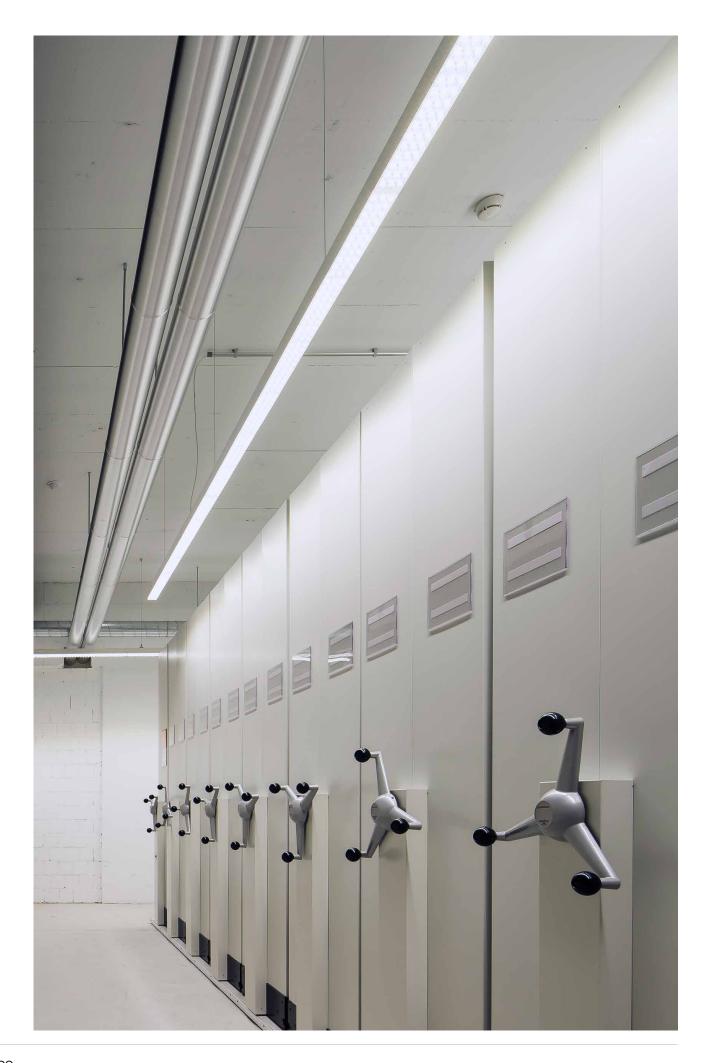
Currently, therefore, there is no regulation that declares the various photo-biological risk groups to be equivalent, or indeed that united them, rendering both exempt.

Exposure to RG1-group luminaires is not considered dangerous under ordinary conditions of use, due to the fact that periods of exposure of over 100 seconds are considered to be "unlikely", although not impossible, as this cannot be predicted in the design phase. Risk group RG0, on the other hand, has a period of exposure greater than 2.8h and as such, it can be stated with greater confidence that a luminaire would not be viewed directly for this long.

The demand for RG0 light sources could be considered redundant, but it is not stated anywhere that it is prohibited to request the use of RG0 luminaires, or that these can be considered equivalent to those belonging to the RG1 risk category.

As explained above, the RG0 risk group represents a cautionary, optimal class of light source.

A company that exhibits extra caution with regard to the safety of its operators, and decides to install equipment belonging to the risk-exempt RG0 category, could therefore be seen to be excessively conservative, but cannot certainly be criticised for having requested compliance with a parameter that provides greater safety for all involved.


European legislation states that companies, specifically the statutory employer, evaluate and manage risks to workers' health and safety. Among the risks that the employer must evaluate is any photobiological risk deriving from exposure to artificial optical radiation.

The reference standard is IEC/EN 62471:2010, which does not define a threshold marking safe from unsafe, but rather defines classification of sources into risk groups. Limitations of use or warnings for the user are contained in the corresponding product standards, while a product marking guide is contained in IEC TR 62471-2:2009.

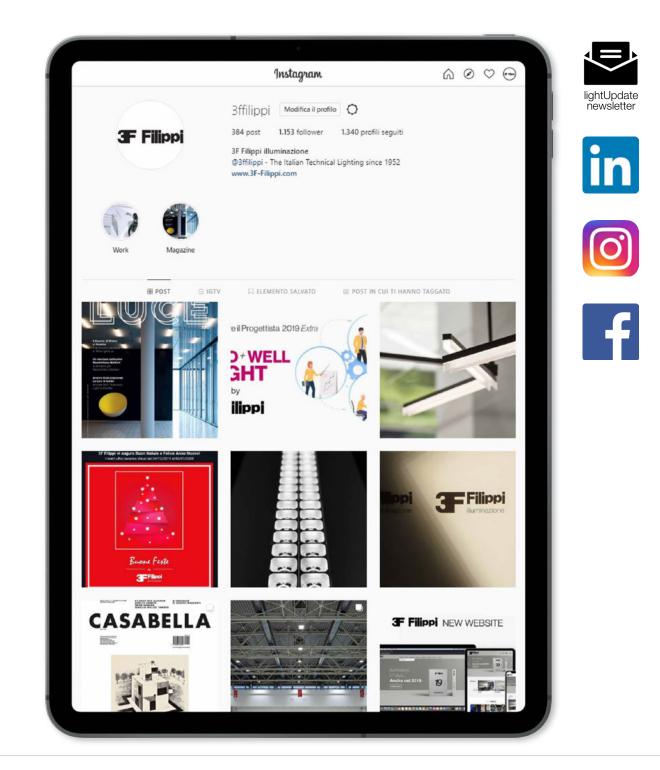
3F Filippi is committed to providing the most technologically advanced luminaires and always chooses the LED sources with the lowest photobiological risk group available on the market for its customers.

We also frequently find that some manufacturers declare data which is inconsistent with the components available on the market, and which must therefore be untrue.

If customers are offered product solutions similar to those which 3F Filippi declares for a certain class (for example RG1 - low) but other manufacturers state as being of a lower class (e.g. RG0 – risk absent), they can protect themselves by requesting that those manufacturers provide the certificates proving that the sources actually meet this photobiological risk class.

Instruments

The 3F Filippi catalogue is intended to be a valid **"work instrument"** that is continuously evolving, as is the lighting market, customer demand and lighting technology.

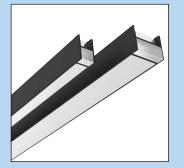

For 3F Filippi, operating in this industry means continuously being committed to increasing not only the performance of each product, but also the knowledge of artificial light and the infinite interactions that define the relationship between people and the environment. This calls for continuous research and **constructive networking with planners**, in particular lighting designers, to the full extent of their individual skills and specialities. We are convinced that a new lighting culture may arise only by working together to share the standards on **mandatory lighting design**, giving rise to all the necessary initiatives for the development of a new lighting culture. For this reason, we signed the APIL Lighting Charter.

Sharing experiences

There is no treasure more valuable than experience in the field. That is why we publish **our monthly Newsletter, "lightUpdate"** with reports on what designers all over the world make with our products.

In the Case History section of our website you can find a collection of these references.

We publish images every day on social networks (LinkedIn, Instagram, and Facebook) to show how light influences our environment and its perception. Would you like to share your project? Tag us in your posts using @3FFilippi #3FFilippi



Are you looking for the right product?

Applicat		Colore 8 Banco	Forma		•	allazione	٠	
Emission	e luminosa	Temperatura di colore	Indice di resi			taggio		
		4000 K 4	·		•		•	
	minoso in uscita	Grado di protezione IP	Grado di pro	ezione IK	Nov	tă.	141	
ca.	- A	945	- I.				1	
50950	3F LEW 5 HO LED 35		370	52265	4000	>60 952x542x129	65 J	8
Codice	Articolo		Potenza assorbita (W)	Flusso in uscita (im)	OCT (A)			
56400	(3F 751x49 T5 H0 H4	AMPIO	53	4300	4000	>60 1565x235x135	65 3	5

The website www.3F-Filippi.com was designed to make the research process more straightforward, in 6 different languages.

We decided to structure the information following the "Research by code" that lead directly to the item, the "Product Filter" to choose the most suitable product from a dynamic screen and the "Configurators" that also help less practised users with guided creation of modular products. 3F HD

3F Mirella

3F Filoluce

3F Architectural

	Product	Recessed	Ceiling	Suspended	Floor
	3F HD				
UPDATE	3F HD - Single		•	•	
	3F HD - Channel		•	•	
	3F HD Direct/Indirect - Single			•	
	3F HD Direct/Indirect - Channel			•	
UPDATE	3F HD R Recessed - Single	•			
	3F HD R Recessed - Channel	•			
	3F Mirella				
	3F Mirella			•	
	3F Mirella Direct/Indirect			•	
	3F Mirella Soft			•	
	3F Mirella Soft Direct/Indirect			•	
	3F Mirella Floor				•
	3F Trittico				
	3F Trittico			•	
	3F Filoluce				
UPDATE	3F Filoluce				•
	3F Sound Lux				
	3F Sound Lux			•	
	3F Sound Lux Direct/Indirect			•	
	UPDATE	SF HD UPDATE 3F HD - Single 3F HD - Channel 3F HD Direct/Indirect - Single 3F HD Direct/Indirect - Channel UPDATE 3F HD R Recessed - Single 3F HD R Recessed - Channel 3F Mirella 3F Mirella 3F Mirella Direct/Indirect 3F Mirella Soft 3F Mirella Soft 3F Mirella Soft 3F Mirella Floor 3F Mirella Floor 3F Trittico 3F Trittico 3F Trittico 3F Trittico 3F Filoluce UPDATE 3F Filoluce	SF HD UPDATE 3F HD - Single 3F HD - Channel 3F HD Direct/Indirect - Single 3F HD Direct/Indirect - Channel UPDATE 3F HD R Recessed - Single 3F HD R Recessed - Channel 3F HD R Recessed - Channel 3F Mirella 3F Mirella 3F Mirella Direct/Indirect 3F Mirella Soft 3F Mirella Soft 3F Mirella Soft 3F Mirella Floor 3F Trittico 3F Trittico 3F Trittico 3F Trittico 3F Filoluce UPDATE 3F Filoluce	SF HD UPDATE 3F HD - Single • 3F HD - Channel • 3F HD Direct/Indirect - Single • 3F HD Direct/Indirect - Channel UPDATE 3F HD R Recessed - Single • 3F HD R Recessed - Channel • SF Mirella 3F Mirella 3F Mirella Direct/Indirect 3F Mirella Soft • 3F Mirella Soft • 3F Mirella Soft • 3F Mirella Soft • 3F Mirella Floor SF Trittico 3F Trittico 3F Trittico	3F HD UPDATE 3F HD - Single • • 3F HD - Channel • • • 3F HD Direct/Indirect - Single • • • 3F HD Direct/Indirect - Channel • • • UPDATE 3F HD Recessed - Single • • 3F HD Recessed - Channel • • • JF Mirella • • • 3F Mirella • • • 3F Mirella Soft • • • 3F Trittico • • • 3F Filoluce • • • UPDATE 3F Filoluce • • 3F Sound Lux

3F HD 50 - OCB (LEED Compliant)

3F HD is available with different photometric distributions that are obtained with opal and prismatic screens. The fixture is also available in a LEED compliant version equipped with an OCB optic, a unique solution with innovative technology to control luminance in the workplace in compliance with LEED specifications. 3F HD is composed of an H section aluminium linear profile.

It can be ceiling mounted, suspension and recessed (3F HD R version). Available in various lengths it provides direct or direct/ indirect light emission.

3F HD can be used easily in continuous lines with a significant reduction in installation time thanks to the presence of concealed joints and standard mounted plug-sockets.

The lighting head it is equipped with allows for a 360° perception of the fixture reaffirming its presence and uniqueness.

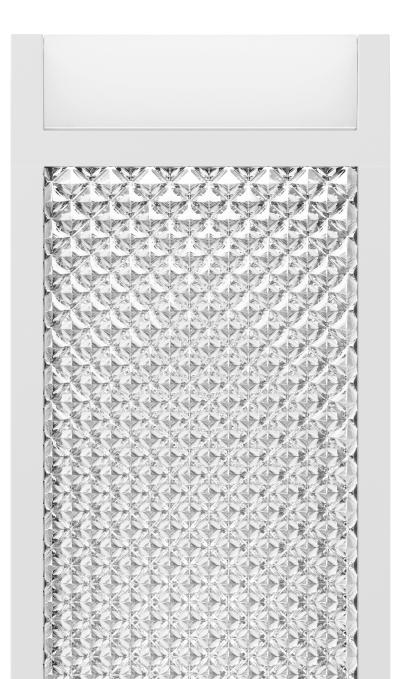
3F HD was developed with the aim of innovating lighting in the workplace with a minimal, modern and highly technical linear system.

A real necessity given the increasing demand for solutions aimed at energy saving, visual comfort and current LEED certification in particular in environments with VDTs. Knowing the long established expertise of 3F Filippi in the field of highly efficient technical lighting we accepted the challenge to design a light fixture that is ideal for modern workplaces in terms of performance and flexibility for lighting designers.

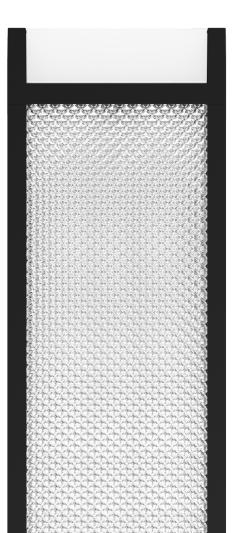
The various dimensions, optics and screens available together with the use of the cutting-edge LED source ensure 360° quality for those like us that consider light to be a key element in creating the perfect working environment in the present and the future.

PARK ASSOCIATI

"3F HD is a code name. In astronomy HD is an acronym that followed by a number denotes a celestial body. A link between research, experimentation and experience."


SCREENS AND FINISHES

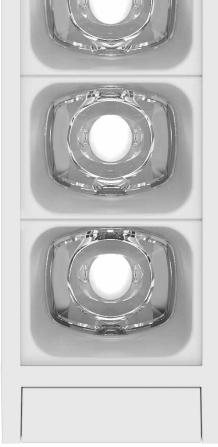
3F HD can satisfy all lighting needs. The system can be equipped with two different rollable flat PMMA filters, a prismatic screen designed especially for 3F Filippi and a series of OCB (Optics Control Black) optics, depending on the intended use of the environments.


The FDO opal screen is suitable for areas that are not visually demanding such as waiting rooms and corridors, while the FDP (Flat Diffuser Micro prismatic) standard micro prismatic one ensures increased visual comfort for work stations. Both filters do not require any visible joints for lengths of up to 15 metres thus ensuring the uniformity of the light diffusion.

The GSP (Glare Screen Prismatic) prismatic screen allows 3F HD to reduce progressive luminance, using the OCB optic on the other hand meets and widely exceeds luminance limits provided for in LEED certification for corners of more than 45° (<2500 cd/m²) and those of more than 65° (<200 cd/m²).

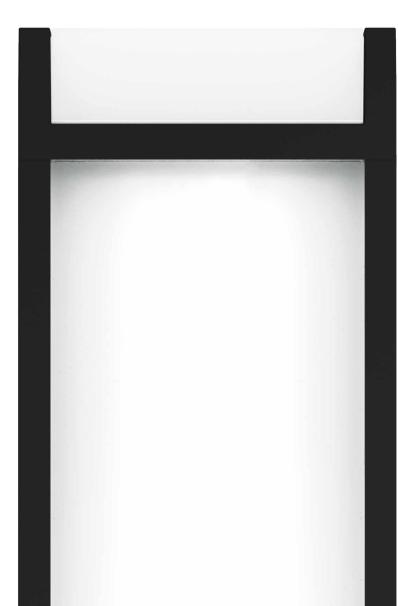
GSP Prismatic screen

FDP Flat micro prismatic diffuser


Finishes

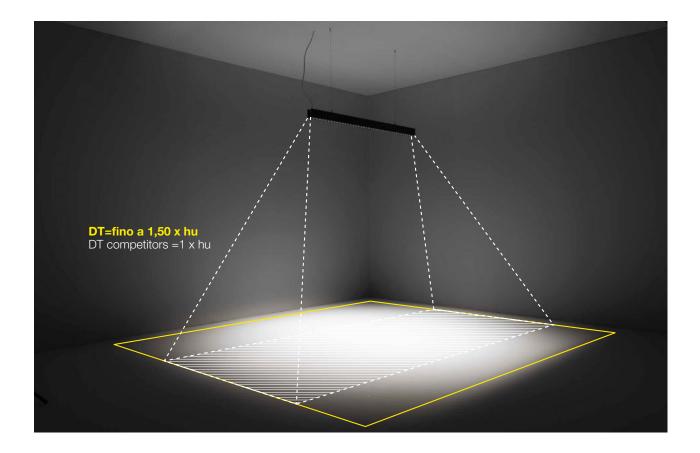
White

Silver



ocw Optics Control White Complies with LEED regulations

ОСВ Optics Control Black Complies with LEED regulations


FDO Flat opal diffuser

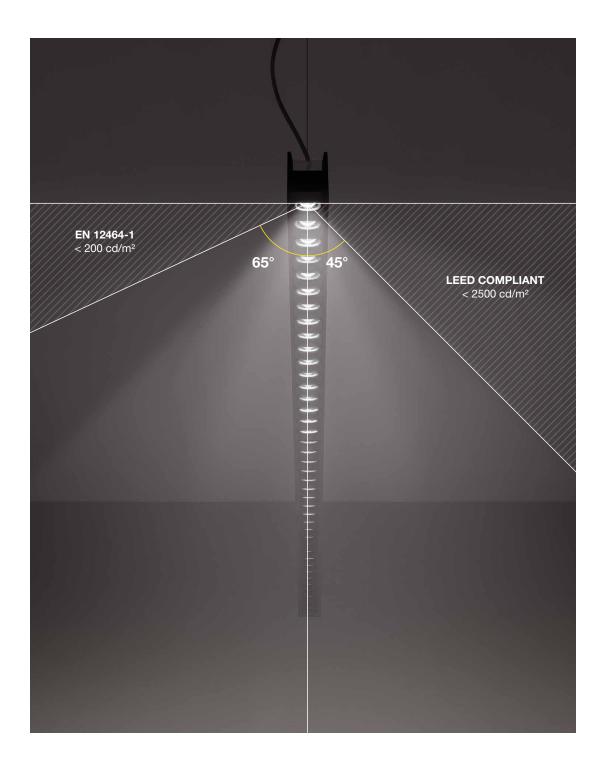
Scale 1:1

PRODUCT EFFICIENCY

The new optics from the OC (Optic Control) range were designed with the aim of obtaining the best lighting performance in terms of low luminance and uniformity of light distribution in the space: modern offices need spaces where the furniture can be arranged in a flexible way. For this reason the first step is to accept an ambitious challenge: to create an optic that can meet the stringent requirements of LEED certification with a product that can be installed at wide distances. With the solutions that were previously available on the market the distance was too contained and meant it was necessary to install a large number of fixtures to achieve the required performance in compliance with existing legislation.

Thanks to innovative Optic Control optics, the DT (transversal installation step, ie the installation distance between the luminaires) offered by 3F HD OCB is up to 50% more than the average of the homologous products proposed by the major brands on the market. The performance is obtained by maintaining 500 lux and ensuring, thanks to direct emission only, complete uniformity of the luminous flux on work stations (Direct/Indirect emission versions are also available).

3F HD



Competitors

LEED COMPLIANT

3F HD is the ideal technical solution to comply with indications from the most stringent environmental certifications and current legislation. The 3F Filippi system is LEED compliant, with a luminance of less than 2500 cd/m² for corners of more than 45°. The performance of 3F HD substantially meets the requirements of European standard EN 12464-1: if the maximum luminance required at 65° must be between 3000 cd/m² and 1500 cd/m², the performance of the fixture at the same angle is lower than 200 cd/m².

PRODUCT ADVANTAGES

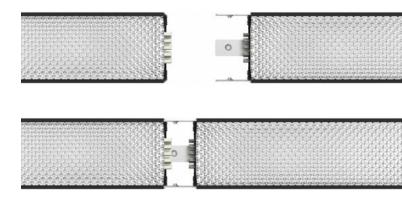
END CAPS

3F HD is a product created with two different types of end caps While the OC (Optic Control - OCB and OCW) have blind caps, given that lighting and lighting distribution control are managed completely by the cells, those with screens use lighted end caps that perform the following functions:

- Aesthetic: the lower screen connected to the two end caps creates luminosity that eliminates the typical twodimensional effect of similar products.

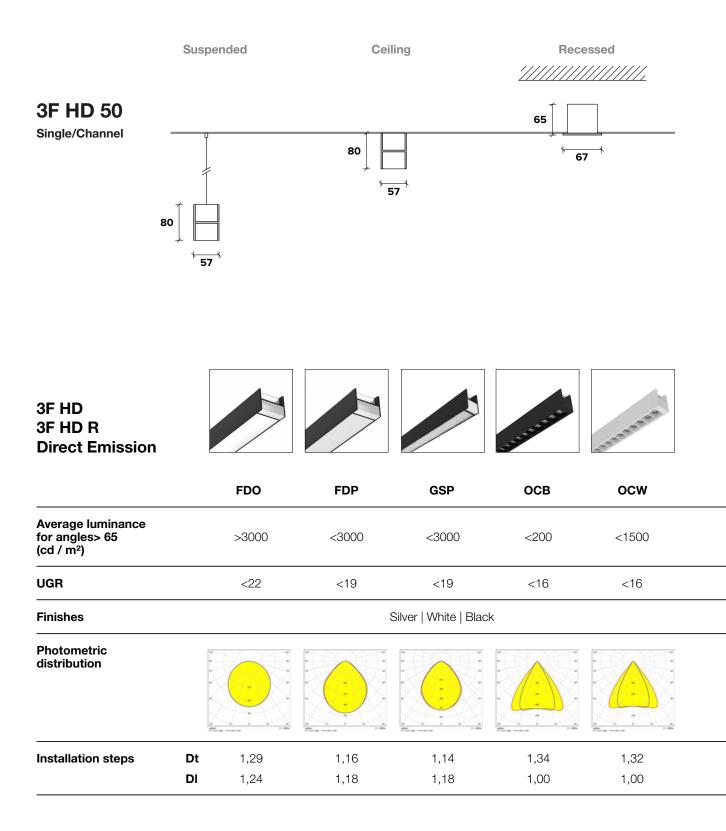
Functional: when the product is installed near walls, the lighted caps mitigate the typical smudged light effect. On the other hand, when installed in open areas, its perception and light diffusion improve, even in the most open corners.
Lighting: the luminous front component reduces the visual contrast, making the perceived light under the same product

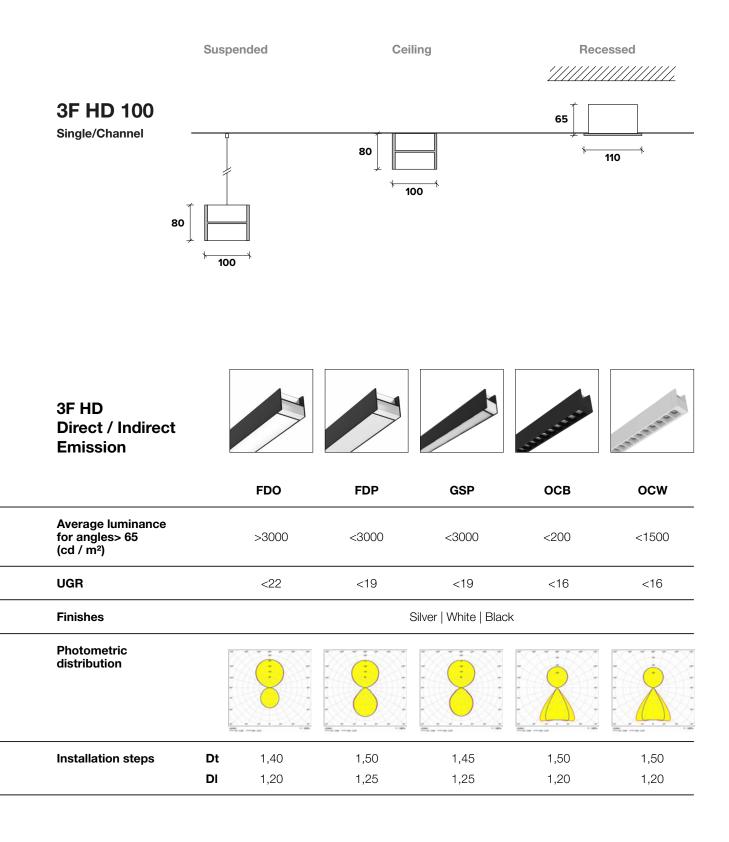
axis more comfortable. All versions have a mirrored aluminium decoration that hides the access, giving the product visual depth.



FASTWIRING SYSTEM

In the channel versions, the **FastWiring** system drastically reduces the installation time.


A plug and a socket are mounted at the beginning and end of each bar. Simply join them together and the connection is made automatically.


From the mechanical point of view, the connection is ensured by the (already mounted) joining elements inside the second body and fixing the safety hardware.

PRODUCT RANGE

3F HD - Single

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium housing. Removable gear-tray. Lighting head caps with specular aluminium frieze.

Electrical characteristics

38

In compliance with EN 60598-1. Entrance to the upper power supply in proximity to a power head. Branching via an irreversible quick coupling plug to connect the cable housing element to the socket.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different powers
- LED sources with different colour temperatures
- housing in different RAL colours
- OC optic in different RAL colours
- wiring: CLO (more information on page 542)

Applications

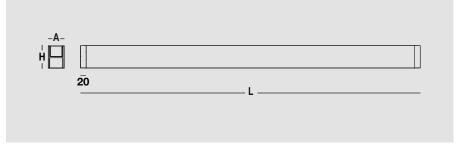
Environments: with VDTs, meeting rooms, offices.

Environments: architectural, commercial, staterooms, banks.

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

FDO version

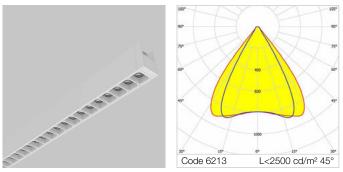
Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.


Installation

Ceiling mounted or suspension installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

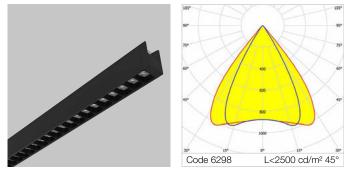
3F HD OCW Single

Optics Control White - LEED certification

Average luminance <2500 cd/m² for angles >45°. Average luminance <1500 cd/m² for angles >65°. Environments with very exacting visual tasks and control of

luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.


Anti-reflective white polycarbonate alveolar optic.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
3F HD 50 - D	OALI electronic wiring 230V-50/60Hz						
\bigcirc		10 -	1 = 0 0	0500	~ ~	1011 57 00	

0 6212	3F HD50 WH 12/835 DALI OCW L1214	13.5	1593	3500	>80 1214x57x80	
0 6213	3F HD50 WH 15/835 DALI OCW L1508	17	1991	3500	>80 1508x57x80	
0 6214	3F HD50 WH 30/835 DALI OCW L2975	33	3981	3500	>80 2975x57x80	

3F HD OCB Single

Optics Control Black - LEED certification

CE	650°C	I P40	0,2J	I K02	X	A++ A+ A
----	-------	--------------	------	--------------	---	----------------

Average luminance <2500 cd/m² for angles >45°. Average luminance <200 cd/m² for angles >65°. Environments with very exacting visual tasks and control of luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

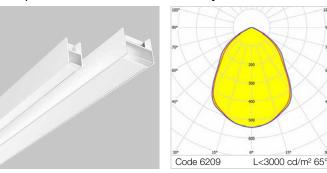
Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.

Anti-reflective black polycarbonate alveolar optic.

Code	ltem	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F HD 50 - D	ALI electronic wiring 230V-50/60Hz					
6297	3F HD50 BK 12/835 DALI OCB L1214	13.5	1474	3500	>80	1214x57x80
6298	3F HD50 BK 15/835 DALI OCB L1508	17	1843	3500	>80	1508x57x80
• 6299	3F HD50 BK 30/835 DALI OCB L2975	33	3686	3500	>80	2975x57x80
6382	3F HD50 AL 12/835 DALI OCB L1214	13.5	1474	3500	>80	1214x57x80
0 6383	3F HD50 AL 15/835 DALI OCB L1508	17	1843	3500	>80	1508x57x80
6384	3F HD50 AL 30/835 DALI OCB L2975	33	3686	3500	>80	2975x57x80

3F HD GSP Single

6314


6397

 \bigcirc

 \bigcirc 6398

 \bigcirc 6399

Flat prismatic diffuser in methacrylate with low luminance film

3F HD100 BK 52/840 DALI GSP L2975

3F HD100 AL 22/840 DALI GSP L1214

3F HD100 AL 26/840 DALI GSP L1508

3F HD100 AL 52/840 DALI GSP L2975

IP40

Average luminance <3000 cd/m² for angles >65°. Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. SP flat diffuser in transparent PMMA, outside prismatic, anti-glare. Anti-glare opal polycarbonate filter for brightness uniformity.

Code Item Absorbed Output CCT CRI Dimensions power (W) flux (Im) LxAxH (K) 3F HD 50 - DALI electronic wiring 230V-50/60Hz \bigcirc 3F HD50 WH 13/840 DALI GSP L1214 6208 14 1374 >80 4000 1214x57x80 0 6209 3F HD50 WH 16/840 DALI GSP L1508 19 1718 4000 >80 1508x57x80 \bigcirc 3F HD50 WH 32/840 DALI GSP L2975 3435 6210 35 4000 >80 2975x57x80 3F HD50 BK 13/840 DALI GSP L1214 6293 14 1374 4000 >80 1214x57x80 • 6294 3F HD50 BK 16/840 DALI GSP L1508 19 1718 4000 >80 1508x57x80 0 6295 3F HD50 BK 32/840 DALI GSP L2975 35 3435 4000 >80 2975x57x80 \bigcirc 6378 3F HD50 AL 13/840 DALI GSP L1214 14 1374 4000 >80 1214x57x80 6379 3F HD50 AL 16/840 DALI GSP L1508 19 1718 4000 >80 1508x57x80 \bigcirc 3F HD50 AL 32/840 DALI GSP L2975 \bigcirc 6380 35 3435 4000 >80 2975x57x80 3F HD 100 - DALI electronic wiring 230V-50/60Hz \bigcirc 6227 3F HD100 WH 22/840 DALI GSP L1214 24 2617 4000 >80 1214x100x80 3F HD100 WH 26/840 DALI GSP L1508 0 6228 30 3271 4000 >80 1508x100x80 3F HD100 WH 52/840 DALI GSP L2975 \bigcirc 6229 58 6428 4000 >80 2975x100x80 6312 3F HD100 BK 22/840 DALI GSP L1214 4000 24 2617 >80 1214x100x80 6313 3F HD100 BK 26/840 DALI GSP L1508 30 3271 4000 >80 1508x100x80

58

24

30

58

6428

2617

3271

6428

4000

4000

4000

4000

>80

>80

>80

>80

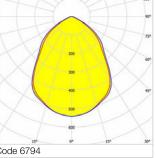
2975x100x80

1214x100x80

1508x100x80

2975x100x80

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). 40 Datasheets, product updates and specifications on our website: www.3f-filippi.com


3F HD HO GSP Single

Code

Flat prismatic diffuser in methacrylate with low luminance film

Item

Output

flux (Im)

Driver/LED SELV

Dimensions

LxAxH

Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. SP flat diffuser in transparent PMMA, outside prismatic, anti-glare. Anti-glare opal polycarbonate filter for brightness uniformity.

CRI

CCT

(K)

3F HD 50 - DALI electronic wiring 230V-50/60Hz

3F HD 30 - DA	ALT Electronic winny 2004-50/00HZ						
○ 6793 ^{NEW}	3F HD50 WH HO 22/840 DALI GSP L1214	24	2597	4000	>80	1214x57x80	
○ 6794 ^{NEW}	3F HD50 WH HO 26/840 DALI GSP L1508	32	3246	4000	>80	1508x57x80	
○ 6795 ^{NEW}	3F HD50 WH HO 52/840 DALI GSP L2975	58	5871	4000	>80	2975x57x80	
● 6799 ^{NEW}	3F HD50 BK HO 22/840 DALI GSP L1214	24	2597	4000	>80	1214x57x80	
● 6800 ^{NEW}	3F HD50 BK HO 26/840 DALI GSP L1508	32	3246	4000	>80	1508x57x80	
● 6801 ^{NEW}	3F HD50 BK HO 52/840 DALI GSP L2975	58	5871	4000	>80	2975x57x80	
○ 6805 NEW	3F HD50 AL HO 22/840 DALI GSP L1214	24	2597	4000	>80	1214x57x80	
○ 6806 ^{NEW}	3F HD50 AL HO 26/840 DALI GSP L1508	32	3246	4000	>80	1508x57x80	
○ 6807 ^{NEW}	3F HD50 AL HO 52/840 DALI GSP L2975	58	5871	4000	>80	2975x57x80	

Absorbed

power (W)

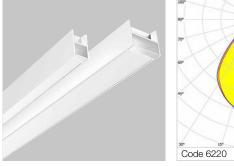
3F HD 100 - DALI electronic wiring 230V-50/60Hz

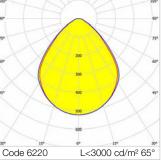
	gg						
○ 6796 ^{NEW}	3F HD100 WH HO 36/840 DALI GSP L1214	39	3999	4000	>80	1214x100x80	
○ 6797 ^{NEW}	3F HD100 WH HO 44/840 DALI GSP L1508	49	4998	4000	>80	1508x100x80	
○ 6798 ^{NEW}	3F HD100 WH HO 88/840 DALI GSP L2975	98	9997	4000	>80	2975x100x80	
● 6802 ^{NEW}	3F HD100 BK HO 36/840 DALI GSP L1214	39	3999	4000	>80	1214x100x80	
● 6803 ^{NEW}	3F HD100 BK HO 44/840 DALI GSP L1508	49	4998	4000	>80	1508x100x80	
● 6804 ^{NEW}	3F HD100 BK HO 88/840 DALI GSP L2975	98	9997	4000	>80	2975x100x80	
○ 6808 ^{NEW}	3F HD100 AL HO 36/840 DALI GSP L1214	39	3999	4000	>80	1214x100x80	
○ 6809 ^{NEW}	3F HD100 AL HO 44/840 DALI GSP L1508	49	4998	4000	>80	1508x100x80	
○ 6810 ^{NEW}	3F HD100 AL HO 88/840 DALI GSP L2975	98	9997	4000	>80	2975x100x80	

3F HD FDP Single

Diffuser microprismatic

0 6389


0 6391


6390

3F HD100 AL 22/840 DALI FDP L1214

3F HD100 AL 26/840 DALI FDP L1508

3F HD100 AL 52/840 DALI FDP L2975

Average luminance <3000 cd/m² for angles >65°.

Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator.

Externally micro prismatic transparent flat anti-glare polycarbonate diffuser.

Anti-glare opal polycarbonate filter for brightness uniformity.

	Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F	HD 50 - DA	LI electronic wiring 230V-50/60Hz					
\bigcirc	6200	3F HD50 WH 13/840 DALI FDP L1214	14	1292	4000	>80	1214x57x80
\bigcirc	6201	3F HD50 WH 16/840 DALI FDP L1508	19	1615	4000	>80	1508x57x80
\bigcirc	6202	3F HD50 WH 32/840 DALI FDP L2975	35	3229	4000	>80	2975x57x80
	6285	3F HD50 BK 13/840 DALI FDP L1214	14	1292	4000	>80	1214x57x80
\bullet	6286	3F HD50 BK 16/840 DALI FDP L1508	19	1615	4000	>80	1508x57x80
	6287	3F HD50 BK 32/840 DALI FDP L2975	35	3229	4000	>80	2975x57x80
\bigcirc	6370	3F HD50 AL 13/840 DALI FDP L1214	14	1292	4000	>80	1214x57x80
\bigcirc	6371	3F HD50 AL 16/840 DALI FDP L1508	19	1615	4000	>80	1508x57x80
\bigcirc	6372	3F HD50 AL 32/840 DALI FDP L2975	35	3229	4000	>80	2975x57x80
3F	HD 100 - D/	ALI electronic wiring 230V-50/60Hz					
\bigcirc	6219	3F HD100 WH 22/840 DALI FDP L1214	24	2468	4000	>80	1214x100x80
0	6220	3F HD100 WH 26/840 DALI FDP L1508	30	3085	4000	>80	1508x100x80
\bigcirc	6221	3F HD100 WH 52/840 DALI FDP L2975	58	6062	4000	>80	2975x100x80
۲	6304	3F HD100 BK 22/840 DALI FDP L1214	24	2468	4000	>80	1214x100x80
\bullet	6305	3F HD100 BK 26/840 DALI FDP L1508	30	3085	4000	>80	1508x100x80
۲	6306	3F HD100 BK 52/840 DALI FDP L2975	58	6062	4000	>80	2975x100x80

24

30

58

2468

3085

6062

4000

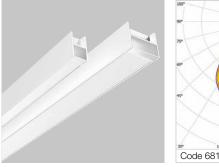
4000

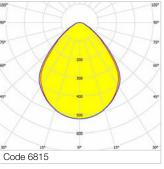
4000

>80

>80

1214x100x80


1508x100x80


>80 2975x100x80

Diffuser microprismatic

 \bigcirc

6828^N

Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. Externally micro prismatic transparent flat anti-glare polycarbonate diffuser.

Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
3F HD 50 - D	DALI electronic wiring 230V-50/60Hz						
○ 6811 ^{NEW}	3F HD50 WH HO 22/840 DALI FDP L1214	24	2449	4000	>80	1214x57x80	
○ 6812 №	3F HD50 WH HO 26/840 DALI FDP L1508	32	3061	4000	>80	1508x57x80	
○ 6813 ^{NEW}	3F HD50 WH HO 52/840 DALI FDP L2975	58	5537	4000	>80	2975x57x80	
● 6817 ^{NEW}	3F HD50 BK HO 22/840 DALI FDP L1214	24	2449	4000	>80	1214x57x80	
● 6818 ^{NEW}	3F HD50 BK HO 26/840 DALI FDP L1508	32	3061	4000	>80	1508x57x80	
● 6819 ^{NEW}	3F HD50 BK HO 52/840 DALI FDP L2975	58	5537	4000	>80	2975x57x80	
○ 6823 ^{NEW}	3F HD50 AL HO 22/840 DALI FDP L1214	24	2449	4000	>80	1214x57x80	
○ 6824 ^{NEW}	3F HD50 AL HO 26/840 DALI FDP L1508	32	3061	4000	>80	1508x57x80	
○ 6825 №	3F HD50 AL HO 52/840 DALI FDP L2975	58	5537	4000	>80	2975x57x80	
3F HD 100 -	DALI electronic wiring 230V-50/60Hz						
		20	2771	1000	<u>\</u> 00	10142100200	

0 6814 3F HD100 WH HO 36/840 DALI FDP L1214 39 3771 4000 >80 1214x100x80 \bigcirc 6815^{NEW} 3F HD100 WH HO 44/840 DALI FDP L1508 49 4714 4000 >80 1508x100x80 6816^N 3F HD100 WH HO 88/840 DALI FDP L2975 98 9428 \bigcirc 4000 >80 2975x100x80 6820^{NEW} 3F HD100 BK HO 36/840 DALI FDP L1214 39 3771 4000 >80 1214x100x80 3F HD100 BK HO 44/840 DALI FDP L1508 6821 49 4714 4000 >80 1508x100x80 6822 NEW 3F HD100 BK HO 88/840 DALI FDP L2975 98 9428 4000 >80 2975x100x80 6826^{NEN} 3F HD100 AL HO 36/840 DALI FDP L1214 39 3771 4000 1214x100x80 \bigcirc >80 6827 NEW 3F HD100 AL HO 44/840 DALI FDP L1508 \bigcirc 49 4714 4000 >80 1508x100x80 3F HD100 AL HO 88/840 DALI FDP L2975

98

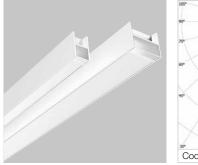
9428

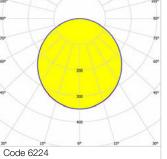
4000

>80

2975x100x80

3F HD FDO Single


Opal diffuser


6394

0 6395

3F HD100 AL 26/840 DALI FDO L1508

3F HD100 AL 52/840 DALI FDO L2975

Driver/LED

SELV

>80 1508x100x80

>80 2975x100x80

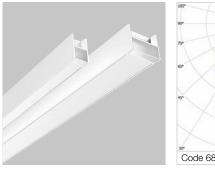
Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. Flat opal anti-glare polycarbonate diffuser.

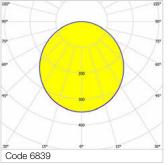
			00000221					
(Code	Item		Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F H	1D 50 - DAI	LI electronic wir	ing 230V-50/60Hz					
0 6	6204	3F HD50 WH 13/8	340 DALI FDO L1214	14	1250	4000	>80	1214x57x80
0 6	6205	3F HD50 WH 16/8	340 DALI FDO L1508	19	1563	4000	>80	1508x57x80
0 6	6206	3F HD50 WH 32/8	340 DALI FDO L2975	35	3126	4000	>80	2975x57x80
• 6	6289	3F HD50 BK 13/8	40 DALI FDO L1214	14	1250	4000	>80	1214x57x80
•	6290	3F HD50 BK 16/8	40 DALI FDO L1508	19	1563	4000	>80	1508x57x80
• (6291	3F HD50 BK 32/8	40 DALI FDO L2975	35	3126	4000	>80	2975x57x80
\bigcirc	6374	3F HD50 AL 13/84	40 DALI FDO L1214	14	1250	4000	>80	1214x57x80
0 6	6375	3F HD50 AL 16/84	40 DALI FDO L1508	19	1563	4000	>80	1508x57x80
0 6	6376	3F HD50 AL 32/84	40 DALI FDO L2975	35	3126	4000	>80	2975x57x80
3F H	HD 100 - DA	ALI electronic wi	ring 230V-50/60Hz					
0 6	6223	3F HD100 WH 22	/840 DALI FDO L1214	24	2304	4000	>80	1214x100x80
0 6	6224	3F HD100 WH 26	/840 DALI FDO L1508	30	2880	4000	>80	1508x100x80
0 6	6225	3F HD100 WH 52	/840 DALI FDO L2975	58	5660	4000	>80	2975x100x80
• (6308	3F HD100 BK 22/	840 DALI FDO L1214	24	2304	4000	>80	1214x100x80
•	6309	3F HD100 BK 26/	840 DALI FDO L1508	30	2880	4000	>80	1508x100x80
• (6310	3F HD100 BK 52/	840 DALI FDO L2975	58	5660	4000	>80	2975x100x80
0 6	6393	3F HD100 AL 22/8	340 DALI FDO L1214	24	2304	4000	>80	1214x100x80

30

58

2880


5660


4000

4000

3F HD HO FDO Single

Opal diffuser

CE 650°C **I**P40 0,2J **I**K02

Driver/LED

Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. Flat opal anti-glare polycarbonate diffuser.

/		C00e 0839						
Code	Item		Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
3F HD 50 - DA	LI electronic wi	ring 230V-50/60Hz						
○ 6829 ^{NEW}	3F HD50 WH HC) 22/840 DALI FDO L1214	24	2287	4000	>80	1214x57x80	
○ 6830 ^{NEW}	3F HD50 WH HC) 26/840 DALI FDO L1508	32	2858	4000	>80	1508x57x80	
○ 6831 ^{NEW}	3F HD50 WH HC) 52/840 DALI FDO L2975	58	5170	4000	>80	2975x57x80	
● 6835 ^{NEW}	3F HD50 BK HO	22/840 DALI FDO L1214	24	2287	4000	>80	1214x57x80	
● 6836 ^{NEW}	3F HD50 BK HO	26/840 DALI FDO L1508	32	2858	4000	>80	1508x57x80	
● 6837 ^{NEW}	3F HD50 BK HO	52/840 DALI FDO L2975	58	5170	4000	>80	2975x57x80	
○ 6841 ^{NEW}	3F HD50 AL HO	22/840 DALI FDO L1214	24	2287	4000	>80	1214x57x80	
○ 6842 №	3F HD50 AL HO	26/840 DALI FDO L1508	32	2858	4000	>80	1508x57x80	
○ 6843 ^{NEW}	3F HD50 AL HO	52/840 DALI FDO L2975	58	5170	4000	>80	2975x57x80	
3F HD 100 - D	ALI electronic w	viring 230V-50/60Hz						
○ 6832 ^{NEW}	3F HD100 WH H	O 36/840 DALI FDO L1214	39	3521	4000	>80	1214x100x80	

○ 6832 ^{NEW}	3F HD100 WH HO 36/840 DALI FDO L1214	39	3521	4000	>80	1214x100x80	
○ 6833 ^{NEW}	3F HD100 WH HO 44/840 DALI FDO L1508	49	4401	4000	>80	1508x100x80	
○ 6834 ^{NEW}	3F HD100 WH HO 88/840 DALI FDO L2975	98	8802	4000	>80	2975x100x80	
● 6838 ^{NEW}	3F HD100 BK HO 36/840 DALI FDO L1214	39	3521	4000	>80	1214x100x80	
● 6839 ^{NEW}	3F HD100 BK HO 44/840 DALI FDO L1508	49	4401	4000	>80	1508x100x80	
● 6840 ^{NEW}	3F HD100 BK HO 88/840 DALI FDO L2975	98	8802	4000	>80	2975x100x80	
○ 6844 ^{NEW}	3F HD100 AL HO 36/840 DALI FDO L1214	39	3521	4000	>80	1214x100x80	
○ 6845 ^{NEW}	3F HD100 AL HO 44/840 DALI FDO L1508	49	4401	4000	>80	1508x100x80	
○ 6846 ^{NEW}	3F HD100 AL HO 88/840 DALI FDO L2975	98	8802	4000	>80	2975x100x80	

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium housing. Removable gear-tray. Hot-dip galvanised steel linear connecting element installed on the body for rapid mechanical connection.

Electrical characteristics

In compliance with EN 60598-1. Entrance to the upper power supply in proximity to a power head. 5 mm² section 2.5 pin through line with an irreversible quick coupling plug plug/ socket fixed on the body for rapid electrical connection. Branching via an irreversible quick coupling plug to connect the cable housing element to the socket.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different powers
- LED sources with different colour temperatures
- housing in different RAL colours
- OC optic in different RAL colours
- wiring: CLO (more information on page 542)

Applications

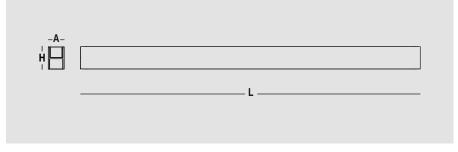
Environments: with VDTs, meeting rooms, offices.

Environments: architectural, commercial, staterooms, banks.

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

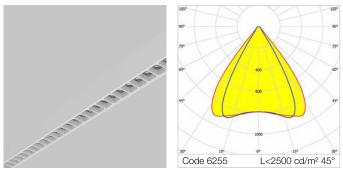
FDO version

Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.


Installation

Ceiling mounted or suspension installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions

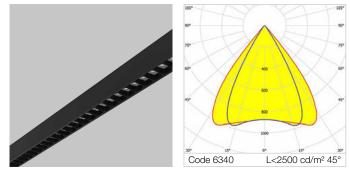
3F HD OCW Channel

Optics Control White - LEED certification

Average luminance <2500 cd/m² for angles >45°. Average luminance <1500 cd/m² for angles >65°. Environments with very exacting visual tasks and control of

luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.


Anti-reflective white polycarbonate alveolar optic.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F HD 50 - DA	ALI electronic wiring 230V-50/60Hz					

0 6254	3F HD50 WH 12/835 DALI 5P OCW L1174	13.5	1593	3500	>80	1174x57x80
0 6255	3F HD50 WH 15/835 DALI 5P OCW L1468	17	1991	3500	>80	1468x57x80
0 6259	3F HD50 WH 30/835 DALI 5P OCW L2935	33	3981	3500	>80	2935x57x80

3F HD OCB Channel

Optics Control Black - LEED certification

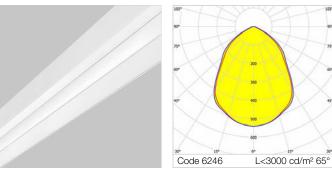
CE	650°C	I P40	0,2J	IK02	<u>}</u>	A++ A+ A
----	-------	--------------	------	------	----------	----------------

Average luminance <2500 cd/m² for angles >45°. Average luminance <200 cd/m² for angles >65°. Environments with very exacting visual tasks and control of luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.

Anti-reflective black polycarbonate alveolar optic. Black colour PVC superior closure top.

	osorbed ower (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
--	---------------------	---------------------	------------	-----	-------------------------


3F HD 50 - DALI electronic wiring 230V-50/60Hz

	-					
• 6339	3F HD50 BK 12/835 DALI 5P OCB L1174	13.5	1474	3500	>80 1174x57x80	
6340	3F HD50 BK 15/835 DALI 5P OCB L1468	17	1843	3500	>80 1468x57x80	
• 6344	3F HD50 BK 30/835 DALI 5P OCB L2935	33	3686	3500	>80 2935x57x80	
6424	3F HD50 AL 12/835 DALI 5P OCB L1174	13.5	1474	3500	>80 1174x57x80	
0 6425	3F HD50 AL 15/835 DALI 5P OCB L1468	17	1843	3500	>80 1468x57x80	
6429	3F HD50 AL 30/835 DALI 5P OCB L2935	33	3686	3500	>80 2935x57x80	

3F HD GSP Channel

Code

Flat prismatic diffuser in methacrylate with low luminance film

Output

flux (Im)

P40

Average luminance $<3000 \text{ cd/m}^2$ for angles $>65^\circ$. Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. SP transparent methacrylate diffuser, prismatic outside, antiglare. Anti-glare opal polycarbonate filter for brightness uniformity.

CRI

Dimensions

LxAxH

CCT

(K)

3F HD 50 - DALI electi	ronic wiring 230V-50/60Hz
------------------------	---------------------------

Item

01							
\bigcirc	6245	3F HD50 WH 13/840 DALI 5P GSP L1174	14	1374	4000	>80	1174x57x80
\bigcirc	6246	3F HD50 WH 16/840 DALI 5P GSP L1468	19	1718	4000	>80	1468x57x80
\bigcirc	6250	3F HD50 WH 32/840 DALI 5P GSP L2935	35	3435	4000	>80	2935x57x80
ullet	6330	3F HD50 BK 13/840 DALI 5P GSP L1174	14	1374	4000	>80	1174x57x80
ullet	6331	3F HD50 BK 16/840 DALI 5P GSP L1468	19	1718	4000	>80	1468x57x80
ullet	6335	3F HD50 BK 32/840 DALI 5P GSP L2935	35	3435	4000	>80	2935x57x80
\bigcirc	6415	3F HD50 AL 13/840 DALI 5P GSP L1174	14	1374	4000	>80	1174x57x80
\bigcirc	6416	3F HD50 AL 16/840 DALI 5P GSP L1468	19	1718	4000	>80	1468x57x80
\bigcirc	6420	3F HD50 AL 32/840 DALI 5P GSP L2935	35	3435	4000	>80	2935x57x80

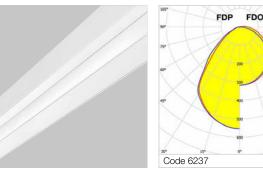
Absorbed

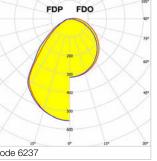
power (W)

3F HD 100 - DALI electronic wiring 230V-50/60Hz

	5						
0 6275	3F HD100 WH 22/840 DALI 5P GSP L1174	24	2617	4000	>80	1174x100x80	
0 6276	3F HD100 WH 26/840 DALI 5P GSP L1468	30	3271	4000	>80	1468x100x80	
0 6280	3F HD100 WH 52/840 DALI 5P GSP L2935	58	6428	4000	>80	2935x100x80	
• 6360	3F HD100 BK 22/840 DALI 5P GSP L1174	24	2617	4000	>80	1174x100x80	
• 6361	3F HD100 BK 26/840 DALI 5P GSP L1468	30	3271	4000	>80	1468x100x80	
• 6365	3F HD100 BK 52/840 DALI 5P GSP L2935	58	6428	4000	>80	2935x100x80	
0 6445	3F HD100 AL 22/840 DALI 5P GSP L1174	24	2617	4000	>80	1174x100x80	
6446	3F HD100 AL 26/840 DALI 5P GSP L1468	30	3271	4000	>80	1468x100x80	
0 6450	3F HD100 AL 52/840 DALI 5P GSP L2935	58	6428	4000	>80	2935x100x80	

Driver/LED


SELV


1

FDP

3F HD FD Channel

Fixture suitable FDP or FDO

IK02

Average luminance <3000 cd/m² for angles >65° (FDP). Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator.

For diffusers see accessories on page 74.

	Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F	HD 50 - DA	LI electronic wiring 230V-50/60Hz					
0	6236	3F HD50 WH 13/840 DALI 5P FD L1174	14	1292 FDP 1250 FDO	4000	>80	1174x57x80
0	6237	3F HD50 WH 16/840 DALI 5P FD L1468	19	1615 FDP 1563 FDO	4000	>80	1468x57x80
0	6241	3F HD50 WH 32/840 DALI 5P FD L2935	35	3229 FDP 3126 FDO	4000	>80	2935x57x80
•	6321	3F HD50 BK 13/840 DALI 5P FD L1174	14	1292 FDP 1250 FDO	4000	>80	1174x57x80
•	6322	3F HD50 BK 16/840 DALI 5P FD L1468	19	1615 FDP 1563 FDO	4000	>80	1468x57x80
•	6326	3F HD50 BK 32/840 DALI 5P FD L2935	35	3229 FDP 3126 FDO	4000	>80	2935x57x80
\bigcirc	6406	3F HD50 AL 13/840 DALI 5P FD L1174	14	1292 FDP 1250 FDO	4000	>80	1174x57x80
\bigcirc	6407	3F HD50 AL 16/840 DALI 5P FD L1468	19	1615 FDP 1563 FDO	4000	>80	1468x57x80
\bigcirc	6411	3F HD50 AL 32/840 DALI 5P FD L2935	35	3229 FDP 3126 FDO	4000	>80	2935x57x80
3F	HD 100 - D	ALI electronic wiring 230V-50/60Hz					
0	6266	3F HD100 WH 22/840 DALI 5P FD L1174	24	2468 FDP 2304 FDO	4000	>80	1174x100x80
\bigcirc	6267	3F HD100 WH 26/840 DALI 5P FD L1468	30	3085 FDP 2880 FDO	4000	>80	1468x100x80
0	6271	3F HD100 WH 52/840 DALI 5P FD L2935	58	6062 FDP 5660 FDO	4000	>80	2935x100x80
•	6351	3F HD100 BK 22/840 DALI 5P FD L1174	24	2468 FDP 2304 FDO	4000	>80	1174x100x80
•	6352	3F HD100 BK 26/840 DALI 5P FD L1468	30	3085 FDP 2880 FDO	4000	>80	1468x100x80
•	6356	3F HD100 BK 52/840 DALI 5P FD L2935	58	6062 FDP 5660 FDO	4000	>80	2935x100x80
\bigcirc	6436	3F HD100 AL 22/840 DALI 5P FD L1174	24	2468 FDP 2304 FDO	4000	>80	1174x100x80
\bigcirc	6437	3F HD100 AL 26/840 DALI 5P FD L1468	30	3085 FDP 2880 FDO	4000	>80	1468x100x80
\bigcirc	6441	3F HD100 AL 52/840 DALI 5P FD L2935	58	6062 FDP 5660 FDO	4000	>80	2935x100x80

A++ A+

3F HD Direct/Indirect - Single

Construction characteristics

Illuminotechnical characteristics

Direct-indirect distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium housing. Removable gear-tray. Translucent polycarbonate upper diffuser. Lighting head caps with specular aluminium frieze.

Electrical characteristics

In compliance with EN 60598-1. 5-pole terminal block, single 230V circuit, 2 DALI addresses (depending on the type of lighting fixture). Entrance to the upper power supply in proximity to a power head. Branching via an irreversible quick coupling plug to connect the cable housing element to the socket.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different powers
- LED sources with different colour temperatures
- housing in different RAL colours
- OC optic in different RAL colours
- wiring: CLO (more information on page 542)

Applications

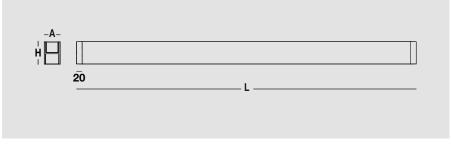
Environments: with VDTs, meeting rooms, offices.

Environments: architectural, commercial, staterooms, banks.

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

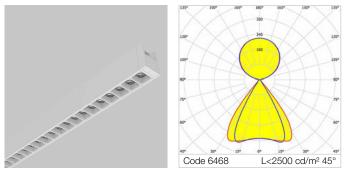
FDO version

Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.


Installation

Suspension installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions

3F HD DI OCW Single

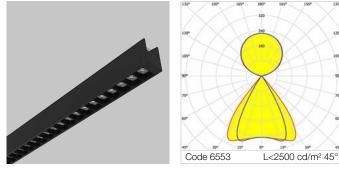
Optics Control White - LEED certification

Average luminance $<2500 \text{ cd/m}^2$ for angles $>45^\circ$. Average luminance $<1500 \text{ cd/m}^2$ for angles $>65^\circ$.

Environments with very exacting visual tasks and control of luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.

Anti-reflective white polycarbonate alveolar optic.


Code	lt	tem	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H

3F HD 50 - DALI electronic wiring 230V-50/60Hz

0 6467	3F HD50DI WH 12+20/835 DALI OCW L1214	38	3995	3500	>80	1214x57x80
0 6468	3F HD50DI WH 15+26/835 DALI OCW L1508	46	5048	3500	>80	1508x57x80
0 6469	3F HD50DI WH 30+52/835 DALI OCW L2975	92	10095	3500	>80	2975x57x80

3F HD DI OCB Single

Optics Control Black - LEED certification

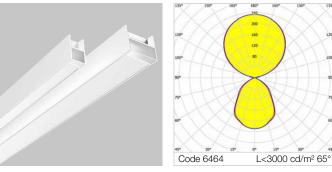
CE	650°C	I P40	0,2J	I K02	<u>}</u>	A++ A+ A
----	-------	--------------	------	--------------	----------	----------------

Average luminance <2500 cd/m² for angles >45°.

Average luminance <200 cd/m² for angles >65°. Environments with very exacting visual tasks and control of luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.

Anti-reflective black polycarbonate alveolar optic.


Code	Item	Absorbed	Output	CCT	CRI	Dimensions	
		power (W)	flux (lm)	(K)		LxAxH	

3F HD 50 - DALI electronic wiring 230V-50/60Hz

• 6552	3F HD50DI BK 12+20/835 DALI OCB L1214	38	3876	3500	>80 1214x57x80	
• 6553	3F HD50DI BK 15+26/835 DALI OCB L1508	46	4900	3500	>80 1508x57x80	
• 6554	3F HD50DI BK 30+52/835 DALI OCB L2975	92	9800	3500	>80 2975x57x80	
6637	3F HD50DI AL 12+20/835 DALI OCB L1214	38	3876	3500	>80 1214x57x80	
0 6638	3F HD50DI AL 15+26/835 DALI OCB L1508	46	4900	3500	>80 1508x57x80	
○ 6639	3F HD50DI AL 30+52/835 DALI OCB L2975	92	9800	3500	>80 2975x57x80	

3F HD DI GSP Single

Flat prismatic diffuser in methacrylate with low luminance film

CE 650°C

Average luminance <3000 cd/m² for angles >65°. Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator.

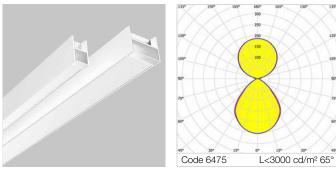
IP40

SP transparent methacrylate diffuser, prismatic outside, antiglare. Anti-glare opal polycarbonate filter for brightness uniformity.

Code	ltem	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
3F HD 50 - DA	ALI electronic wiring 230V-50/60Hz						
0 6463	3F HD50DI WH 13+20/840 DALI GSP L1214	38	3943	4000	>80	1214x57x80	
\bigcirc caca		10	1000	4000	. 00	1 500 57 00	

\bigcirc	6464	3F HD50DI WH 16+26/840 DALI GSP L1508	46	4988	4000	>80	1508x57x80
\bigcirc	6465	3F HD50DI WH 32+52/840 DALI GSP L2975	92	9975	4000	>80	2975x57x80
\bullet	6548	3F HD50DI BK 13+20/840 DALI GSP L1214	38	3943	4000	>80	1214x57x80
	6549	3F HD50DI BK 16+26/840 DALI GSP L1508	46	4988	4000	>80	1508x57x80
\bullet	6550	3F HD50DI BK 32+52/840 DALI GSP L2975	92	9975	4000	>80	2975x57x80
\bigcirc	6633	3F HD50DI AL 13+20/840 DALI GSP L1214	38	3943	4000	>80	1214x57x80
\bigcirc	6634	3F HD50DI AL 16+26/840 DALI GSP L1508	46	4988	4000	>80	1508x57x80
\bigcirc	6635	3F HD50DI AL 32+52/840 DALI GSP L2975	92	9975	4000	>80	2975x57x80

3F HD 100 - DALI electronic wiring 230V-50/60Hz


	0					
0 6482	3F HD100DI WH 22+20/840 DALI GSP L1214	51	5251	4000	>80	1214x100x80
0 6483	3F HD100DI WH 26+26/840 DALI GSP L1508	61	6625	4000	>80	1508x100x80
0 6484	3F HD100DI WH 52+52/840 DALI GSP L2975	122	13135	4000	>80	2975x100x80
• 6567	3F HD100DI BK 22+20/840 DALI GSP L1214	51	5251	4000	>80	1214x100x80
• 6568	3F HD100DI BK 26+26/840 DALI GSP L1508	61	6625	4000	>80	1508x100x80
• 6569	3F HD100DI BK 52+52/840 DALI GSP L2975	122	13135	4000	>80	2975x100x80
0 6652	3F HD100DI AL 22+20/840 DALI GSP L1214	51	5251	4000	>80	1214x100x80
0 6653	3F HD100DI AL 26+26/840 DALI GSP L1508	61	6625	4000	>80	1508x100x80
0 6654	3F HD100DI AL 52+52/840 DALI GSP L2975	122	13135	4000	>80	2975x100x80

Driver/LED

SELV

3F HD DI FDP Single

Diffuser microprismatic

Average luminance <3000 cd/m² for angles >65°. Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator.

Externally micro prismatic transparent flat anti-glare polycarbonate diffuser.

Opal polycarbonate internal anti-glare filter for lighting uniformity.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
3F HD 50	- DALI electronic wiring 230V-50/60Hz						
0 6455	3F HD50DI WH 13+20/840 DALI FDP L1214	38	3861	4000	>80	1214x57x80	
0 6456	3F HD50DI WH 16+26/840 DALI FDP L1508	46	4885	4000	>80	1508x57x80	
0 6457	3F HD50DI WH 32+52/840 DALI FDP L2975	92	9769	4000	>80	2975x57x80	
6540	3F HD50DI BK 13+20/840 DALI FDP L1214	38	3861	4000	>80	1214x57x80	
6541	3F HD50DI BK 16+26/840 DALI FDP L1508	46	4885	4000	>80	1508x57x80	
6542	3F HD50DI BK 32+52/840 DALI FDP L2975	92	9769	4000	>80	2975x57x80	
0 6625	3F HD50DI AL 13+20/840 DALI FDP L1214	38	3861	4000	>80	1214x57x80	
0 6626	3F HD50DI AL 16+26/840 DALI FDP L1508	46	4885	4000	>80	1508x57x80	
0 6627	3F HD50DI AL 32+52/840 DALI FDP L2975	92	9769	4000	>80	2975x57x80	
3F HD 100	0 - DALI electronic wiring 230V-50/60Hz						

90*

60

	•					
0 6474	3F HD100DI WH 22+20/840 DALI FDP L1214	51	5102	4000	>80	1214x100x80
0 6475	3F HD100DI WH 26+26/840 DALI FDP L1508	61	6439	4000	>80	1508x100x80
0 6476	3F HD100DI WH 52+52/840 DALI FDP L2975	122	12769	4000	>80	2975x100x80
• 6559	3F HD100DI BK 22+20/840 DALI FDP L1214	51	5102	4000	>80	1214x100x80
• 6560	3F HD100DI BK 26+26/840 DALI FDP L1508	61	6439	4000	>80	1508x100x80
6561	3F HD100DI BK 52+52/840 DALI FDP L2975	122	12769	4000	>80	2975x100x80
0 6644	3F HD100DI AL 22+20/840 DALI FDP L1214	51	5102	4000	>80	1214x100x80
6645	3F HD100DI AL 26+26/840 DALI FDP L1508	61	6439	4000	>80	1508x100x80
0 6646	3F HD100DI AL 52+52/840 DALI FDP L2975	122	12769	4000	>80	2975x100x80

A++ A+

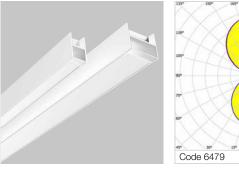
3F HD DI FDO Single

Opal diffuser

6563

6564

6565


6648


6649

0 6650

 \bigcirc

 \bigcirc

3F HD100DI BK 22+20/840 DALI FDO L1214

3F HD100DI BK 26+26/840 DALI FDO L1508

3F HD100DI BK 52+52/840 DALI FDO L2975

3F HD100DI AL 22+20/840 DALI FDO L1214

3F HD100DI AL 26+26/840 DALI FDO L1508

3F HD100DI AL 52+52/840 DALI FDO L2975

IP40

Driver/LED

SELV

Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. Flat opal anti-glare polycarbonate diffuser.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F HD 50 - D	ALI electronic wiring 230V-50/60Hz					
0 6459	3F HD50DI WH 13+20/840 DALI FDO L1214	38	3819	4000	>80	1214x57x80
0 6460	3F HD50DI WH 16+26/840 DALI FDO L1508	46	4833	4000	>80	1508x57x80
0 6461	3F HD50DI WH 32+52/840 DALI FDO L2975	92	9666	4000	>80	2975x57x80
• 6544	3F HD50DI BK 13+20/840 DALI FDO L1214	38	3819	4000	>80	1214x57x80
• 6545	3F HD50DI BK 16+26/840 DALI FDO L1508	46	4833	4000	>80	1508x57x80
• 6546	3F HD50DI BK 32+52/840 DALI FDO L2975	92	9666	4000	>80	2975x57x80
0 6629	3F HD50DI AL 13+20/840 DALI FDO L1214	38	3819	4000	>80	1214x57x80
6630	3F HD50DI AL 16+26/840 DALI FDO L1508	46	4833	4000	>80	1508x57x80
0 6631	3F HD50DI AL 32+52/840 DALI FDO L2975	92	9666	4000	>80	2975x57x80
3F HD 100 -	DALI electronic wiring 230V-50/60Hz					
0 6478	3F HD100DI WH 22+20/840 DALI FDO L1214	51	4938	4000	>80	1214x100x80
0 6479	3F HD100DI WH 26+26/840 DALI FDO L1508	61	6234	4000	>80	1508x100x80
0 6480	3F HD100DI WH 52+52/840 DALI FDO L2975	122	12367	4000	>80	2975x100x80

51

61

122

51

61

122

4938

6234

12367

4938

6234

12367

4000

4000

4000

4000

4000

4000

>80

>80

>80

>80

>80

>80

1214x100x80

1508x100x80

2975x100x80

1214x100x80

1508x100x80

2975x100x80

ΓA	Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10).
54	Datasheets, product updates and specifications on our website: www.3f-filippi.com

3F HD Direct/Indirect - Channel

Construction characteristics

Illuminotechnical characteristics

Direct-indirect distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium housing. Removable gear-tray. Hot-dip galvanised steel linear connecting element installed on the body for rapid mechanical connection. Translucent polycarbonate upper diffuser.

Electrical characteristics

In compliance with EN 60598-1. 5-pole terminal block, single 230V circuit, 2 DALI addresses (depending on the type of lighting fixture). Entrance to the upper power supply in

proximity to a power head. Branching via an irreversible quick

coupling plug to connect the cable housing element to the socket.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different powers
- LED sources with different colour temperatures
- housing in different RAL colours
- OC optic in different RAL colours
- wiring: CLO (more information on page 542)

Applications

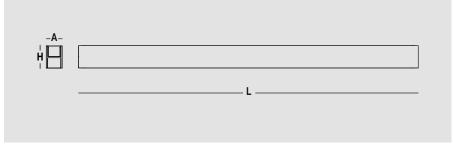
Environments: with VDTs, meeting rooms, offices.

Environments: architectural, commercial, staterooms, banks.

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

FDO version

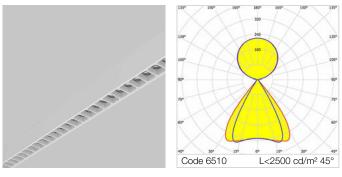
Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.


Installation

Suspension installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions

56 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F HD DI OCW Channel

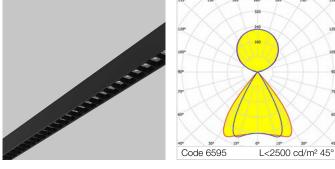
Optics Control White - LEED certification

Average luminance <2500 cd/m² for angles >45°. Average luminance <1500 cd/m² for angles >65°.

Environments with very exacting visual tasks and control of luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.

Anti-reflective white polycarbonate alveolar optic.


Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI Dimensions L x A x H	

3F HD 50 - DALI electronic wiring 230V-50/60Hz

○ 6509	3F HD50DI WH 12+20/835 DALI 5P OCW L1174	40	3995	3500	>80	1174x57x80
○ 6510	3F HD50DI WH 15+26/835 DALI 5P OCW L1468	48	5048	3500	>80	1468x57x80
0 6514	3F HD50DI WH 30+52/835 DALI 5P OCW L2935	92	10095	3500	>80	2935x57x80

3F HD DI OCB Channel

Optics Control Black - LEED certification

C € 650°C IP40 0,2J IK02	A++ A+ A
--------------------------	----------------

Average luminance <2500 cd/m² for angles >45°.

Average luminance <200 cd/m² for angles >65°. Environments with very exacting visual tasks and control of luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.

Anti-reflective black polycarbonate alveolar optic.

Code	Item	Absorbed	Output	CCT	CRI Dimensions	
		power (W)	flux (lm)	(K)	LxAxH	

3F HD 50 - DALI electronic wiring 230V-50/60Hz

• 6594	3F HD50DI BK 12+20/835 DALI 5P OCB L1174	40	3876	3500	>80	1174x57x80	
• 6595	3F HD50DI BK 15+26/835 DALI 5P OCB L1468	48	4900	3500	>80	1468x57x80	
• 6599	3F HD50DI BK 30+52/835 DALI 5P OCB L2935	92	9800	3500	>80	2935x57x80	
6679	3F HD50DI AL 12+20/835 DALI 5P OCB L1174	40	3876	3500	>80	1174x57x80	
0 6680	3F HD50DI AL 15+26/835 DALI 5P OCB L1468	48	4900	3500	>80	1468x57x80	
6684	3F HD50DI AL 30+52/835 DALI 5P OCB L2935	92	9800	3500	>80	2935x57x80	

3F HD DI GSP Channel

Flat prismatic diffuser in methacrylate with low luminance film

CE 650°C

Average luminance <3000 cd/m² for angles >65°. Non-iridescent high efficiency specular aluminium with a titanium

P40

and magnesium surface treatment flow recuperator. SP transparent methacrylate diffuser, prismatic outside, antiglare. Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item		osorbed ower (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F HD 50	- DALI electronic wiring 230V-50/	60Hz					
0 6500	3F HD50DI WH 13+20/840 DALI	5P GSP L1174	38	3943	4000	>80	1174x57x80
0 6501	3F HD50DI WH 16+26/840 DALI	5P GSP L1468	46	4988	4000	>80	1468x57x80
0 6505	3F HD50DI WH 32+52/840 DALI	5P GSP L2935	92	9975	4000	>80	2935x57x80
6585	3F HD50DI BK 13+20/840 DALI	5P GSP L1174	38	3943	4000	>80	1174x57x80
• 6586	3F HD50DI BK 16+26/840 DALI	5P GSP L1468	46	4988	4000	>80	1468x57x80
6590	3F HD50DI BK 32+52/840 DALI	5P GSP L2935	92	9975	4000	>80	2935x57x80
0 6670	3F HD50DI AL 13+20/840 DALI :	5P GSP L1174	38	3943	4000	>80	1174x57x80
6671	3F HD50DI AL 16+26/840 DALI	5P GSP L1468	46	4988	4000	>80	1468x57x80
0 6675	3F HD50DI AL 32+52/840 DALI :	5P GSP L2935	92	9975	4000	>80	2935x57x80

3F HD 100 - DALI electronic wiring 230V-50/60Hz

	0					
○ 6530	3F HD100DI WH 22+20/840 DALI 5P GSP L1174	51	5251	4000	>80	1174x100x80
0 6531	3F HD100DI WH 26+26/840 DALI 5P GSP L1468	61	6625	4000	>80	1468x100x80
0 6535	3F HD100DI WH 52+52/840 DALI 5P GSP L2935	122	13135	4000	>80	2935x100x80
• 6615	3F HD100DI BK 22+20/840 DALI 5P GSP L1174	51	5251	4000	>80	1174x100x80
• 6616	3F HD100DI BK 26+26/840 DALI 5P GSP L1468	61	6625	4000	>80	1468x100x80
• 6620	3F HD100DI BK 52+52/840 DALI 5P GSP L2935	122	13135	4000	>80	2935x100x80
0 6700	3F HD100DI AL 22+20/840 DALI 5P GSP L1174	51	5251	4000	>80	1174x100x80
0 6701	3F HD100DI AL 26+26/840 DALI 5P GSP L1468	61	6625	4000	>80	1468x100x80
0 6705	3F HD100DI AL 52+52/840 DALI 5P GSP L2935	122	13135	4000	>80	2935x100x80

Driver/LED

SELV

FDP

3F HD DI FD Channel

Fixture suitable FDP or FDO

CE	650°C
----	-------

90*

IP40

Average luminance <3000 cd/m² for angles >65° (FDP). Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator.

For diffusers see accessories on page 74.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H					
3F HD 50	3F HD 50 - DALI electronic wiring 230V-50/60Hz										
0 6491	3F HD50DI WH 13+20/840 DALI 5P FD L1174	38	3861 FDP 3819 FDO	4000	>80	1174x57x80					
0 6492	3F HD50DI WH 16+26/840 DALI 5P FD L1468	46	4885 FDP 4833 FDO	4000	>80	1468x57x80					
0 6496	3F HD50DI WH 32+52/840 DALI 5P FD L2935	92	9769 FDP 9666 FDO	4000	>80	2935x57x80					
• 6576	3F HD50DI BK 13+20/840 DALI 5P FD L1174	38	3861 FDP 3819 FDO	4000	>80	1174x57x80					
• 6577	3F HD50DI BK 16+26/840 DALI 5P FD L1468	46	4885 FDP 4833 FDO	4000	>80	1468x57x80					
• 6581	3F HD50DI BK 32+52/840 DALI 5P FD L2935	92	9769 FDP 9666 FDO	4000	>80	2935x57x80					
0 6661	3F HD50DI AL 13+20/840 DALI 5P FD L1174	38	3861 FDP 3819 FDO	4000	>80	1174x57x80					
○ 6662	3F HD50DI AL 16+26/840 DALI 5P FD L1468	46	4885 FDP 4833 FDO	4000	>80	1468x57x80					
○ 6666	3F HD50DI AL 32+52/840 DALI 5P FD L2935	92	9769 FDP 9666 FDO	4000	>80	2935x57x80					
3F HD 10	00 - DALI electronic wiring 230V-50/60Hz										
0 6521	3F HD100DI WH 22+20/840 DALI 5P FD L117	4 51	5102 FDP 4938 FDO	4000	>80	1174x100x80					
0 6522	3F HD100DI WH 26+26/840 DALI 5P FD L146	8 61	6439 FDP 6234 FDO	4000	>80	1468x100x80					
0 6526	3F HD100DI WH 52+52/840 DALI 5P FD L293	5 122	12769 FDP 12367 FDO	4000	>80	2935x100x80					
• 6606	3F HD100DI BK 22+20/840 DALI 5P FD L1174	4 51	5102 FDP 4938 FDO	4000	>80	1174x100x80					
• 6607	3F HD100DI BK 26+26/840 DALI 5P FD L1468	3 61	6439 FDP 6234 FDO	4000	>80	1468x100x80					
● 6611	3F HD100DI BK 52+52/840 DALI 5P FD L2938	5 122	12769 FDP 12367 FDO	4000	>80	2935x100x80					
0 6691	3F HD100DI AL 22+20/840 DALI 5P FD L1174	51	5102 FDP 4938 FDO	4000	>80	1174x100x80					
○ 6692	3F HD100DI AL 26+26/840 DALI 5P FD L1468	61	6439 FDP 6234 FDO	4000	>80	1468x100x80					
○ 6696	3F HD100DI AL 52+52/840 DALI 5P FD L2935	122	12769 FDP 12367 FDO	4000	>80	2935x100x80					

A++ A+

3F HD R Recessed - Single

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted extruded aluminium. Removable gear-tray. End caps in white steel.

Electrical characteristics

In compliance with EN 60598-1. Entrance to the upper power supply in proximity to a power head. Branching via an irreversible quick coupling plug to connect the cable housing element to the socket.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different powers
- LED sources with different colour temperatures
- housing in different RAL colours
- optic in different RAL colours
- wiring: CLO (more information on page 542)
- possibility to create lighting corners
- Optics Control Black

Applications

Environments: with VDTs, meeting rooms, offices.

Environments: architectural, commercial, staterooms, banks.

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

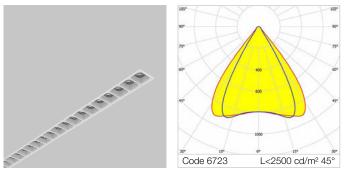
FDO version

Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.

Installation

Recessed installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions

60 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F HD R OCW Single

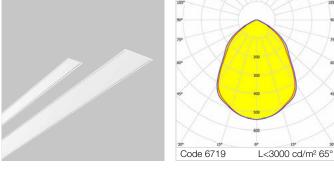
Optics Control White - LEED certification

Average luminance <2500 cd/m² for angles >45°. Average luminance <1500 cd/m² for angles >65°. Environments with very exacting visual tasks and control of

luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.

Anti-reflective white polycarbonate alveolar optic.


Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
		1	- ()	()		

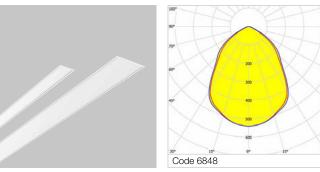
3F HD 50 - DALI electronic wiring 230V-50/60Hz

0 6722	3F HD50R WH 12/835 DALI OCW L1188	13.5	1593	3500	>80	1188x67x65
0 6723	3F HD50R WH 15/835 DALI OCW L1482	17	1991	3500	>80	1482x67x65
0 6724	3F HD50R WH 30/835 DALI OCW L2949	33	3981	3500	>80	2949x67x65

3F HD R GSP Single

Flat prismatic diffuser in methacrylate with low luminance film

Average luminance <3000 cd/m² for angles >65°.


Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. SP flat diffuser in transparent PMMA, outside prismatic, anti-glare.

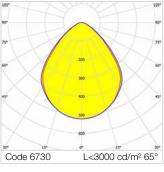
Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F HD 50 - D4	ALI electronic wiring 230V-50/60Hz					
0 6718	3F HD50R WH 13/840 DALI GSP L1188	14	1374	4000	>80	1188x67x65
0 6719	3F HD50R WH 16/840 DALI GSP L1482	19	1718	4000	>80	1482x67x65
0 6720	3F HD50R WH 32/840 DALI GSP L2949	35	3435	4000	>80	2949x67x65
3F HD 100 - D	ALI electronic wiring 230V-50/60Hz					
0 6737	3F HD100R WH 22/840 DALI GSP L1188	24	2617	4000	>80	1188x110x65
0 6738	3F HD100R WH 26/840 DALI GSP L1482	30	3271	4000	>80	1482x110x65
0 6739	3F HD100R WH 52/840 DALI GSP L2949	58	6428	4000	>80	2949x110x65

3F HD R HO GSP Single

Flat prismatic diffuser in methacrylate with low luminance film

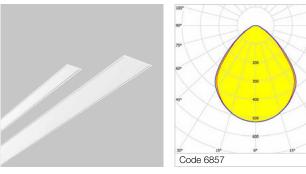
IP40


Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. SP flat diffuser in transparent PMMA, outside prismatic, anti-glare. Anti-glare opal polycarbonate filter for brightness uniformity.

	Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
36	- HD 50 - DA	LI electronic wiring 230V-50/60Hz					
\bigcirc	6847 NEW	3F HD50R WH HO 22/840 DALI GSP L1188	24	2597	4000	>80	1188x67x65
0	6848 NEW	3F HD50R WH HO 26/840 DALI GSP L1482	32	3246	4000	>80	1482x67x65
\bigcirc	6849 ^{NEW}	3F HD50R WH HO 52/840 DALI GSP L2949	58	5871	4000	>80	2949x67x65
ЗF	HD 100 - D	ALI electronic wiring 230V-50/60Hz					
\bigcirc	6850 NEW	3F HD100R WH HO 36/840 DALI GSP L1188	39	3999	4000	>80	1188x110x65
0	6851 NEW	3F HD100R WH HO 44/840 DALI GSP L1482	49	4998	4000	>80	1482x110x65
\bigcirc	6852 NEW	3F HD100R WH HO 88/840 DALI GSP L2949	98	9997	4000	>80	2949x110x65

3F HD R FDP Single

Diffuser microprismatic



Average luminance <3000 cd/m² for angles >65°. Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. Externally micro prismatic transparent flat anti-glare polycarbonate diffuser.

Anti-glare opal polycarbonate filter for brightness uniformity.

		AL 1 1	0 1 1	0.07		
Code	Item	Absorbed	Output	CCT	CRI	Dimensions
		power (W)	flux (lm)	(K)		L×A×H
3F HD 50 - D	ALI electronic wiring 230V-50/60Hz					
0 6710	3F HD50R WH 13/840 DALI FDP L1188	14	1292	4000	>80	1188x67x65
○ 6711	3F HD50R WH 16/840 DALI FDP L1482	19	1615	4000	>80	1482x67x65
0 6712	3F HD50R WH 32/840 DALI FDP L2949	35	3229	4000	>80	2949x67x65
3F HD 100 - I	DALI electronic wiring 230V-50/60Hz					
0 6729	3F HD100R WH 22/840 DALI FDP L1188	24	2468	4000	>80	1188x110x65
○ 6730	3F HD100R WH 26/840 DALI FDP L1482	30	3085	4000	>80	1482x110x65
0 6731	3F HD100R WH 52/840 DALI FDP L2949	58	6062	4000	>80	2949x110x65

Diffuser microprismatic

CE 850°C

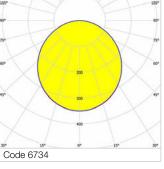
IP40

IK02 Driver/LED A++ SELV A+

Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. Externally micro prismatic transparent flat anti-glare polycarbonate diffuser.

Anti-glare opal polycarbonate filter for brightness uniformity.

0,2J

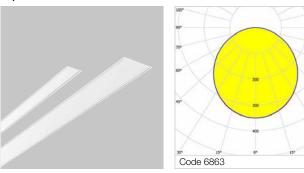

Code	Item	Absorbed	Output	CCT	CRI	Dimensions
		power (W)	flux (lm)	(K)		LxAxH
3F HD 50 - DA	ALI electronic wiring 230V-50/60Hz					
○ 6853 ^{NEW}	3F HD50R WH HO 22/840 DALI FDP L1188	24	2449	4000	>80	1188x67x65
○ 6854 ^{NEW}	3F HD50R WH HO 26/840 DALI FDP L1482	32	3061	4000	>80	1482x67x65
○ 6855 ^{NEW}	3F HD50R WH HO 52/840 DALI FDP L2949	58	5537	4000	>80	2949x67x65
3F HD 100 - D	OALI electronic wiring 230V-50/60Hz					
○ 6856 ^{NEW}	3F HD100R WH HO 36/840 DALI FDP L1188	39	3771	4000	>80	1188x110x65
○ 6857 NEW	3F HD100R WH HO 44/840 DALI FDP L1482	49	4714	4000	>80	1482x110x65
○ 6858 NEW	3F HD100R WH HO 88/840 DALI FDP L2949	98	9428	4000	>80	2949x110x65

45

3F HD R FDO Single

Opal diffuser

Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. Flat opal anti-glare polycarbonate diffuser.


Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F HD 50 - DA	ALI electronic wiring 230V-50/60Hz					
0 6714	3F HD50R WH 13/840 DALI FDO L1188	14	1250	4000	>80	1188x67x65
0 6715	3F HD50R WH 16/840 DALI FDO L1482	19	1563	4000	>80	1482x67x65
0 6716	3F HD50R WH 32/840 DALI FDO L2949	35	3126	4000	>80	2949x67x65
3F HD 100 - D	DALI electronic wiring 230V-50/60Hz					
0 6733	3F HD100R WH 22/840 DALI FDO L1188	24	2304	4000	>80	1188x110x65
0 6734	3F HD100R WH 26/840 DALI FDO L1482	30	2880	4000	>80	1482x110x65
0 6735	3F HD100R WH 52/840 DALI FDO L2949	58	5660	4000	>80	2949x110x65

3F HD R HO FDO Single

Item

Opal diffuser

Code

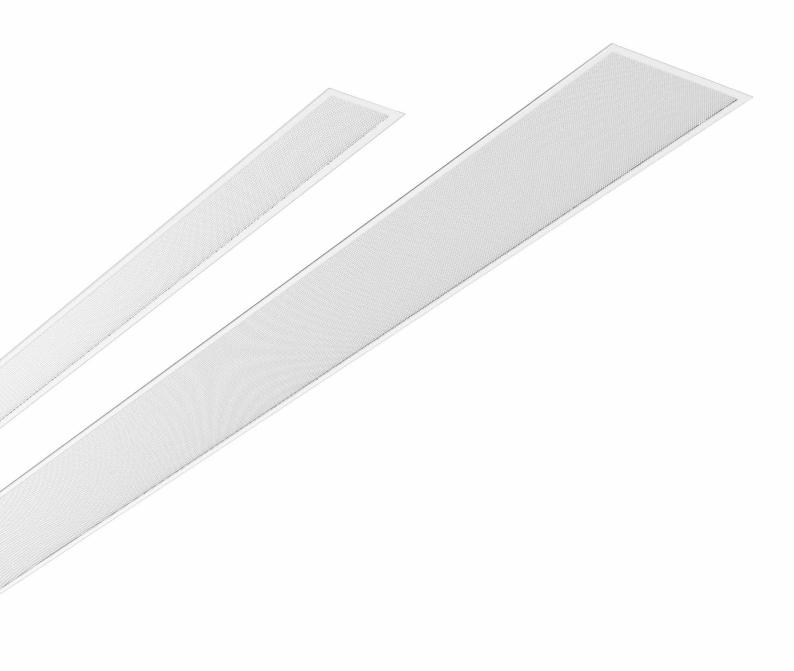
Output

90"

60*

Absorbed

IP40


Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. Flat opal anti-glare polycarbonate diffuser.

CRI

Dimensions

CCT

		power (W)	flux (Im)	(K)	LxAxH	
3F HD 50 - D	ALI electronic wiring 230V-50/60Hz					
○ 6859 №	3F HD50R WH HO 22/840 DALI FDO L1188	24	2287	4000	>80 1188x67x65	5
○ 6860 ^{NEW}	3F HD50R WH HO 26/840 DALI FDO L1482	32	2858	4000	>80 1482x67x65	5
○ 6861 ^{NEW}	3F HD50R WH HO 52/840 DALI FDO L2949	58	5170	4000	>80 2949x67x65	5
3F HD 100 - I	DALI electronic wiring 230V-50/60Hz					
○ 6862 ^{NEW}	3F HD100R WH HO 36/840 DALI FDO L1188	39	3521	4000	>80 1188x110x6	65
○ 6863 №	3F HD100R WH HO 44/840 DALI FDO L1482	49	4401	4000	>80 1482x110x6	65
○ 6864 ^{NEW}	3F HD100R WH HO 88/840 DALI FDO L2949	98	8802	4000	>80 2949x110x6	65

3F HD R Recessed - Channel

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted extruded aluminium.

Removable gear-tray.

Hot-dip galvanised steel linear connecting element installed on the body for rapid mechanical connection.

Electrical characteristics

In compliance with EN 60598-1. Entrance to the upper power supply in proximity to a power head. 5 mm² section 2.5 pin through line with an irreversible quick coupling plug plug/ socket fixed on the body for rapid electrical connection. Branching via an irreversible quick coupling plug to connect the cable housing element to the socket.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different powers
- LED sources with different colour temperatures
- housing in different RAL colours
- OC optic in different RAL colours
- wiring: CLO (more information on page 542)

Applications

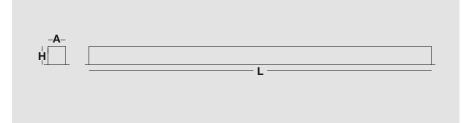
Environments: with VDTs, meeting rooms, offices.

Environments: architectural, commercial, staterooms, banks.

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

FDO version

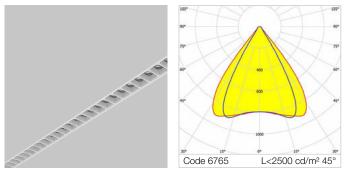
Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.


Installation

Recessed installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

3F HD R OCW Channel

Optics Control White - LEED certification

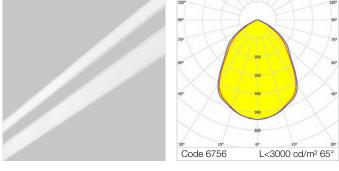
CE 650°C IP40 0,2J IK02

Average luminance <2500 cd/m² for angles >45°. Average luminance <1500 cd/m² for angles >65°.

Environments with very exacting visual tasks and control of luminance at angles of >45° compared to the LEED certification. Offices with video terminals and administrative, information and school offices.

Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux.

Anti-reflective white polycarbonate alveolar optic.


Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI Dimensions L x A x H	

3F HD 50 - DALI electronic wiring 230V-50/60Hz

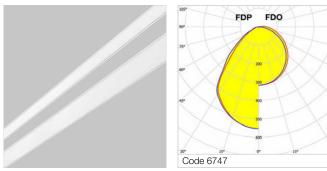
0 6764	3F HD50R WH 12/835 DALI 5P OCW L1174	13.5	1593	3500 >80 1174x67x65
0 6765	3F HD50R WH 15/835 DALI 5P OCW L1468	17	1991	3500 >80 1468x67x65
0 6769	3F HD50R WH 30/835 DALI 5P OCW L2935	33	3981	3500 >80 2935x67x65

3F HD R GSP Channel

Flat prismatic diffuser in methacrylate with low luminance film

((650°C	I P40	0.21	IKO2		Driver/LED	A++ A+
CE	030 0	IF 40	0,20	IK02	<u>A</u>	SELV	A

Average luminance <3000 cd/m² for angles >65°.


Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. SP flat diffuser in transparent PMMA, outside prismatic, anti-glare.

Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F HD 50 - DA	ALI electronic wiring 230V-50/60Hz					
0 6755	3F HD50R WH 13/840 DALI 5P GSP L1174	14	1374	4000	>80	1174x67x65
0 6756	3F HD50R WH 16/840 DALI 5P GSP L1468	19	1718	4000	>80	1468x67x65
0 6760	3F HD50R WH 32/840 DALI 5P GSP L2935	35	3435	4000	>80	2935x67x65
3F HD 100 - D	OALI electronic wiring 230V-50/60Hz					
0 6785	3F HD100R WH 22/840 DALI 5P GSP L1174	24	2617	4000	>80	1174x110x65
0 6786	3F HD100R WH 26/840 DALI 5P GSP L1468	30	3271	4000	>80	1468x110x65
0 6790	3F HD100R WH 52/840 DALI 5P GSP L2935	58	6428	4000	>80	2935x110x65

3F HD R FD Channel

Fixture suitable FDP or FDO

...

75*

60*

2

IP40

FDP

Average luminance <3000 cd/m² for angles >65° (FDP). Non-iridescent high efficiency specular aluminium with a titanium and magnesium surface treatment flow recuperator. For diffusers see accessories on page 74.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F HD 50 - DA	LI electronic wiring 230V-50/60Hz					
0 6746	3F HD50R WH 13/840 DALI 5P FD L1174	14	1292 FDP 1250 FDO	4000	>80	1174x67x65
0 6747	3F HD50R WH 16/840 DALI 5P FD L1468	19	1615 FDP 1563 FDO	4000	>80	1468x67x65
0 6751	3F HD50R WH 32/840 DALI 5P FD L2935	35	3229 FDP 3126 FDO	4000	>80	2935x67x65
3F HD 100 - D	ALI electronic wiring 230V-50/60Hz					
0 6776	3F HD100R WH 22/840 DALI 5P FD L1174	24	2468 FDP 2304 FDO	4000	>80	1174x110x65
0 6777	3F HD100R WH 26/840 DALI 5P FD L1468	30	3085 FDP 2880 FDO	4000	>80	1468x110x65
0 6781	3F HD100R WH 52/840 DALI 5P FD L2935	58	6062 FDP 5660 FDO	4000	>80	2935x110x65

COMPOSITION GUIDE

3F HD | Suspension installation

Necessary / optional accessories

Single Unit

Fastening	Туре	Notes	Code	Item
Necessary	Brackets		A01532	Sliding bracket with regulator for suspension installation 3F HD50DI
			A01528	Sliding bracket with regulator for suspension installation 3F HD100DI
	Suspensions		A20485	Susp. without adjustment for Linux/HD - 0,5 m
			A20486	Susp. without adjustment for Linux/HD - 1 m
			A20487	Susp. without adjustment for Linux/HD - 2 m
			A20488 A20489	Susp. without adjustment for Linux/HD - 3 m Susp. without adjustment for Linux/HD - 4 m
			A20489 A20490	Susp. without adjustment for Linux/HD - 5 m
			A20491	Susp. without adjustment for Linux/HD - 6 m
		Alternatively	A0716	Coil galvanized cable diam. 1.5mm - 100m
			A0717	Coil galvanized cable diam. 1.5mm - 500m
			A0718	Coil galvanized cable diam. 1.5mm - 1000m
			+	
			A0714	Clamp 2 holes - 100 pcs
Optional	Power supply		A0679	5-pole rectangular rose (no cable)

Light channel

Fastening	Туре	Notes	Code	Item
Necessary	Brackets		A01532	Sliding bracket with regulator for suspension
			101500	installation 3F HD50DI
			A01528	Sliding bracket with regulator for suspension installation 3F HD100DI
	Suspensions		A20485	Susp. without adjustment for Linux/HD - 0,5 m
			A20486	Susp. without adjustment for Linux/HD - 1 m
			A20487 A20488	Susp. without adjustment for Linux/HD - 2 m Susp. without adjustment for Linux/HD - 3 m
			A20488 A20489	Susp. without adjustment for Linux/HD - 4 m
			A20490	Susp. without adjustment for Linux/HD - 5 m
			A20491	Susp. without adjustment for Linux/HD - 6 m
		Alternatively	A0716	Coil galvanized cable diam. 1.5mm - 100m
			A0717	Coil galvanized cable diam. 1.5mm - 500m
			A0718 +	Coil galvanized cable diam. 1.5mm - 1000m
			+ A0714	Clamp 2 holes - 100 pcs
	Terminal block		A01567	3F HD - 5P socket/plug terminal block
	Diffusers	Prismatics	A01536	Channels diffusers 3F HD50 - FDP - 6m
	only for 3F HD FD products			Channels diffusers 3F HD50 - FDP - 9m
			A01546	Channels diffusers 3F HD100 - FDP - 5ff
	Diffusers	Opals	A01540	Channels diffusers 3F HD50 - FDO - 6m
	Terminal blockA015673F HD - 5P socket/plug terminal blockDiffusers only for 3F HD FD productsPrismaticsA01536Channels diffusers 3F HD50 - FDF A01537A01537 A01538Channels diffusers 3F HD50 - FDF A01538Channels diffusers 3F HD50 - FDF A01544Diffusers A01545A01546Channels diffusers 3F HD100 - FDF A01546Diffusers OpalsOpalsA01540Channels diffusers 3F HD100 - FDF A01546A01541Channels diffusers 3F HD50 - FDC A01546A01541Channels diffusers 3F HD50 - FDC A01541A01542Channels diffusers 3F HD50 - FDC A01542A01542A01548Channels diffusers 3F HD50 - FDC A01548A01549Channels diffusers 3F HD100 - FDC Channels diffusers 3F HD100 - FDC A01549			
				Channels diffusers 3F HD50 - FDO - 15m
				Channels diffusers 3F HD100 - FDO - 9m Channels diffusers 3F HD100 - FDO - 15m
	End caps		A01552	Pair of end caps for 3F HD50 WH channel
	·		A01553	Pair of end caps for 3F HD50 BK channel
			A01554	Pair of end caps for 3F HD50 AL channel
			A01555	Pair of end caps for 3F HD100 WH channel
			A01556	Pair of end caps for 3F HD100 BK channel
			A01557 A01558	Pair of end caps for 3F HD100 AL channel
			A01558 A01559	Pair of end caps for 3F HD50 WH OC channel Pair of end caps for 3F HD50 BK OC channel
			A01560	Pair of end caps for 3F HD50 AL OC channel
Optional	Power supply		A0679	5-pole rectangular rose (no cable)
	Dilator couplings		A01563	Dilator joint FD channles>15m - HD50 WH
			A01564	Dilator joint FD channles>15m - HD100 WH
			A01568	Dilator joint FD channles>15m - HD50 BK
			A01569	Dilator joint FD channles>15m - HD100 BK
			A01570	Dilator joint FD channles>15m - HD50 AL

COMPOSITION GUIDE

3F HD | Surface-mounted ceiling installation

Necessary / optional accessories

Single Unit

Fastening	Туре	Notes	Code	Item
Necessary	Brackets		A01530 A01531	Ceiling/recessed sliding bracket 3F HD50 Ceiling/recessed sliding bracket 3F HD100

Light channel

Fastening	Туре	Notes	Code	Item
Necessary	Brackets		A01530 A01531	Ceiling/recessed sliding bracket 3F HD50 Ceiling/recessed sliding bracket 3F HD100
	Terminal block		A01567	3F HD - 5P socket/plug terminal block
	Diffusers only for 3F HD FD products	Prismatics	A01536 A01537 A01538 A01544 A01545 A01546	Channels diffusers 3F HD50 - FDP - 6m Channels diffusers 3F HD50 - FDP - 9m Channels diffusers 3F HD50 - FDP - 15m Channels diffusers 3F HD100 - FDP - 6m Channels diffusers 3F HD100 - FDP - 9m Channels diffusers 3F HD100 - FDP - 15m
	Diffusers only for 3F HD FD products	Opals	A01540 A01541 A01542 A01548 A01549 A01550	Channels diffusers 3F HD50 - FDO - 6m Channels diffusers 3F HD50 - FDO - 9m Channels diffusers 3F HD50 - FDO - 15m Channels diffusers 3F HD100 - FDO - 6m Channels diffusers 3F HD100 - FDO - 9m Channels diffusers 3F HD100 - FDO - 15m
	End caps		A01552 A01553 A01554 A01555 A01556 A01557 A01558 A01559 A01560	Pair of end caps for 3F HD50 WH channel Pair of end caps for 3F HD50 BK channel Pair of end caps for 3F HD50 AL channel Pair of end caps for 3F HD100 WH channel Pair of end caps for 3F HD100 BK channel Pair of end caps for 3F HD100 AL channel Pair of end caps for 3F HD50 WH OC channel Pair of end caps for 3F HD50 BK OC channel Pair of end caps for 3F HD50 AL OC channel
Optional	Dilator couplings		A01563 A01564 A01568 A01569 A01570 A01571	Dilator joint FD channles>15m - HD50 WH Dilator joint FD channles>15m - HD100 WH Dilator joint FD channles>15m - HD50 BK Dilator joint FD channles>15m - HD100 BK Dilator joint FD channles>15m - HD50 AL Dilator joint FD channles>15m - HD100 AL

COMPOSITION GUIDE

3F HD R | Recessed installation

Necessary / optional accessories

Single Unit

Fastening	Туре	Notes	Code	Item
Necessary	Brackets		A01565 A01566 A01530 A01531	Couple fixed brackets for plasterboard 3F HD50R Couple fixed brackets for plasterboard 3F HD100R Ceiling/recessed sliding bracket 3F HD50 Ceiling/recessed sliding bracket 3F HD100

Light channel

Fastening	Туре	Notes	Code	Item
Necessary	Brackets		A01565 A01566 A01530 A01531	Couple fixed brackets for plasterboard 3F HD50R Couple fixed brackets for plasterboard 3F HD100R Ceiling/recessed sliding bracket 3F HD50 Ceiling/recessed sliding bracket 3F HD100
	Terminal block		A01567	3F HD - 5P socket/plug terminal block
	Diffusers Prismatics only for 3F HD FD products		A01536 A01537 A01538 A01544 A01545 A01546	Channels diffusers 3F HD50 - FDP - 6m Channels diffusers 3F HD50 - FDP - 9m Channels diffusers 3F HD50 - FDP - 15m Channels diffusers 3F HD100 - FDP - 6m Channels diffusers 3F HD100 - FDP - 9m Channels diffusers 3F HD100 - FDP - 15m
	Diffusers only for 3F HD FD products	Opals	A01540 A01541 A01542 A01548 A01549 A01550	Channels diffusers 3F HD50 - FDO - 6m Channels diffusers 3F HD50 - FDO - 9m Channels diffusers 3F HD50 - FDO - 15m Channels diffusers 3F HD100 - FDO - 6m Channels diffusers 3F HD100 - FDO - 9m Channels diffusers 3F HD100 - FDO - 15m
	End caps		A01561 A01562 A01572 A01573 A01574	Pair of end caps for 3F HD50R WH channel FDP/FDO Pair of end caps for 3F HD100R WH channel FDP/FDO Pair of end caps for 3F HD50R WH channel GSP Pair of end caps for 3F HD100R WH channel GSP Pair of end caps for 3F HD50R WH channel OCW
Optional	Dilator couplings		A01563 A01564 A01568 A01569 A01570 A01571	Dilator joint FD channles>15m - HD50 WH Dilator joint FD channles>15m - HD100 WH Dilator joint FD channles>15m - HD50 BK Dilator joint FD channles>15m - HD100 BK Dilator joint FD channles>15m - HD50 AL Dilator joint FD channles>15m - HD100 AL

3F HD Accessories

FDP - Flat diffuser, externally microprismatic and made of transparent polycarbonate, with internal anti-glare opal polycarbonate filter for luminous uniformity. Supplied in roll.

Accessory compatible with 3F HD FD Channel, 3F HD DI FD Channel and 3F HD R FD Channel.

Item
Channels diffusers 3F HD50 - FDP - 6m
Channels diffusers 3F HD50 - FDP - 9m
Channels diffusers 3F HD50 - FDP - 15m
Channels diffusers 3F HD100 - FDP - 6m
Channels diffusers 3F HD100 - FDP - 9m
Channels diffusers 3F HD100 - FDP - 15m

FDO - Flat diffuser, smooth outside and made of opal polycarbonate. Supplied in roll.

Accessory compatible with 3F HD FD Channel, 3F HD DI FD Channel and 3F HD R FD Channel.

	Q			
				_
			-	-

850°C

Accessory of
Code
A01540
 A01541
A01542
A01548
A01549
A01550

Item

Channels diffusers 3F HD50 - FDO - 6m Channels diffusers 3F HD50 - FDO - 9m Channels diffusers 3F HD50 - FDO - 15m Channels diffusers 3F HD100 - FDO - 6m Channels diffusers 3F HD100 - FDO - 9m Channels diffusers 3F HD100 - FDO - 15m A01550

Dilator coupling to connect flat diffusers FDP or FDO.

Accessory compatible with 3F HD FD Channel, 3F HD DI FD Channel and 3F HD R FD Channel.

Code	Item
A01563	Dilator joint FD channles>15m - HD50 WH
A01564	Dilator joint FD channles>15m - HD100 WH
A01568	Dilator joint FD channles>15m - HD50 BK
A01569	Dilator joint FD channles>15m - HD100 BK
A01570	Dilator joint FD channles>15m - HD50 AL
A01571	Dilator joint FD channles>15m - HD100 AL

To be used for channels longer than 15 meters.

Pair of end caps for light channels equipped with GSP, FDP and FDO screens; made of plastic material reinforced with fiberglass and supplied with fixing screws. Thickness: 20 mm each cap.

Accessory compatible with 3F HD FD/GSP Channel and 3F HD DI FD/GSP Channel.

Code	Item
A01552	Pair of end caps for 3F HD50 WH channel
A01553	Pair of end caps for 3F HD50 BK channel
A01554	Pair of end caps for 3F HD50 AL channel
A01555	Pair of end caps for 3F HD100 WH channel
A01556	Pair of end caps for 3F HD100 BK channel
A01557	Pair of end caps for 3F HD100 AL channel

These accessories are not suitable for single-unit installation.

Pair of end caps for light channels equipped with OCB and OCW optics; made of plastic material reinforced with fiberglass and supplied with fixing screws. Thickness: 20 mm each cap.

Accessory compatible with 3F HD OC Channel and 3F HD DI OC Channel.

Code	Item
A01558	Pair of end caps for 3F HD50 WH OC channel
A01559	Pair of end caps for 3F HD50 BK OC channel
A01560	Pair of end caps for 3F HD50 AL OC channel

These accessories are not suitable for single-unit installation.

Pair of end caps for channels, in grey painted aluminium, with screws for fixing to housing, always required. Thickness: 10 mm each cap.

Accessory compatible with 3F HD R FD Channel.

Code	Item
A01561	Pair of end caps for 3F HD50R WH channel FDP/FDO
A01562	Pair of end caps for 3F HD100R WH channel FDP/FDO
A01572	Pair of end caps for 3F HD50R WH channel GSP
A01573	Pair of end caps for 3F HD100R WH channel GSP
A01574	Pair of end caps for 3F HD50R WH channel OCW

These accessories are not suitable for single-unit installation.

Stainless steel sliding bracket that can be positioned freely. Accessory dedicated to ceiling or recessed installation in inspectable false ceilings.

Code	Item
A01530	Ceiling/recessed sliding bracket 3F HD50
A01531	Ceiling/recessed sliding bracket 3F HD100

Set of galvanised steel brackets necessary to recess install the fixture in plasterboard.

Accessory compatible with 3F HD R Recessed - Single, 3F HD R Recessed - Channel.

Code	Item
A01565	Couple fixed brackets for plasterboard 3F HD50R
A01566	Couple fixed brackets for plasterboard 3F HD100R

Free-position sliding bracket with regulator in stainless steel. Accessory dedicated to suspended installation.

Code	Item
A01532	Sliding bracket with regulator for suspension installation 3F HD50DI
A01528 NEW	Sliding bracket with regulator for suspension installation 3F HD100DI

In the event of buying the sliding bracket with a regulator (code A01532 - A01528) on its own, the suspension cable must be made of galvanised steel with 49 elementary wires with a minimum diameter of $1,5 \text{ mm}^2$ (for a load of 15 kg).

Suspension without controller, galvanized steel cable 1.5 mm diameter, load 15 kg.

Accessory compatible with sliding bracket code A01532 and A01528.

Code	Item
A20485	Susp. without adjustment for Linux/HD - 0,5 m
A20486	Susp. without adjustment for Linux/HD - 1 m
A20487	Susp. without adjustment for Linux/HD - 2 m
A20488	Susp. without adjustment for Linux/HD - 3 m
A20489	Susp. without adjustment for Linux/HD - 4 m
A20490	Susp. without adjustment for Linux/HD - 5 m
A20491	Susp. without adjustment for Linux/HD - 6 m

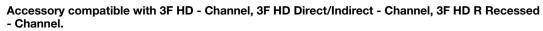
In the case of purchase of only one sliding bracket with controller (codes A01532 - A01528), the suspension cable must be made of galvanized steel with 49 elementary wires of minimum 1.5 mm diameter (for a weight of 15 kg).

 \bigcirc

Galvanized steel cable, diameter 1.5 mm, composed of 49 wires. 15 kg capacity (ratio 5:1).

Accessory compatible with one of the following codes: A01532 - A01528 - A0714.

Code	Item
A0716	Coil galvanized cable diam. 1.5mm - 100m The pack contains 100 metres.
A0717	Coil galvanized cable diam. 1.5mm - 500m The pack contains 500 metres.
A0718	Coil galvanized cable diam. 1.5mm - 1000m The pack contains 1000 metres.



Clamp in nickel-plated brass suitable for fixing and adjustment of galvanized steel wire (diameter 1,25 mm - 1,5 mm - 2 mm), complete with locking screws. The 2 hole clamp allows to block and adjust the cable on a bearing element (part of the building) or on rounded eye bolt.

Accessory compatible with one of the following codes: A0716 - A0717 - A0718.

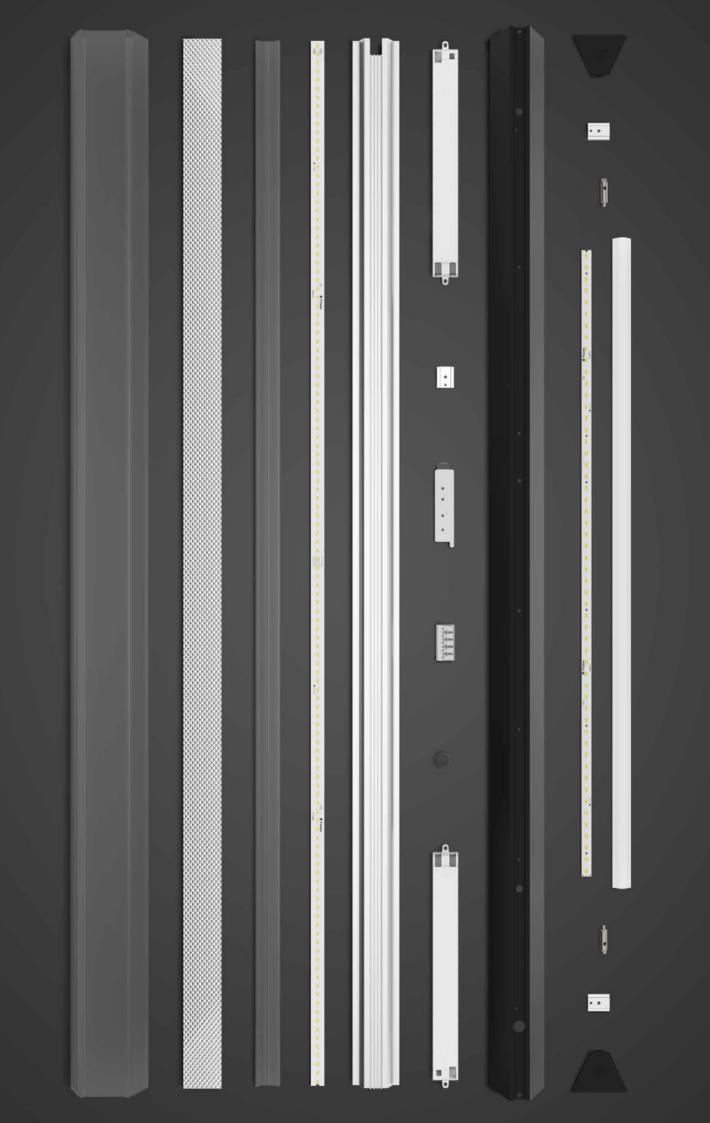
Code	Item
A0714	Clamp 2 holes - 100 pcs The pack contains 100 pieces.

Terminal block (plug/socket) with irreversible snap-in double clamp, for power-supply connection at beginning and end of the channel, 5 poles.

CodeItemA015673F HD - 5P socket/plug terminal block

Electric supply with white polycarbonate case, internal bracket in galvanized steel.

Accessory compatible with 3F HD - Single, 3F HD Direct/Indirect - Single, 3F HD Direct/Indirect - Channel, 3F HD R Recessed - Single, 3F HD R Recessed - Channel.



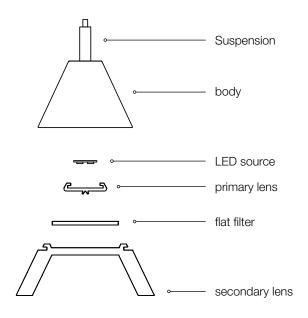
3F Mirella

Design: Andrea Ciotti

Essential yet at the same time refined the fixture is composed of an aluminium body that houses the LED technology and a shaped methacrylate part that accompanies the luminous flux. Available in various models and finishes the new system is designed to integrate discreetly in professional or residential contexts. The integration of the two elements makes the visual perception of the light source change inside the space during the day.

Elaborate, essential and flexible 3F Mirella is a solution that is suitable for multiple configurations in modern architectural spaces. It can be equipped with diffusers of different types and colours, all interchangeable to give customers the possibility to select the best light quality and required visual comfort.

Flexible lighting is increasingly in demand in architectural contexts because it is light that must be at the forefront: 3F Mirella was designed precisely to meet this need. "The strength of this product is its simplicity.


I like to talk about Mirella as if it were the creation of a threedimensional child's drawing: the extrusion of an archetypal shape and its rays of light",

this is how Andrea Ciotti describes the origin of the lamp. The integration of the aluminium body that houses the LED technology and a shaped methacrylate part that allows the fixture to integrate "discreetly" into any environment, changing its perception to the human eye during the day. The possibility to choose diffusers of different types and colours allows the most suitable light for every space to be selected depending on the atmosphere and level of visual comfort required. Elaborate yet essential at the same time 3F Mirella lends itself to multiple applications in contemporary architectural environments.

Andrea Ciotti

"I like to talk about Mirella as if it were the creation of a three-dimensional child's drawing: the extrusion of an archetypal shape and its rays of light."

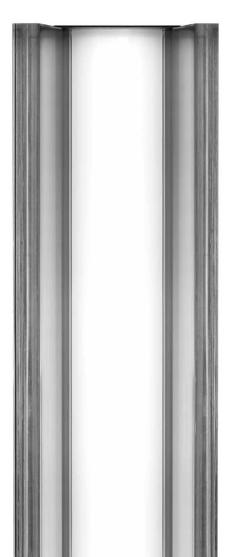
VERSIONS

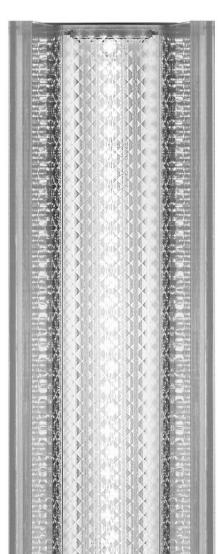
In addition to the original suspension version with a transparent PMMA lens 3F Mirella (**A**) the range evolves by integrating a new "Soft light" (**B**) version, which unlike the original version has a satin PMMA lens and a free-standing version (**C**) that can be customised with different lenses according to customer needs.

SCREENS AND FINISHES

3F Filippi takes their lighting competence to the architectural sector with products with advanced technology and excellent performance.

3F Mirella was developed with an optical system composed of three elements that make it possible to have extraordinary glare values and luminance without compromising on luminous flux output.


Finishes


A. Secondary transparent PMMA lens to optimise light distribution.B. Secondary satin PMMA lens for soft lighting.

OP Flat opal

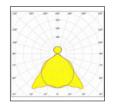
PMMA filter

SP Flat prismatic PMMA filter

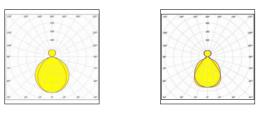
PRODUCT RANGE

Direct Emission

Model	SP	Soft SP			
сст (к)	4000	4000 4000			
CRI	>80 >80 >80				
Luminance	<3000 cd/m ²	>3000 cd/m ²	<3000 cd/m ²		
UGR	UGR <19 UGR <22 UGR <19				
Protection class		IP40			
Finishes		Silver Black White			
Photometric distribution					



DI Emission


Model	SP	OP	Soft SP
ССТ (К)	4000	4000	4000
CRI	>80	>80	>80
Luminance	<3000 cd/m ²	>3000 cd/m ²	<3000 cd/m ²
UGR	UGR <19	UGR <22	UGR <19
Protection class		IP40	

Finishes

Photometric distribution

Silver | Black | White

Construction characteristics

Illuminotechnical characteristics

Controlled symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium body, zamak heads. External lens of particular aesthetic value in transparent PMMA. Adjustable suspension fixtures with chrome studs and rapid adjusters, galvanised steel cable of 2 m long.

Electrical characteristics

In compliance with EN 60598-1. **ON/OFF versions** Transparent 3-pole power cable with white ceiling power supply case. **DALI versions**

Transparent 5-pole power cable with white ceiling power supply case.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- power and suspension cables of >2 m long

Applications

Environments involving accurate visual tasks where a diffused and soft light for an optimum visual comfort and the source total shielding are required. In environments with VDTs, managerial offices and staterooms.

OP version

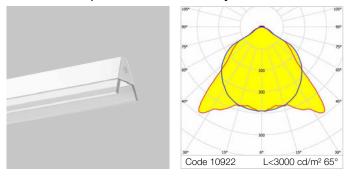
Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.

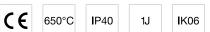
Installation

Suspension installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

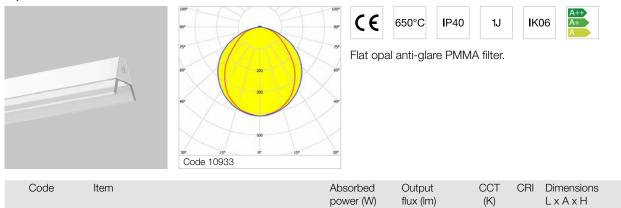

Dimensions


Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

88

3F Mirella SP

Flat diffuser, prismatic in methacrylate



Average luminance <3000 cd/m² for radial angles >65°. PMMA primary lens for total source shielding. Flat transparent prismatic PMMA methacrylate filter, multi-lenticular exterior, anti-glare.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic wi	iring 230V-50/60Hz					
0 10920	3F Mirella WH 40 SP L1480	45	4741	4000	>80	1480x112x91
○ 10921	3F Mirella WH 60 SP L2200	66	7112	4000	>80	2200x112x91
• 10898	3F Mirella BK 40 SP L1480	45	4741	4000	>80	1480x112x91
• 10899	3F Mirella BK 60 SP L2200	66	7112	4000	>80	2200x112x91
0 10942	3F Mirella AL 40 SP L1480	45	4741	4000	>80	1480x112x91
0 10943	3F Mirella AL 60 SP L2200	66	7112	4000	>80	2200x112x91
DALI electro	nic wiring 230V-50/60Hz					
○ 10922	3F Mirella WH 40 DALI SP L1480	45	4741	4000	>80	1480x112x91
○ 10923	3F Mirella WH 60 DALI SP L2200	66	7112	4000	>80	2200x112x91
• 10900	3F Mirella BK 40 DALI SP L1480	45	4741	4000	>80	1480x112x91
• 10901	3F Mirella BK 60 DALI SP L2200	66	7112	4000	>80	2200x112x91
0 10944	3F Mirella AL 40 DALI SP L1480	45	4741	4000	>80	1480x112x91
0 10945	3F Mirella AL 60 DALI SP L2200	66	7112	4000	>80	2200x112x91

3F Mirella OP

Opal PMMA flat diffuser

Electronic wiring 230V-50/60Hz

3F Mirella WH 40 OP L1480	45	4845	4000	>80	1480x112x91
3F Mirella WH 60 OP L2200	66	7268	4000	>80	2200x112x91
3F Mirella BK 40 OP L1480	45	4845	4000	>80	1480x112x91
3F Mirella BK 60 OP L2200	66	7268	4000	>80	2200x112x91
3F Mirella AL 40 OP L1480	45	4845	4000	>80	1480x112x91
3F Mirella AL 60 OP L2200	66	7268	4000	>80	2200x112x91
c wiring 230V-50/60Hz					
3F Mirella WH 40 DALI OP L1480	15	1015	1000	00	
	45	4845	4000	>80	1480x112x91
3F Mirella WH 60 DALI OF L2200	45 66	4845 7268	4000		1480x112x91 2200x112x91
				>80	
3F Mirella WH 60 DALI OP L2200	66	7268	4000	>80 >80	2200x112x91
3F Mirella WH 60 DALI OP L2200 3F Mirella BK 40 DALI OP L1480	66 45	7268 4845	4000 4000	>80 >80 >80 >80	2200x112x91 1480x112x91
	3F Mirella WH 60 OP L2200 3F Mirella BK 40 OP L1480 3F Mirella BK 60 OP L2200 3F Mirella AL 40 OP L1480 3F Mirella AL 60 OP L2200 • wiring 230V-50/60Hz	3F Mirella WH 60 OP L2200 66 3F Mirella BK 40 OP L1480 45 3F Mirella BK 60 OP L2200 66 3F Mirella AL 40 OP L1480 45 3F Mirella AL 60 OP L2200 66 wiring 230V-50/60Hz 50	3F Mirella WH 60 OP L2200 66 7268 3F Mirella BK 40 OP L1480 45 4845 3F Mirella BK 60 OP L2200 66 7268 3F Mirella AL 40 OP L1480 45 4845 3F Mirella AL 40 OP L1200 66 7268 SF Mirella AL 60 OP L2200 66 7268	3F Mirella WH 60 OP L2200 66 7268 4000 3F Mirella BK 40 OP L1480 45 4845 4000 3F Mirella BK 60 OP L2200 66 7268 4000 3F Mirella AL 40 OP L1480 45 4845 4000 3F Mirella AL 40 OP L1480 66 7268 4000 3F Mirella AL 60 OP L2200 66 7268 4000 wiring 230V-50/60Hz 50 50 50	3F Mirella WH 60 OP L2200 66 7268 4000 >80 3F Mirella BK 40 OP L1480 45 4845 4000 >80 3F Mirella BK 60 OP L2200 66 7268 4000 >80 3F Mirella AL 40 OP L1480 45 4845 4000 >80 3F Mirella AL 40 OP L1480 45 4845 4000 >80 3F Mirella AL 60 OP L2200 66 7268 4000 >80 wiring 230V-50/60Hz

3F Mirella Direct/Indirect

Construction characteristics

Illuminotechnical characteristics

Direct-indirect distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium body, zamak heads. External lens of particular aesthetic value in transparent PMMA.

Adjustable suspension fixtures with chrome studs and rapid adjusters, galvanised steel cable of 2 m long.

Electrical characteristics

In compliance with EN 60598-1. **ON/OFF versions**

Transparent 3-pole power cable with white ceiling power supply case, single ignition. **DALI versions**

5-pole transparent power cable with white power supply case for ceiling, single 230V circuit, 2 DALI addresses.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- power and suspension cables of >2 m long
- twin-circuit
- wiring: CLO (more information on page 542)

Applications

Environments involving accurate visual tasks where a diffused and soft light for an optimum visual comfort and the source total shielding are required. In environments with VDTs, managerial offices and staterooms.

OP version

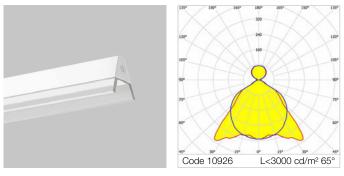
Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.

Installation

Suspension installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

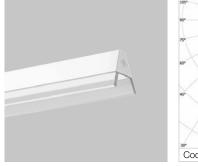

Dimensions

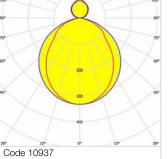
Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10).
 Datasheets, product updates and specifications on our website: www.3f-filippi.com

92

3F Mirella DI SP

Flat diffuser, prismatic in methacrylate




PMMA primary lens for total source shielding. Flat transparent prismatic PMMA methacrylate filter, multi-lenticular exterior, anti-glare. Average luminance $<3000 \text{ cd/m}^2$ for radial angles $>65^\circ$.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic w	iring 230V-50/60Hz					
○ 10924	3F Mirella WH DI 40+8 SP L1480	58	5849	4000	>80	1480x112x91
0 10925	3F Mirella WH DI 60+14 SP L2200	88	8907	4000	>80	2200x112x91
• 10902	3F Mirella BK DI 40+8 SP L1480	58	5849	4000	>80	1480x112x91
• 10903	3F Mirella BK DI 60+14 SP L2200	88	8907	4000	>80	2200x112x91
0 10946	3F Mirella AL DI 40+8 SP L1480	58	5849	4000	>80	1480x112x91
0 10947	3F Mirella AL DI 60+14 SP L2200	88	8907	4000	>80	2200x112x91
DALI electro	nic wiring 230V-50/60Hz					
0 10926	3F Mirella WH DI 40+8 DALI SP L1480	58	5849	4000	>80	1480x112x91
0 10927	3F Mirella WH DI 60+14 DALI SP L2200	88	8907	4000	>80	2200x112x91
• 10904	3F Mirella BK DI 40+8 DALI SP L1480	58	5849	4000	>80	1480x112x91
• 10905	3F Mirella BK DI 60+14 DALI SP L2200	88	8907	4000	>80	2200x112x91
0 10948	3F Mirella AL DI 40+8 DALI SP L1480	58	5849	4000	>80	1480x112x91
0 10949	3F Mirella AL DI 60+14 DALI SP L2200	88	8907	4000	>80	2200x112x91

3F Mirella DI OP

Opal PMMA flat diffuser

CE 650°C IP40

1J

Flat opal anti-glare PMMA filter.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H			
Electronic wi	Electronic wiring 230V-50/60Hz								
○ 10935	3F Mirella WH DI 40+8 OP L1480	58	5944	4000	>80	1480x112x91			
○ 10936	3F Mirella WH DI 60+14 OP L2200	88	9051	4000	>80	2200x112x91			
• 10913	3F Mirella BK DI 40+8 OP L1480	58	5944	4000	>80	1480x112x91			
• 10914	3F Mirella BK DI 60+14 OP L2200	88	9051	4000	>80	2200x112x91			
0 10957	3F Mirella AL DI 40+8 OP L1480	58	5944	4000	>80	1480x112x91			
0 10958	3F Mirella AL DI 60+14 OP L2200	88	9051	4000	>80	2200x112x91			
DALI electror	nic wiring 230V-50/60Hz								
0 10937	3F Mirella WH DI 40+8 DALI OP L1480	58	5944	4000	>80	1480x112x91			
○ 10938	3F Mirella WH DI 60+14 DALI OP L2200	88	9051	4000	>80	2200x112x91			
• 10915	3F Mirella BK DI 40+8 DALI OP L1480	58	5944	4000	>80	1480x112x91			
• 10916	3F Mirella BK DI 60+14 DALI OP L2200	88	9051	4000	>80	2200x112x91			
○ 10959	3F Mirella AL DI 40+8 DALI OP L1480	58	5944	4000	>80	1480x112x91			
0 10960	3F Mirella AL DI 60+14 DALI OP L2200	88	9051	4000	>80	2200x112x91			

Construction characteristics

Illuminotechnical characteristics

Controlled symmetric distribution. Average luminance <3000 cd/m² for radial angles >65°.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium body, zamak heads. PMMA primary lens for total source shielding.

Brushed methacrylate PMMA prismatic flat anti-glare filter, multi lenticular on the outside.

External lens of particular aesthetic value in satin PMMA.

Adjustable suspension fixtures with chrome studs and rapid adjusters, galvanised steel cable of 2 m long.

Electrical characteristics

In compliance with EN 60598-1. **ON/OFF versions**

Transparent 3-pole power cable with white ceiling power supply case.

DALI versions

Transparent 5-pole power cable with white ceiling power supply case.

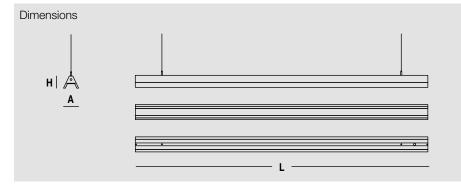
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- power and suspension cables of >2 m long

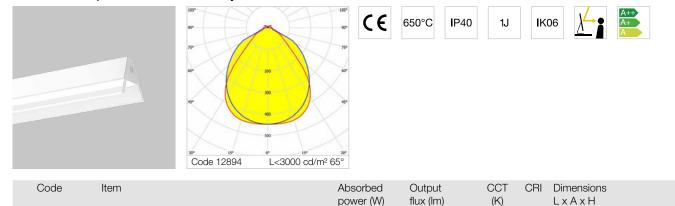
Applications


Environments involving accurate visual tasks where a diffused and soft light for an optimum visual comfort and the source total shielding are required. In environments with VDTs, managerial offices and staterooms.

Installation

Suspension installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

3F Mirella Soft SP

Flat diffuser, prismatic in methacrylate

0000		power (W)	flux (lm)	(K)	011	LxAxH
Electronic wi	iring 230V-50/60Hz					
○ 12892	3F Mirella SF WH 40 SP L1480	45	3964	4000	>80	1480x112x91
○ 12893	3F Mirella SF WH 60 SP L2200	66	5947	4000	>80	2200x112x91
• 12870	3F Mirella SF BK 40 SP L1480	45	3964	4000	>80	1480x112x91
• 12871	3F Mirella SF BK 60 SP L2200	66	5947	4000	>80	2200x112x91
0 12914	3F Mirella SF AL 40 SP L1480	45	3964	4000	>80	1480x112x91
0 12915	3F Mirella SF AL 60 SP L2200	66	5947	4000	>80	2200x112x91
DALI electro	nic wiring 230V-50/60Hz					

D

5						
3F Mirella SF WH 40 DALI SP L1480	45	3964	4000	>80	1480x112x91	
3F Mirella SF WH 60 DALI SP L2200	66	5947	4000	>80	2200x112x91	
3F Mirella SF BK 40 DALI SP L1480	45	3964	4000	>80	1480x112x91	
3F Mirella SF BK 60 DALI SP L2200	66	5947	4000	>80	2200x112x91	
3F Mirella SF AL 40 DALI SP L1480	45	3964	4000	>80	1480x112x91	
3F Mirella SF AL 60 DALI SP L2200	66	5947	4000	>80	2200x112x91	
	3F Mirella SF WH 60 DALI SP L2200 3F Mirella SF BK 40 DALI SP L1480 3F Mirella SF BK 60 DALI SP L2200 3F Mirella SF AL 40 DALI SP L1480	3F Mirella SF WH 60 DALI SP L2200 66 3F Mirella SF BK 40 DALI SP L1480 45 3F Mirella SF BK 60 DALI SP L2200 66 3F Mirella SF AL 40 DALI SP L1480 45	3F Mirella SF WH 60 DALI SP L2200 66 5947 3F Mirella SF BK 40 DALI SP L1480 45 3964 3F Mirella SF BK 60 DALI SP L2200 66 5947 3F Mirella SF AL 40 DALI SP L1480 45 3964	3F Mirella SF WH 60 DALI SP L2200 66 5947 4000 3F Mirella SF BK 40 DALI SP L1480 45 3964 4000 3F Mirella SF BK 60 DALI SP L2200 66 5947 4000 3F Mirella SF AL 40 DALI SP L1480 45 3964 4000	3F Mirella SF WH 60 DALI SP L2200 66 5947 4000 >80 3F Mirella SF BK 40 DALI SP L1480 45 3964 4000 >80 3F Mirella SF BK 60 DALI SP L2200 66 5947 4000 >80 3F Mirella SF BK 60 DALI SP L2200 66 5947 4000 >80 3F Mirella SF AL 40 DALI SP L1480 45 3964 4000 >80	3F Mirella SF WH 60 DALI SP L2200 66 5947 4000 >80 2200x112x91 3F Mirella SF BK 40 DALI SP L1480 45 3964 4000 >80 1480x112x91 3F Mirella SF BK 60 DALI SP L2200 66 5947 4000 >80 2200x112x91 3F Mirella SF AL 40 DALI SP L1480 45 3964 4000 >80 2200x112x91 3F Mirella SF AL 40 DALI SP L1480 45 3964 4000 >80 1480x112x91

3F Mirella Soft Direct/Indirect

Construction characteristics

Illuminotechnical characteristics

Direct-indirect distribution. Average luminance <3000 cd/m² for radial angles >65°.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium body, zamak heads. PMMA primary lens for total source shielding.

Brushed methacrylate PMMA prismatic flat anti-glare filter, multi lenticular on the outside.

External lens of particular aesthetic value in satin PMMA.

Adjustable suspension fixtures with chrome studs and rapid adjusters, galvanised steel cable of 2 m long.

Electrical characteristics

In compliance with EN 60598-1. **ON/OFF versions**

Transparent 3-pole power cable with white ceiling power supply case, single ignition. **DALI versions**

5-pole transparent power cable with white power supply case for ceiling, single 230V circuit, 2 DALI addresses.

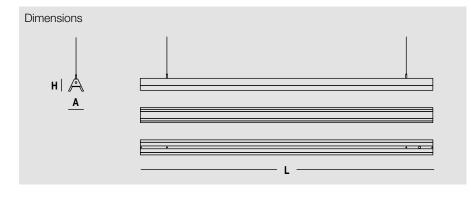
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- power and suspension cables of >2 m long
- twin-circuit

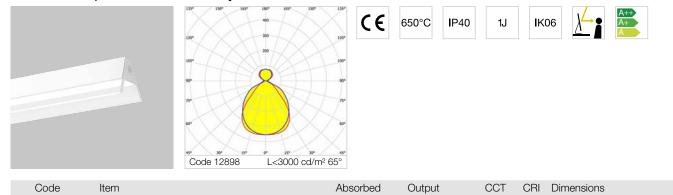
Applications


Environments involving accurate visual tasks where a diffused and soft light for an optimum visual comfort and the source total shielding are required. In environments with VDTs, managerial offices and staterooms.

Installation

Suspension installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Mirella Soft DI SP

Flat diffuser, prismatic in methacrylate

power (W)

flux (Im)

(K)

LxAxH

Electronic wiring 230V-50/60Hz

	-						
0 12896	3F Mirella SF WH DI 40+8 SP L1480	58	5018	4000	>80	1480x112x91	
0 12897	3F Mirella SF WH DI 60+14 SP L2200	88	7641	4000	>80	2200x112x91	
• 12874	3F Mirella SF BK DI 40+8 SP L1480	58	5018	4000	>80	1480x112x91	
• 12875	3F Mirella SF BK DI 60+14 SP L2200	88	7641	4000	>80	2200x112x91	
0 12918	3F Mirella SF AL DI 40+8 SP L1480	58	5018	4000	>80	1480x112x91	
0 12919	3F Mirella SF AL DI 60+14 SP L2200	88	7641	4000	>80	2200x112x91	
DALI electron	nic wiring 230V-50/60Hz						
DALI electron	iic wiring 230V-50/60Hz 3F Mirella SF WH DI 40+8 DALI SP L1480	58	5018	4000	>80	1480x112x91	
-	0	58 88	5018 7641	4000 4000		1480x112x91 2200x112x91	
0 12898	3F Mirella SF WH DI 40+8 DALI SP L1480						
1289812899	3F Mirella SF WH DI 40+8 DALI SP L1480 3F Mirella SF WH DI 60+14 DALI SP L2200	88	7641	4000	>80 >80	2200x112x91	
 12898 12899 12876 	3F Mirella SF WH DI 40+8 DALI SP L1480 3F Mirella SF WH DI 60+14 DALI SP L2200 3F Mirella SF BK DI 40+8 DALI SP L1480	88 58	7641 5018	4000 4000	>80 >80 >80	2200x112x91 1480x112x91	

3F Mirella Floor

Construction characteristics

Illuminotechnical characteristics

Direct-indirect distribution. Average luminance <3000 cd/m² for radial angles >65°.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium body, zamak heads. Transparent methacrylate PMMA micro prismatic primary anti-glare lens, multi lenticular on the outside. Anti-glare opal polycarbonate filter for brightness uniformity. External lens of particular aesthetic value in satin PMMA. Painted stainless steel square section pole. Base in painted steel.

Electrical characteristics

In compliance with EN 60598-1. Power supply with a 2.5 m long transparent cable, schuko plug. **ON/OFF versions**

Foot switch, single switch-on. **DALI versions**

Touch DALI touch control integrated in the stem, for switching on and off and independent adjustment of the two emissions.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- body, pole and base in different RAL colours
- wiring: CLO (more information on page 542)
- different power cables

Applications

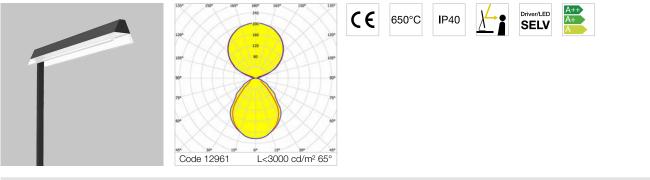
Environments which cannot, for technical reasons, be equipped with points of light directed onto the ceiling. Open-space offices and environments in which a high degree of workstation flexibility is required.

Environments: staterooms, with VDTs, offices.

Environments where soft diffuse light is required for optimal visual comfort.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

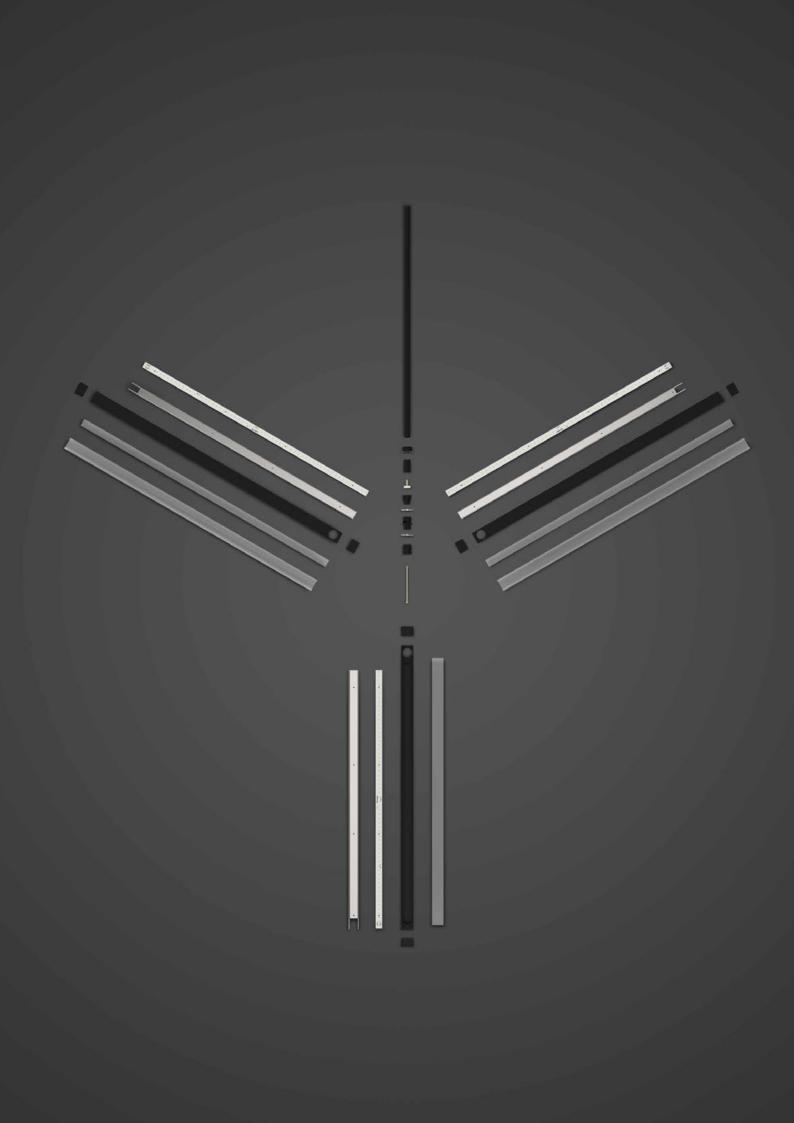

Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

100

3F Mirella Floor

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic wi	ring 230V-50/60Hz					
○ 12961	3F Mirella Floor SF WH 23+23	52	6754	4000	>80	843x280x2060
• 12960	3F Mirella Floor SF BK 23+23	52	6754	4000	>80	843x280x2060
DALI electror	nic wiring 230V-50/60Hz					
0 12965	3F Mirella Floor SF WH 23+23 Touch DALI	52	6754	4000	>80	843x280x2060
• 12964	3F Mirella Floor SF BK 23+23 Touch DALI	52	6754	4000	>80	843x280x2060



3F Trittico

Design: Atelier(s) Alfonso Femia

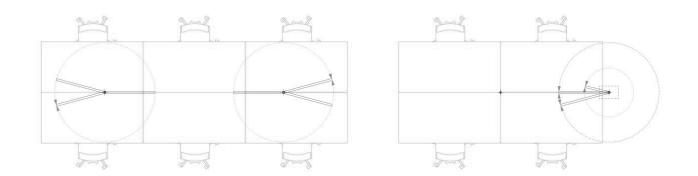
Ceiling mounted light fixture equipped with LED sources. 3F Trittico is composed of three arms of around 800 mm, two for direct lighting and one for indirect lighting.

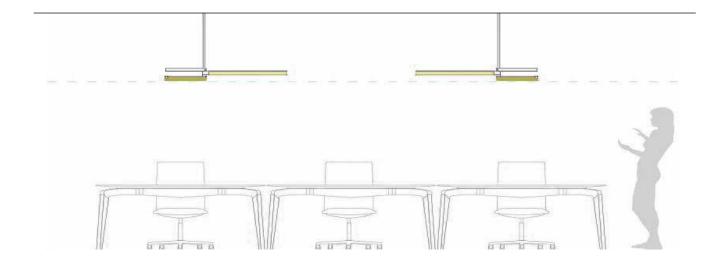
Conceived mainly to light offices this fixture is ideal to adapt to changes in the layout of spaces. The three arms on the fixture can rotate perpendicularly to the supporting rod to provide the best lighting depending on the activity carried out in the space and the arrangement of the furniture.

With 3F Trittico the light integrates perfectly in the space by designing shapes.

It shape evolves to adapt to the necessity of the context and the time with a light that sees its method of use evolve, from more technical for offices to decorative for general areas. 3F Trittico starts and develops from a simple element like a line to become increasingly more complex in its layers of souls, light and fixture.


Atelier(s) Alfonso Femia


"3F Trittico is designed for every type of space, obviously starting from the operational sphere of contemporary offices right up to the domestic environment. This is because in order for objects to come into contact with us and speak to us they must know how to contaminate and defile and belong to us".



VERSATILITY

Minimum angle between light elements of 52 degrees. Maximum angle between light elements 308 degrees.

SCREENS AND FINISHES

3F Trittico is available with an opaque black and white finish with aluminium arms and a steel supporting rod. Indirect lighting is filtered by a translucent PMMA screen, while the desktop version is diffused with a satin extruded PMMA lens with a design that minimises the level of glare.

INDIRECT LIGHT Flat opal PMMA filter

Finish

and the second second

White

e Black

DIRECT LIGHT Hybrid optic with extruded lens and an anti-glare filter

3F Trittico

Construction characteristics

Illuminotechnical characteristics

Direct-indirect distribution. Lifetime (L92/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tg+25°C) Photobiological safety RGO, risk exempt, in compliance with IEC 62471. IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium housing. Fixture composed of three independent adjustable arms that can be moved separately.

Non-iridescent high efficiency aluminium with a titanium and magnesium surface treatment flow recuperator.

Transparent PMMA methacrylate anti-glare filter.

Arms for direct lighting with satin PMMA methacrylate lenses.

Arm for indirect lighting with a translucent polycarbonate screen.

Polycarbonate heads.

Steel suspension fixture with poles H 300-500-800 mm with a brass rotation mechanism.

Electrical characteristics

In compliance with EN 60598-1. Peripheral cabling unit to recess into the ceiling. Class II.

4-pole terminal block, single 230V circuit, 2 DALI addresses.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

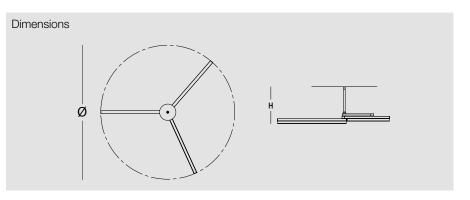
On request

- LED sources with different colour temperatures
- housing in different RAL colours
- wiring: CLO (more information on page 542)
- version for ceiling installation
- maximum pole height 1.3 m

Applications

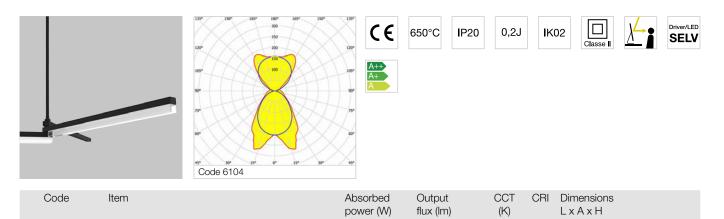
Environments: with VDTs, meeting rooms, offices.

Environments: architectural, commercial, staterooms, banks.


Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

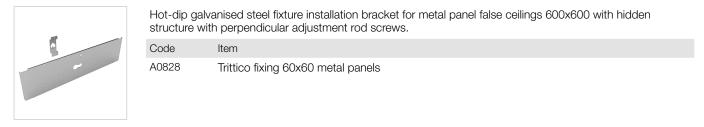
Installation

Installing mineral fibre or metal panels in plasterboard ceilings. Warning: to install this fixture it is necessary to buy one of the following four accessories (A0828 / A0829 / A0830 / A0831) depending on the kind of ceiling to be used.


Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

110


3F Trittico

DALI electronic wiring 230V-50/60Hz

0 6104	3F Trittico WH 12+12+15/835 DALI H300	45	5748	3500 >80 1560x1560x300
0 6107	3F Trittico WH 12+12+15/835 DALI H500	45	5748	3500 >80 1560x1560x500
0 6110	3F Trittico WH 12+12+15/835 DALI H800	45	5748	3500 >80 1560x1560x800
● 6105	3F Trittico BK 12+12+15/835 DALI H300	45	5748	3500 >80 1560x1560x300
• 6108	3F Trittico BK 12+12+15/835 DALI H500	45	5748	3500 >80 1560x1560x500
• 6111	3F Trittico BK 12+12+15/835 DALI H800	45	5748	3500 >80 1560x1560x800

3F Trittico Accessories

Hot-dip galvanised steel fixture installation bracket for mineral fibre panel false ceilings 600x600 with visible structure with perpendicular adjustment rod screws.

Code	Item
A0829	Trittico Fixing Mineral fiber panels 60x60

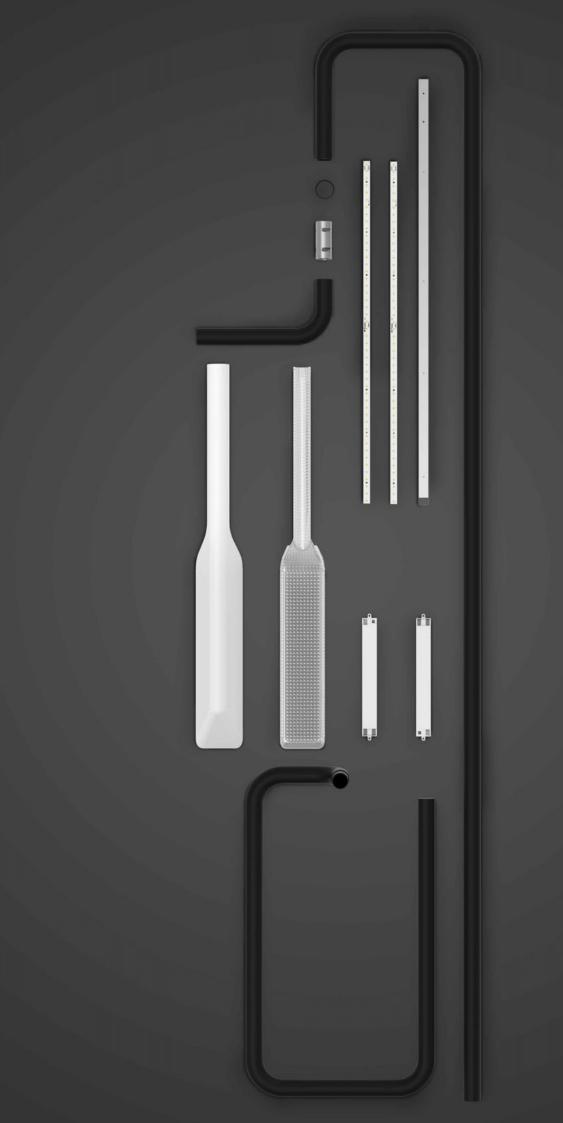
Hot-dip galvanised steel fixture installation bracket for plasterboard false ceilings with perpendicular adjustment rod screws. White painted canopy with a Ø 120 mm hole.

Code	Item
A0830	Fixing Trittico plasterboard WH

Hot-dip galvanised steel fixture installation bracket for plasterboard false ceilings with perpendicular adjustment rod screws. Black painted canopy with a Ø 120 mm hole.

Code	Item
A0831	Fixing Trittico plasterboard BK

3F Filoluce

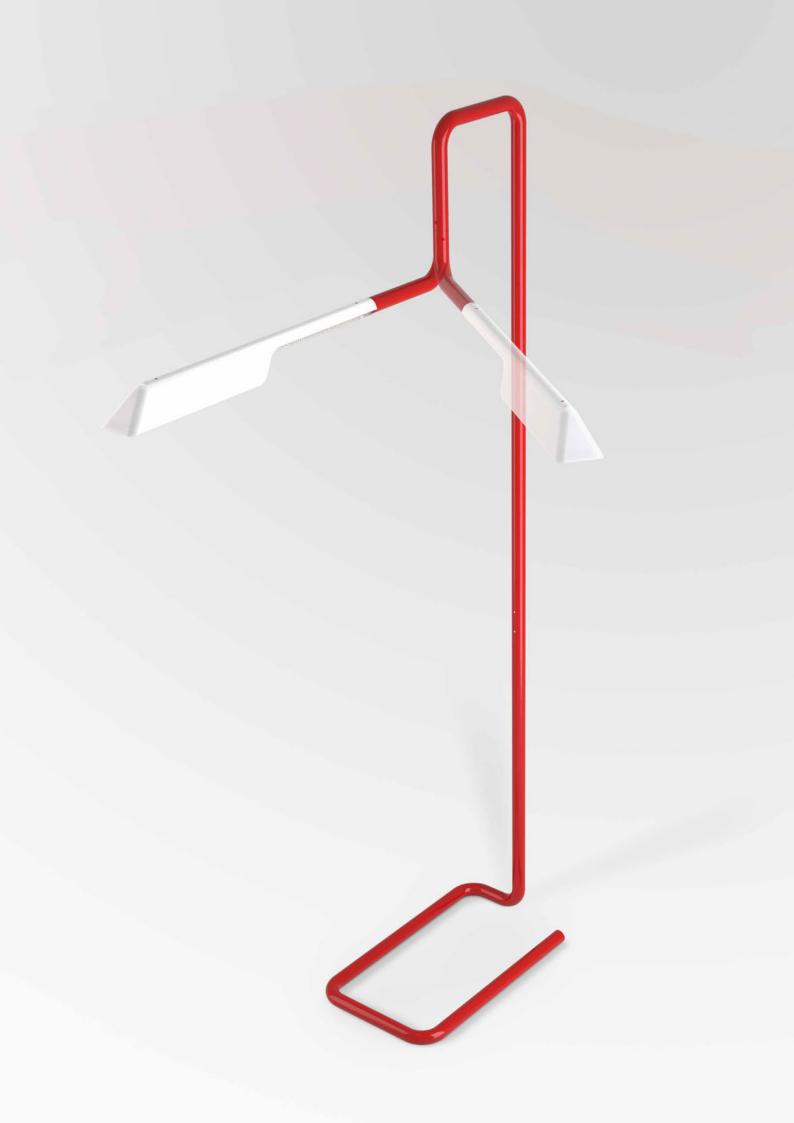

Design: GEZA Architettura

A free-standing steel luminaire fitted with a white opal methacrylate diffuser and a prismatic screen designed for the workplace.

The lightness of the shape allows 3F Filoluce to fit easily into every context, establishing a relationship with the same through the various curves that form the sinuous vertical arm with a constant diameter of 38 mm, from the base right up to the diffuser.

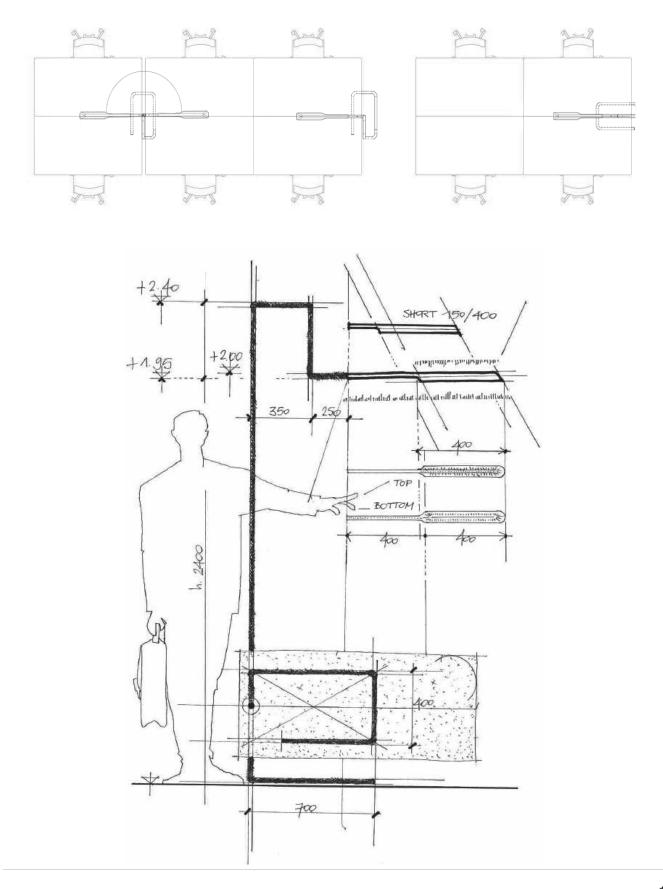
Fitted with a touch ignition system located in the vertical part the fixture provides comfortable lighting that is particularly suitable for office environments.

With 3F Filoluce design and quality combine in a single element with a sleek, unusual shape designed to enhance the work environment from a technical and aesthetic point of view.


The idea behind this light fixture is a reflection on the new demands of contemporary offices combined with a re-visitation of the industrial diffuser which is the soul of 3F Filippi.

Given increasing requests for flexibility a free-standing luminaire was chosen that could be the ideal solution for lighting these new working environments. The light fixture is suitable to be used individually or in series and can be freely positioned to characterise the architectural quality of the space. The thin shaped fixture with a monumental architectural presence evolves into a series of curves to reach desks.

As it rises from the ground the fixture turns downwards as if to evoke the effect of a suspension lamp to then end parallel to the work station with an unusual opaque white diffuser whose shape allows for an effective distribution of the luminous flux. The upper arm can rotate to 90° to disengage from the encumbrance of the base to adapt to various workstation configurations.


GEZA Architettura

"For the shape of 3F Filoluce we took our inspiration from paper clips, objects that symbolically represent working in an office."

VERSATILITY

The light element has a 180 degree rotation angle.

SCREENS AND FINISHES

3F Filoluce is available in black, white, red and anthracite versions. Its direct and indirect light is distributed downwards using a trapezoidal prismatic diffuser and upwards using an opal element: a mix that makes the working environment relaxing while at the same time ensuring excellent visual comfort on work stations.

Finish

•) •)

3F Filoluce

Construction characteristics

Illuminotechnical characteristics

Direct-indirect distribution. Average luminance <3000 cd/m² for radial angles >65° (direct emission). Lifetime (L92/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Painted steel filiform tubular body. Aluminium LED housing compartment with a thermal heat sink function. Particularly eye-catching opal and transparent prismatic PMMA diffuser to optimise light distribution. The luminous part can be rotated 180° horizontally to optimise positioning in the workplace.

Electrical characteristics

In compliance with EN 60598-1. Touch DALI touch control integrated in the stem, for switching on and off and independent adjustment of the two emissions. Power supply with a 2.5 m long

transparent cable, schuko plug.

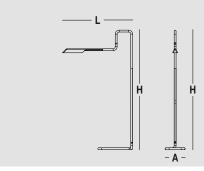
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- single-circuit wiring
- different power cables

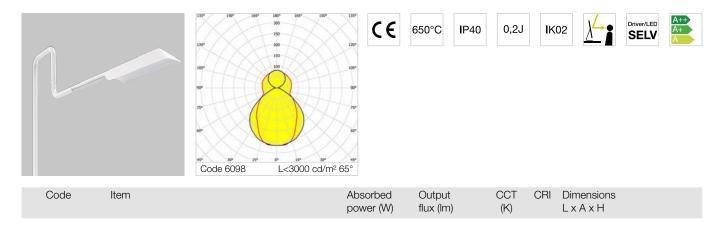
Applications


Environments which cannot, for technical reasons, be equipped with points of light directed onto the ceiling. Open-space offices and environments in which a high degree of workstation flexibility is required. Environments: staterooms, with VDTs, offices.

Environments where soft diffuse light is required for optimal visual comfort.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

122

3F Filoluce

DALI electronic wiring 230V-50/60Hz

	•			
0 6094	3F Filoluce WH 16+23W/835 Touch DALI	45	4631	3500 >80 1410x400x2400
0 6098	3F Filoluce WH 16+23W/840 Touch DALI	45	4953	4000 >80 1410x400x2400
• 6095	3F Filoluce BK 16+23W/835 Touch DALI	45	4631	3500 >80 1410x400x2400
6099	3F Filoluce BK 16+23W/840 Touch DALI	45	4953	4000 >80 1410x400x2400
● 6096 ^{NEW}	3F Filoluce AN 16+23W/835 Touch DALI	45	4631	3500 >80 1410x400x2400
● 6100 ^{NEW}	3F Filoluce AN 16+23W/840 Touch DALI	45	4953	4000 >80 1410x400x2400
● 6097 ^{NEW}	3F Filoluce RD 16+23W/835 Touch DALI	45	4631	3500 >80 1410x400x2400
● 6101 NEW	3F Filoluce RD 16+23W/840 Touch DALI	45	4953	4000 >80 1410x400x2400

3F Sound Lux

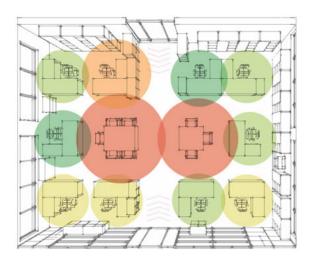
Design: 3F Filippi + Mascagni

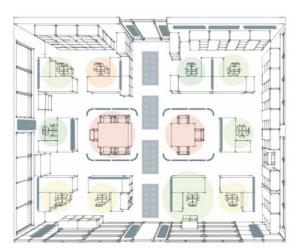
3F Sound Lux is a fixture that has been developed to provide innovative lighting in the workplace. The fixture is the result of a combination of different materials and lighting excellence.

The light fixture is composed of an acoustic panel covered with a microperforated laminate and is fitted with a LED source that emits a white light (3000 degrees Kelvin).

This light fixture was designed to provide the best visual and acoustic comfort to make working environments more welcoming. Available with various finishes so as to integrate perfectly with its surroundings 3F Sound Lux can also be suspension installed.

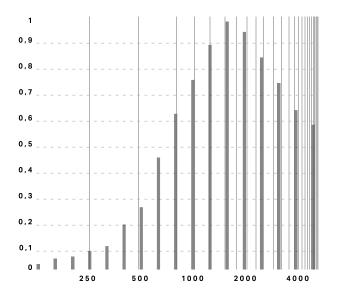
Its design also makes it particularly versatile because its modules allow for easy reconfiguration to suit any environment to adapt effectively if the furniture is rearranged in the work space.


3F Sound Lux was developed in collaboration with Mascagni S.p.A., the Italian brand of excellence in the design and manufacture of office furniture.


Collaboration started by integrating 3F Filippi's lighting know-how with Mascagni's vast experience and design capabilities in creating high-end professional furnishings.

This highly technical partnership confirms 3F Filippi's determination to obtain the same results for work environments that they have already achieved on a global level in the Industrial and Retail lighting sectors.

ACOUSTIC WELLBEING



A general approach is not suitable to consider space for personal, group, work or leisure use where sound becomes an important factor for comfort and productivity.

Every place has their own characteristics that can vary according to the number of people in it and the way it is built and the materials used. For every space it is necessary to study a specific solution: there are no constraints defined without careful control.

Accurate analysis of an open space, for example must start with the interaction between the people who work there and how they work. Different jobs require different levels of concentration and interaction.

With careful and rational arrangement of the acoustic panels, living spaces go back to being comfortable just as work becomes more productive and bad habits give way to consistent communication.

ACOUSTIC PERFORMANCE

The acoustic performance of the 3F Sound Lux panels was assessed using special measurements in a reverberation chamber carried out by the Giordano Institute (an internationally recognised Certification Body). The values obtained confirmed the exceptional sound absorption of the panel in the frequency range of speech. The panel is certified as class A, the best among the categories defined in EN ISO 11654, in the speech spectrum in octave bands from 1000 a 4000 Hz. The 3F Sound Lux acoustic panel covers a range of frequencies from 500 to 5000 Hz with excellent results from between 1000 and 1250 Hz where it reaches a value of 99%. The technology and materials used ensure that the

The technology and materials used ensure that the acoustic panels have Class 1 Fire Reaction Classification (reference to B S2 d0 certification with reference to European standard EN13501-1).

SCREENS AND FINISHES

Sound Lux technology makes it possible to resolve complex issues easily.

Starting with energy wastage which is eliminated thanks to the special lenses applied to the LED sources which were designed and produced entirely by 3F Filippi, which allow for efficiency of 97% (a value that places this fixture at the top of its class). These lenses also have a significant effect on the visual comfort of the light fixture. Installed on desks Sound Lux prevents annoying reflections on computer screens and mobile devices and does not produce any glare that could disturb colleagues sitting at other work stations.

DALI dimmable cabling also increases its ease of use making it possible to adjust the power and brightness as required or in an automated way.

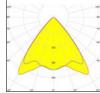
PMMA lenses Average luminance <3000 cd/m² for corners >65° radial.

Finish

Black Forest

Walnut

PRODUCT RANGE



Direct Emission

Model	450	900			
ССТ (К)	3000	3000			
CRI	>90	>90			
Brightness	<3000 cd/m ²	<3000 cd/m ²			
UGR	UGR <19	UGR <19			
Product dimensions (mm)	1780 x 450 x 43	1780 x 900 x 43			
Protection class	IP	40			
Finish	Black Fore	st Walnut			
Photometric distribution					

Direct/Indirect Emission

Model	450	900			
ССТ (К)	3000	3000			
CRI	>90	>90			
Brightness	<3000 cd/m ²	<3000 cd/m ²			
UGR	UGR <19	UGR <19			
Product dimensions (mm)	1780 x 450 x 43	1780 x 900 x 43			
Protection class	IP40)			
Finish	Black Forest Walnut				
Photometric distribution					

Construction characteristics

Illuminotechnical characteristics

Controlled symmetric distribution. Average luminance <3000 cd/m² for radial angles >65°.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Acoustic

3F Sound Lux acoustic panel covers a range of frequencies from 500 to 5000 Hz, with exceptional results in the range from 1000 to 1250 Hz where it reaches a value of 99%.

Certified as class A, (UNI EN ISO 11654) in the speech spectrum in octave bands from 1000 to 4000 Hz.

Mechanical characteristics

The lighting fixture consists of an acoustic panel covered by a micro-perforated layer of natural wood.

Hot-galvanized steel lighting unit coated with a polyester based paint enclosed in a stainless steel casing.

Transparent methacrylate controlled distribution lenses with flat external surface.

Suspensions fitted with chrome bosses and quick-acting regulator, 2 m galvanized steel cable.

Electrical characteristics

In compliance with EN 60598-1. Transparent 5-pole power cable with white ceiling power supply case.

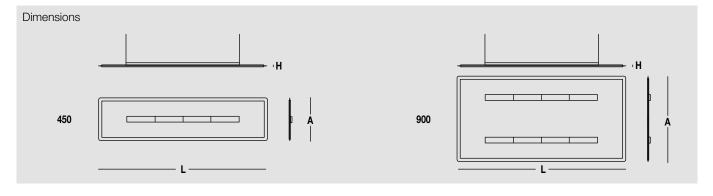
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- body with a tobacco finish

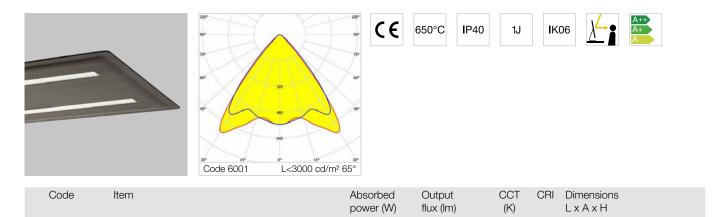
Applications


Environments with video terminals, executive, open space and representative offices.

Installation

Suspension installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10).

132

3F Sound Lux

DALI electronic wiring 230V-50/60Hz

	-			
6001	3F Sound Lux 450 RE 35/930 DALI	37	4197	3000 >90 1780x450x43
6007	3F Sound Lux 900 RE 70/930 DALI	74	8395	3000 >90 1780x900x43
6005	3F Sound Lux 450 RS 35/930 DALI	37	4197	3000 >90 1780x450x43
6011	3F Sound Lux 900 RS 70/930 DALI	74	8395	3000 >90 1780x900x43

Construction characteristics

Illuminotechnical characteristics

Direct-indirect distribution. Average luminance <3000 cd/m² for radial angles >65°.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Acoustic

3F Sound Lux acoustic panel covers a range of frequencies from 500 to 5000 Hz, with exceptional results in the range from 1000 to 1250 Hz where it reaches a value of 99%.

Certified as class A, (UNI EN ISO 11654) in the speech spectrum in octave bands from 1000 to 4000 Hz.

Mechanical characteristics

The lighting fixture consists of an acoustic panel covered by a micro-perforated layer of natural wood.

Hot-galvanized steel lighting unit coated with a polyester based paint enclosed in a stainless steel casing. Transparent methacrylate controlled distribution lenses with flat external surface.

Suspensions fitted with chrome bosses and quick-acting regulator, 2 m galvanized steel cable.

Electrical characteristics

In compliance with EN 60598-1. 5-pole transparent power cable with white ceiling power supply box, single 230V circuit, 2 DALI addresses (versions 450) and 4 DALI addresses (versions 900).

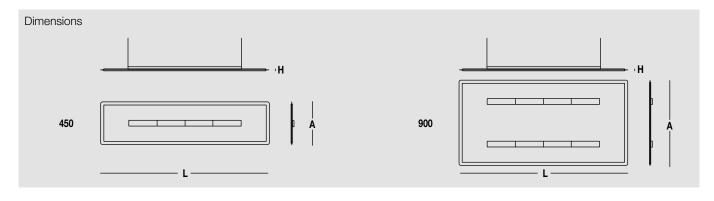
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

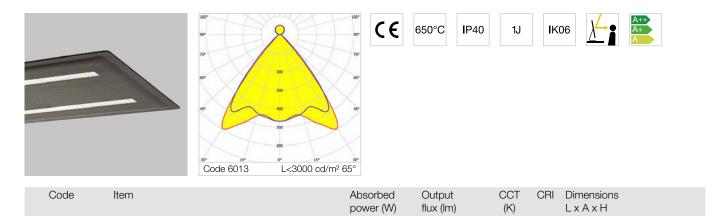
- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- body with a tobacco finish

Applications

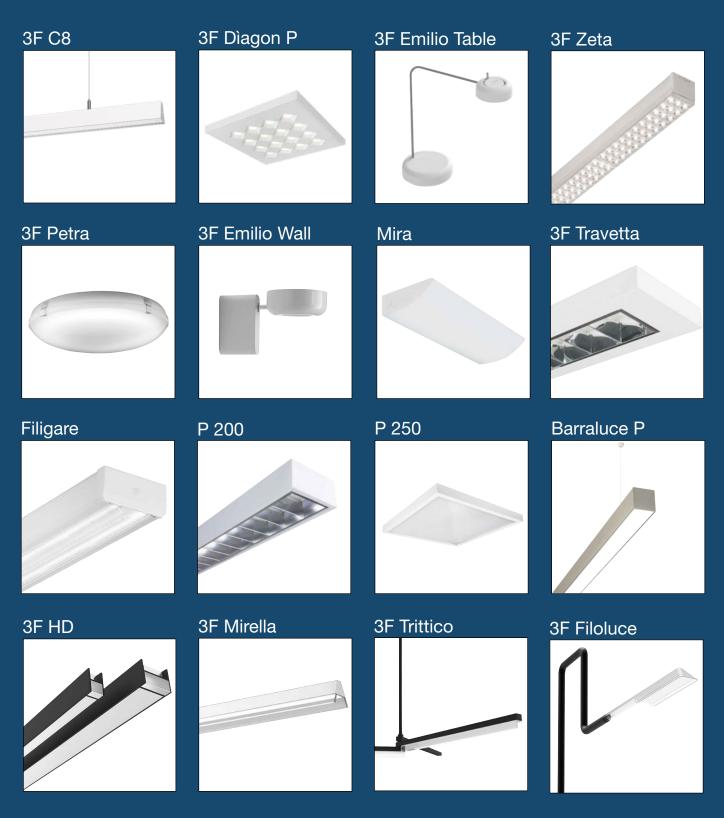

Environments with video terminals, executive, open space and representative offices.

Installation

Suspension installation.


Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


134 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Sound Lux DI

DALI electronic wiring 230V-50/60Hz

	-				
6013	3F Sound Lux 450 RE DI 35+8/930 DALI	47	4981	3000 >90 1780x450x43	
6019	3F Sound Lux 900 RE DI 70+16/930 DALI	94	9962	3000 >90 1780x900x43	
6017	3F Sound Lux 450 RS DI 35+8/930 DALI	47	4981	3000 >90 1780x450x43	
6023	3F Sound Lux 900 RS DI 70+16/930 DALI	94	9962	3000 >90 1780x900x43	

3F Sound Lux

Surface luminaires and suspensions

Page		Product	Ceiling	Suspended	Wall	Table
138		3F C8				
138	NEW	3F C8		•		
140	NEW	3F C8 Direct/Indirect		•		
142		3F Dìagon P				
142	NEW	3F Diagon P	•			
144	NEW	3F Dìagon P Tunable White	•			
146		3F Emilio Table				
146	NEW	3F Emilio Table				•
148		3F Zeta				
148		3F Zeta L	•	•	•	
152		3F Zeta D	•	•	•	
154		3F Zeta DR	•	•	•	
160		3F Petra				
160		3F Petra LED	•		•	
162 164		3F Petra LED Sensor 3F Petra Suspended LED	•	•	•	
101						
166		3F Emilio Wall				
166		3F Emilio Wall	•		•	
168		Mira				
168		Mira Wall LED			•	
170		3F Travetta				
170		3F Travetta LED	•	•		
174		3F Travetta LED DI		•		
176		3F Travetta LED Tunable White	•	•		
182		Filigare				
182		Filigare 180 LED	•	•		
190		P 200				
190		P 200 LED	•			
192		P 200 LED IP54	•			
194		P 250				
194		P 250 LED	•			
198		P 250 LED Diffused Light	•			
200		Barraluce P				
200		Barraluce P LED	•	•		

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium body, zamak heads. SP flat diffuser in transparent PMMA, outside prismatic, anti-glare. Anti-glare opal polycarbonate filter for brightness uniformity. Adjustable suspension fixtures with chrome studs and rapid adjusters, galvanised steel cable of 2 m long.

Electrical characteristics

In compliance with EN 60598-1. Transparent 5-pole power cable with white ceiling power supply case.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering ٠ indices and colour temperatures
- wiring: CLO (more information on page 542)
- power and suspension cables of >2 m long
- different dimensions
- housing in different RAL colours

Applications

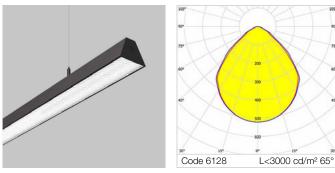
Environments involving accurate visual tasks where a diffused and soft light for an optimum visual comfort and the source total shielding are required. In environments with VDTs, managerial offices and staterooms.

Installation

Suspension installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).



138

3F C8 GSP

Code

Flat prismatic diffuser in methacrylate with low luminance film

CE 650°C IP40

Output

flux (lm)

Average luminance $<3000 \text{ cd/m}^2$ for angles $>65^\circ$.

CCT

(K)

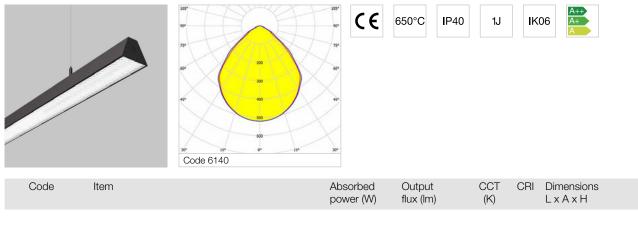
CRI

Dimensions

LxAxH

DALI electronic wiring 230V-50/60Hz

Item


○ 6128 ^{NEW}	3F C8 WH 30 DALI GSP L1480	35	2726	4000 >80 1480x77x54
● 6136 ^{NEW}	3F C8 BK 30 DALI GSP L1480	35	2726	4000 >80 1480x77x54

Absorbed

power (W)

3F C8 HO GSP

Flat prismatic diffuser in methacrylate with low luminance film

DALI electronic wiring 230V-50/60Hz

○ 6140 ^{NEW}	3F C8 WH HO 44 DALI GSP L1480	49	3702	4000	>80	1480x77x54
● 6148 ^{NEW}	3F C8 BK HO 44 DALI GSP L1480	49	3702	4000	>80	1480x77x54

3F C8 Direct/Indirect

Construction characteristics

Illuminotechnical characteristics

Symmetric direct-indirect distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RGO, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Extruded aluminium body, zamak heads. SP flat diffuser in transparent PMMA, outside prismatic, anti-glare. Anti-glare opal polycarbonate filter for brightness uniformity. Adjustable suspension fixtures with chrome studs and rapid adjusters, galvanised steel cable of 2 m long.

Electrical characteristics

In compliance with EN 60598-1. 5-pole transparent power cable with white power supply case for ceiling, single 230V circuit, 2 DALI addresses.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- · different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- power and suspension cables of >2 m long
- twin-circuit
- different dimensions
- housing in different RAL colours

Applications

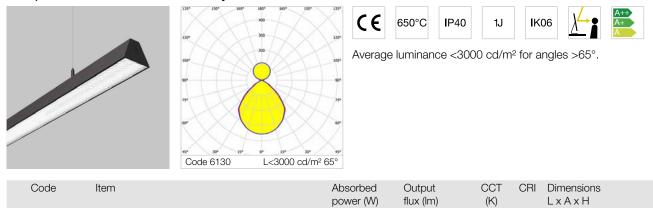
Environments involving accurate visual tasks where a diffused and soft light for an optimum visual comfort and the source total shielding are required. In environments with VDTs, managerial offices and staterooms.

Installation

Suspension installation.

Light Management

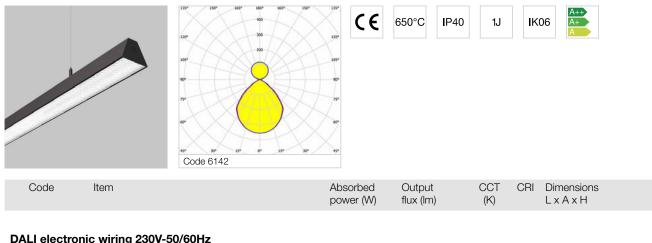
The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions

140

3F C8 DI GSP

Flat prismatic diffuser in methacrylate with low luminance film



DALI electronic wiring 230V-50/60Hz

	-				
○ 6130 ^{NEW}	3F C8 WH DI 30+8 DALI GSP L1480	48	3993	4000 >8	0 1480x77x54
● 6138 ^{NEW}	3F C8 BK DI 30+8 DALI GSP L1480	48	3993	4000 >8	0 1480x77x54

3F C8 DI HO GSP

Flat prismatic diffuser in methacrylate with low luminance film

○ 6142 ^{NEW}	3F C8 WH DI HO 44+8 DALI GSP L1480	62	4969	4000	>80 1480x77x54	
● 6150 ^{NEW}	3F C8 BK DI HO 44+8 DALI GSP L1480	62	4969	4000	>80 1480x77x54	

Illuminotechnical characteristics

Direct symmetric distribution. Average luminance <3000 cd/m² for angles >65°.

Colour temperature available /830 - /840, /930 - /940.

Lifetime (L95/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L80/B10): 80000 h. (tq+25°C) Lifetime (L75/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

White painted frame. Height only 40 mm. Housing in hot-galvanized steel, painted in white polyester. Honeycombed diagonal screen in white anti-glare polycarbonate. Opal methacrylate rhomboid lenses with differentiated, engraved and prismatic surfaces for diffused, soft lighting and excellent visual comfort.

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant. Quick connection.

Source characteristics

- Squared LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

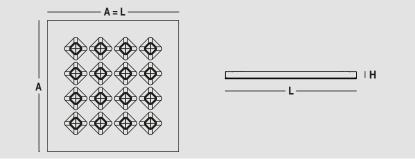
On request

- suspension installation
- different power levels, colour rendering indices and colour temperatures
- wiring: twin-circuit, CLO (more information on page 542)
- Sensor version
- transparent lens versions

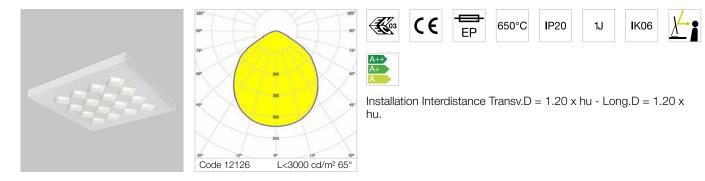
Applications

Environments: staterooms, with VDTs, offices.

Environments with exacting visual tasks, where diffused soft light for optimum visual comfort is required.


Installation

Ceiling installation.


Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions

3F Diagon P Soft UGR

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
12126 ^{NEW}	3F Diagon P 25W/830 SOFT UGR 596x596	28	3531	3000	>80	600x600x40
12130 NEW	3F Diagon P 25W/840 SOFT UGR 596x596	28	3797	4000	>80	600x600x40
12134 ^{NEW}	3F Diagon P 39W/930 SOFT UGR 596x596	40	3819	3000	>90	600x600x40
12138 NEW	3F Diagon P 39W/940 SOFT UGR 596x596	40	3843	4000	>90	600x600x40
DALI electi	ronic wiring 230V-50/60Hz					
12127 NEW	3F Diagon P 25W/830 DALI SOFT UGR 596x596	28	3531	3000	>80	600x600x40
12131 NEW	3F Diagon P 25W/840 DALI SOFT UGR 596x596	28	3797	4000	>80	600x600x40
12135 ^{NEW}	3F Diagon P 39W/930 DALI SOFT UGR 596x596	40	3819	3000	>90	600x600x40
12139 ^{NEW}	3F Diagon P 39W/940 DALI SOFT UGR 596x596	40	3843	4000	>90	600x600x40

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

	······································	J.,	• • • •	1.5.5.	
12128 ^{NEW}	3F Diagon P 25W/830 EP SOFT UGR 596x596	29	3531	3000 >80	600x600x40
12132 ^{NEW}	3F Diagon P 25W/840 EP SOFT UGR 596x596	29	3797	4000 >80	600x600x40
12136 ^{NEW}	3F Diagon P 39W/930 EP SOFT UGR 596x596	41	3819	3000 >90	600x600x40
12140 ^{NEW}	3F Diagon P 39W/940 EP SOFT UGR 596x596	41	3843	4000 >90	600x600x40

Illuminotechnical characteristics

Direct symmetric distribution. Average luminance <3000 cd/m² for angles >65°.

The color temperature can be adjusted between 2700 K and 6500 K. Lifetime (L95/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L80/B10): 80000 h. (tq+25°C) Lifetime (L75/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with ICO 60471 ICO (TD 60770

compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

White painted frame. Height only 40 mm. Housing in hot-galvanized steel, painted in white polyester. Honeycombed diagonal screen in white anti-glare polycarbonate. Opal methacrylate rhomboid lenses with differentiated, engraved and prismatic surfaces for diffused, soft lighting and excellent visual comfort.

Electrical characteristics

In compliance with EN 60598-1. Cable with a DALI DT8 driver. 5-pole terminal block (L-N-PE-DA/DA) quick connection for line connection with connection capacity 2x2.5 mm².

Source characteristics

- Squared LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

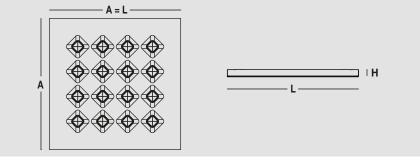
On request

- suspension installation
- different power levels, colour rendering indices and colour temperatures
- wiring: twin-circuit

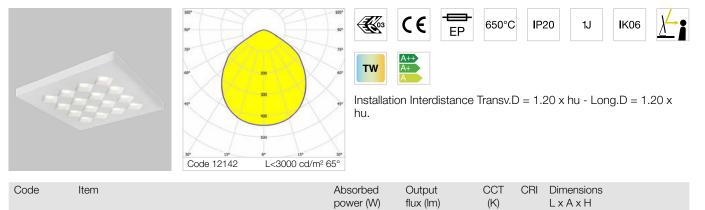
Applications

Any environments requiring light which aims for the wellness of people. Environments: staterooms, with VDTs, offices.

Environments with exacting visual tasks, where diffused soft light for optimum visual comfort is required.


Installation

Ceiling installation.


Light Management

Products in the 3F Tunable White range can be controlled manually or automatically with 3F HCL for TW fixtures technology (see the chapter on "Light Management").

Dimensions

3F Diagon P Soft UGR Tunable White

DALI DT8 electronic wiring 230V-50/60Hz

12142 ^{NEW}	3F Diagon P 25W DT8 TW SOFT UGR 596x596	31,5 30	3686	2700 >80 600x600x40 4000	
		29		6500	

3F Emilio Table

Construction characteristics

Illuminotechnical characteristics

Direct controlled symmetrical and indirect diffused comfort distribution (thanks to the reduction of the luminous contrast between the product and the surrounding environment).

Lifetime (L90/B20): 30000 h. (tq+25°C) Lifetime (L80/B20): 50000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Diffuser in die-cast aluminum, opaque white, with upper rings with a luminous crown effect and an orientation arm. Diffuser adjustability: 90° along the horizontal axis and 290° on the stem axis. PMMA opal methacrylate lens. Round stem in painted steel. Round shaped base in aluminum and painted steel.

Electrical characteristics

In compliance with EN 60598-1. Dimmer button installed on the 2 m long power cable with 2x10A plug. Class II device.

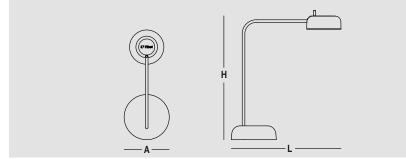
Source characteristics

- Compact LED module.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request

- LED module with different power levels, colour temperatures and colour rendering index
- housing in different RAL colours

Applications


Environments which cannot, for technical reasons, be equipped with points of light directed onto the ceiling. Open-space offices and environments in which a high degree of workstation flexibility is required. Environments: staterooms, with VDTs, offices. Environments where soft diffuse light is

required for optimal visual comfort.

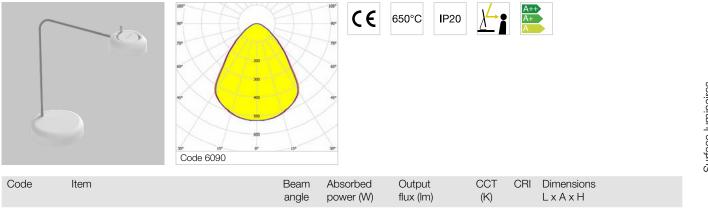

Installation

Table installation.

3F Emilio Table

PHASE CUT DIM electronic wiring 230V-50/60Hz

6090 ^{NEW}	3F Emilio Table WH 1000/930 PCD	80°	14	913	3000 >90 415x170x490
---------------------	---------------------------------	-----	----	-----	----------------------

Illuminotechnical characteristics

Wide, direct and asymmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

L UGR version

Average luminance <3000 cd/m² for radial angles >65°.

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester, obtained through rolling process.

Light unit in hot-galvanized steel, painted in white polyester base with fixing springs and retractable safety hooks in stainless steel.

End caps in white polycarbonate. Stainless steel mounting brackets with anti-slip screws.

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant.

Source characteristics

- · LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

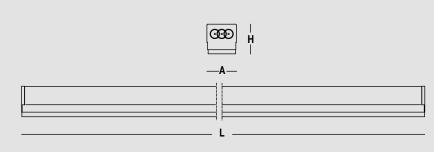
On request

- different power levels, colour rendering indices and colour temperatures
- housing and accessories in different RAL colours
- wiring: CLO (more information on page 542)
- HACCP versions for use in the food industry
- IP54 version

Applications

Environments: architectural, commercial, transit areas, cornices, boards.

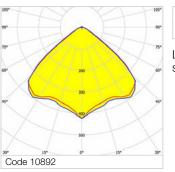
L UGR version


Environments: exhibition areas. staterooms, with VDTs, halls, shops, great halls. offices.

Installation

Ceiling, suspension or wall installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

3F Zeta L

🐝 CE 듣

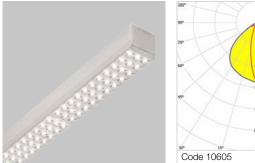
Lenses for wide distribution, in transparent $\ensuremath{\mathsf{PMMA}}$ with external flat surface.

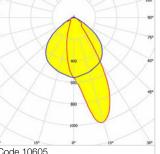
650°C

Code	ltem	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
Electronic	wiring 230V-50/60Hz						
10894	3F Zeta L 15 LED L605	16.5	2749	4000	>80	605x62x67	
10893	3F Zeta L 30 LED L1194	33	5498	4000	>80	1194x62x67	
10892	3F Zeta L 40 LED L1489	40	6872	4000	>80	1489x62x67	
DALI elect	onic wiring 230V-50/60Hz						
10977	3F Zeta L 30 LED DALI L1194	33	5498	4000	>80	1194x62x67	
10976	3F Zeta L 40 LED DALI L1489	40	6872	4000	>80	1489x62x67	

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

10988 3F Zeta L 40 LED EP L1489	41	6872	4000 >80 1489x62x67
---------------------------------	----	------	---------------------


3F Zeta L UGR


Luminance control lens

		5000 10864	L<3000 cd/m ² 65°	Transpa	e luminance <30 rent methacrylat surface.	00 cd/m		adial angles :		flat
Code	Item			sorbed wer (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H		
Electronic	Electronic wiring 230V-50/60Hz									
10864	3F Zeta L UGR 30 LI	ED L1194		33	5487	4000	>80	1194x62x6	7	
DALI elec	tronic wiring 230V-	50/60Hz								

3F Zeta L AS

Asymmetric

1J

Transparent methacrylate asymmetric distribution lenses with a flat external surface.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H				
Electronic	c wiring 230V-50/60Hz									
10605	3F Zeta L AS 40 LED L1489	40	6894	4000	>80	1489x62x67				
DALI electronic wiring 230V-50/60Hz										
10606	3F Zeta L AS 40 LED DALI L1489	40	6894	4000	>80	1489x62x67				

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

10607 3F Zeta L AS 40 LED EP L1489	41	6894	4000	>80	1489x62x67	
------------------------------------	----	------	------	-----	------------	--

Illuminotechnical characteristics

Diffused symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester, obtained through rolling process.

Light unit in hot-galvanized steel, painted in white polyester base with fixing springs and retractable safety hooks in stainless steel.

Curved screen in self-extinguishing polycarbonate, UV stabilized, opal, with smooth outer surface.

End caps in white polycarbonate.

Stainless steel mounting brackets with anti-slip screws.

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant.

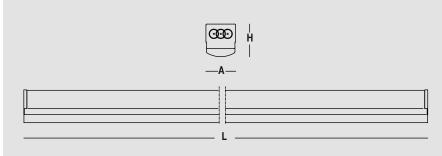
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

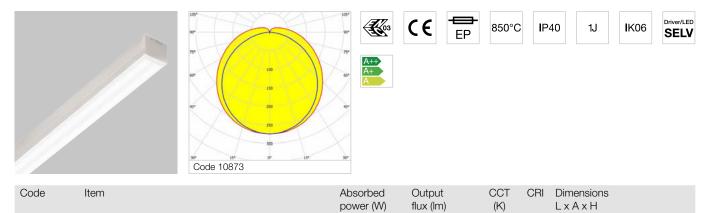
- different power levels, colour rendering indices and colour temperatures
- housing and accessories in different RAL colours
- wiring: CLO (more information on page 542)
- class II

Applications


Environments: architectural, commercial, transit areas, cornices, large mirrors, boards.

Installation

Ceiling, suspension or wall installation.


Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Zeta D

Electronic wiring 230V-50/60Hz

	10872	3F Zeta D 1x9 LED L605	10	1247	4000	>80	605x62x81
	10871	3F Zeta D 1x18 LED L1194	20	2494	4000	>80	1194x62x81
	10875	3F Zeta D 2x9 LED L605	20	2495	4000	>80	605x62x81
	10870	3F Zeta D 1x22 LED L1489	24.5	3118	4000	>80	1489x62x81
	10874	3F Zeta D 2x18 LED L1194	40	4988	4000	>80	1194x62x81
	10873	3F Zeta D 2x22 LED L1489	49	6236	4000	>80	1489x62x81
	DALI electi	ronic wiring 230V-50/60Hz					
	10962	3F Zeta D 1x18 LED DALI L1194	20	2494	4000	>80	1194x62x81
	10961	3F Zeta D 1x22 LED DALI L1489	24.5	3118	4000	>80	1489x62x81
	10965	3F Zeta D 2x18 LED DALI L1194	40	4988	4000	>80	1194x62x81
	10964	3F Zeta D 2x22 LED DALI L1489	49	6236	4000	>80	1489x62x81

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

		- ·	•		-	
10980	3F Zeta D 1x22 LED EP L1489	25.5	3118	4000	>80	1489x62x81
10982	3F Zeta D 2x22 LED EP L1489	50	6236	4000	>80	1489x62x81

Illuminotechnical characteristics

Diffused symmetric and asymmetric distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tg+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester, obtained through rolling process.

Light unit in hot-galvanized steel, painted in white polyester base with fixing springs and retractable safety hooks in stainless steel.

End caps in white polycarbonate. Stainless steel mounting brackets with anti-slip screws.

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering • indices and colour temperatures
- housing and accessories in different RAL colours
- wiring: CLO (more information on page 542)
- class II

Applications

Environments: architectural, commercial, transit areas, cornices, large mirrors, boards.

UGR version

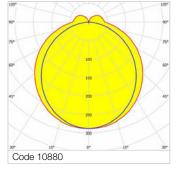
Environments: exhibition areas, staterooms, with VDTs, halls, shops, great halls, offices.

Installation

Ceiling, suspension or wall installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions	
L L	

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

3F Zeta DR

Code

Output

flux (Im)

Dimensions

LxAxH

Diffused symmetric distribution. Rectangular screen in self-extinguishing polycarbonate, UV stabilized, opal, with smooth outer surface.

CCT

(K)

CRI

Electronic wiring 230V-50/60Hz

Item

	10879	3F Zeta DR 1x9 LED L605	10	1251	4000	>80	605x62x81
	10878	3F Zeta DR 1x18 LED L1194	20	2500	4000	>80	1194x62x81
	10882	3F Zeta DR 2x9 LED L605	20	2501	4000	>80	605x62x81
	10877	3F Zeta DR 1x22 LED L1489	24.5	3126	4000	>80	1489x62x81
	10881	3F Zeta DR 2x18 LED L1194	40	5001	4000	>80	1194x62x81
	10880	3F Zeta DR 2x22 LED L1489	49	6253	4000	>80	1489x62x81
	DALI electr	onic wiring 230V-50/60Hz					
	10968	3F Zeta DR 1x18 LED DALI L1194	20	2500	4000	>80	1194x62x81
	10967	3F Zeta DR 1x22 LED DALI L1489	24.5	3126	4000	>80	1489x62x81
	10971	3F Zeta DR 2x18 LED DALI L1194	40	5001	4000	>80	1194x62x81
	10970	3F Zeta DR 2x22 LED DALI L1489	49	6253	4000	>80	1489x62x81

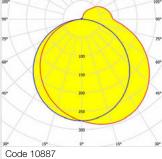
Absorbed power (W)

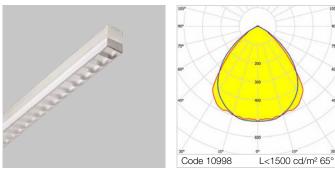
EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

		-				
10984	3F Zeta DR 1x22 LED EP L1489	25.5	3126	4000	>80	1489x62x81
10986	3F Zeta DR 2x22 LED EP L1489	50	6253	4000	>80	1489x62x81

3F Zeta DR AS

Asymmetric




 Image: State State

Asymmetric distribution. Rectangular screen in self-extinguishing polycarbonate, UV stabilized, opal, with smooth outer surface. Internal recuperator in white painted steel.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
Electronic	c wiring 230V-50/60Hz						
10886	3F Zeta DR AS 1x30 LED L1489	35	3451	4000	>80	1489x62x81	
10887	3F Zeta DR AS 2x22 LED L1489	49	5096	4000	>80	1489x62x81	
DALI electronic wiring 230V-50/60Hz							
10973	3F Zeta DR AS 1x30 LED DALI L1489	35	3451	4000	>80	1489x62x81	
10974	3F Zeta DR AS 2x22 LED DALI L1489	49	5096	4000	>80	1489x62x81	

3F Zeta DR UGR

Luminance control optic

Controlled symmetric distribution. 1x - Average luminance <1500 cd/m² for radial angles >65°. 2x - Average luminance <3000 cd/m² for radial angles >65°. Rectangular transparent polycarbonate diffuser. Semi-specular aluminium internal louvre with prismatic methacrylate filter above the louvre blades for complete shielding of the louvre compartment.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H		
Electronic wiring 230V-50/60Hz								
10599	3F Zeta DR UGR 1x12 LED L605	15	1497	4000	>80	605x62x81		
10598	3F Zeta DR UGR 2x9 LED L605	20	2144	4000	>80	605x62x81		
10592	3F Zeta DR UGR 1x24 LED L1194	28	2786	4000	>80	1194x62x81		
10998	3F Zeta DR UGR 1x30 LED L1783	35	3487	4000	>80	1783x62x81		
10591	3F Zeta DR UGR 2x18 LED L1194	40	4287	4000	>80	1194x62x81		
10997	3F Zeta DR UGR 2x22 LED L1783	49	5361	4000	>80	1783x62x81		
11003	3F Zeta DR UGR 2x22/940 LED L1783	49	4289	4000	>90	1783x62x81		
DALI elec	tronic wiring 230V-50/60Hz							
10601	3F Zeta DR UGR 1x12 LED DALI L605	15	1497	4000	>80	605x62x81		
10600	3F Zeta DR UGR 2x9 LED DALI L605	20	2144	4000	>80	605x62x81		
10594	3F Zeta DR UGR 1x24 LED DALI L1194	28	2786	4000	>80	1194x62x81		
11000	3F Zeta DR UGR 1x30 LED DALI L1783	35	3487	4000	>80	1783x62x81		
10593	3F Zeta DR UGR 2x18 LED DALI L1194	40	4287	4000	>80	1194x62x81		
10999	3F Zeta DR UGR 2x22 LED DALI L1783	49	5361	4000	>80	1783x62x81		
11004	3F Zeta DR UGR 2x22/940 LED DALI L1783	49	4289	4000	>90	1783x62x81		
	in a dama was a second to a							

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

11002	3F Zeta DR UGR 1x30 LED EP L1783	36	3487	4000	>80	1783x62x81
11001	3F Zeta DR UGR 2x22 LED EP L1783	50	5361	4000	>80	1783x62x81

3F Zeta Accessories

Suspension with regulator, galvanized steel cable 1.5 mm diameter, load 15 kg.

Code	Item
A0660	Suspension with adjustment - 1m
A0661	Suspension with adjustment - 2 m
A0662	Suspension with adjustment - 3 m
A0663	Suspension with adjustment - 4 m
A0664	Suspension with adjustment - 5 m
A0665	Suspension with adjustment - 6 m

These accessories must always be used in conjunction with the supplied sliding brackets.

Caddy hook to create a point from which to suspend the system or the loads to false ceilings with visible profiles.

CodeItemA02562Caddy for exposed profiles of 24 mm

To be installed on exposed profiles (width 24 mm) of false ceilings. We recommend reinforcing the falseceiling fixing at the point where the Caddy is to be installed. Supplied complete with nut and washer. The suspension must be purchased separately. These accessories must ALWAYS be used with one of the following codes: A0660 - A0661 - A0662 -

These accessories must ALWAYS be used with one of the following codes: A0660 - A0661 - A0662 - A0663 - A0664 - A0665.

Hook to suspended luminaires to a chain.

Code Item A20452 Stainless steel hook for chain

Element to c	onnect in hot-galvanized steel.
Code	Item
A20433	Linear connecting element for 3F Linux

Galvanized steel cable, diameter 1.5 mm, composed of 49 wires. 15 kg capacity (ratio 5:1).

	Code	Item
	A0716	Coil galvanized cable diam. 1.5mm - 100m The pack contains 100 metres.
	A0717	Coil galvanized cable diam. 1.5mm - 500m The pack contains 500 metres.
	A0718	Coil galvanized cable diam. 1.5mm - 1000m The pack contains 1000 metres.

These accessories must ALWAYS be used with one of the following codes: A20452 - A0714 - A0659.

Clamp in nickel-plated brass suitable for fixing and adjustment of galvanized steel wire (diameter 1,25 mm - 1,5 mm - 2 mm), complete with locking screws. The 2 hole clamp allows to block and adjust the cable on a bearing element (part of the building) or on rounded eye bolt.

CodeItemA0714Clamp 2 holes - 100 pcs
The pack contains 100 pieces.

Clamp suitable for fixing and adjustment of galvanized steel wire (diameter 1.5 mm), with quick adjustment through unlock buttons. The clamp with 2 holes allow to fix and adjust the cable on the carrier structural element (belonging to the building) or with eye screw fixing.

Code	Item
A0659	Adjustable clamp 2 holes - 10 pcs The pack contains 10 pieces.

This accessory can be used with one of the following codes: A0716 - A0717 - A0718.

Safety bracket in white painted steel to secure lighting elements if installed vertically.

Code	Item
A20478	Anti-slip terminal for inclined 3F Linux installation

This accessory must always be used in combination with end terminals.

Electric supply with white polycarbonate case, internal bracket in galvanized steel.

Code Item

A0679 5-pole rectangular rose (no cable)

Illuminotechnical characteristics Diffuse distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in self-

extinguishing V2 polycarbonate, UV stabilized, injection moulded, glazed. Ecologic anti-aging injected sealing gasket.

Diffuser in opal PMMA, injection moulded. Gear-tray reflector unit in aluminium, painted in white polyester, fixed to the housing by quick-fastening steel devices, hinged opening.

Snug fit safety snap-lock clips for diffuser mounting in transparent polycarbonate, screwdriver opening.

Electrical characteristics

In compliance with EN 60598-1. Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant.

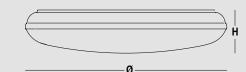
Entry for power-supply cable at the top by means of sealing grommet or lateral after drilling.

Source characteristics

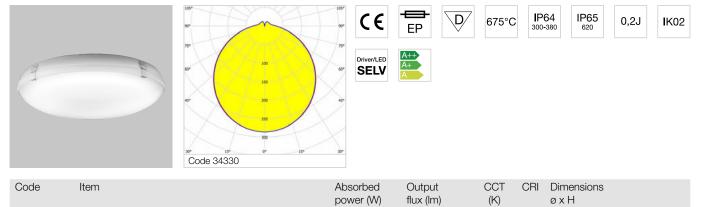
- Circular LED module.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- wiring: dimmable, CLO (more information on page 542)
- LED module with different power levels, colour temperatures and colour rendering index


Applications

Environments: architectural, transit areas, lobbies or waiting rooms, stairwells. Environments where ceiling indirect lighting and direct lighting supply a visual comfort. Virtually in all environments compatibly with the use of any chemicals which could compromise the use of plastic materials. Completely insect and dust proof.


Installation

Wall or ceiling installation.

Dimensions

3F Petra LED

Electronic wiring 230V-50/60Hz

34229	3F Petra OP 300 12W LED	14.3	1607	4000	>80 300x120
34330	3F Petra OP 380 22W LED	25.4	2841	4000	>80 380x117
34407	3F Petra OP 620 50W LED	55.5	5740	4000	>80 620x134

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

34332	3F Petra OP 380 22W LED EP	26.4	2841	4000 >80 380x117
34409	3F Petra OP 620 50W LED EP	56.5	5740	4000 >80 620x134

3F Petra LED Sensor

Construction characteristics

Illuminotechnical characteristics Diffuse distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in self-

extinguishing V2 polycarbonate, UV stabilized, injection moulded, glazed. Ecologic anti-aging injected sealing gasket.

Diffuser in opal PMMA, injection moulded. Gear-tray reflector unit in aluminium, painted in white polyester, fixed to the housing by quick-fastening steel devices, hinged opening.

Snug fit safety snap-lock clips for diffuser mounting in transparent polycarbonate, screwdriver opening.

Electrical characteristics

In compliance with EN 60598-1. Entry for power-supply cable at the top by means of sealing grommet or lateral after drilling.

Sensor mode: turns on and off depending on persons present.

Integrated presence sensor with ON/OFF function.

Source characteristics

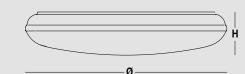
- Circular LED module.
- Color initial tolerance (MacAdam): SDCM 3.

On request

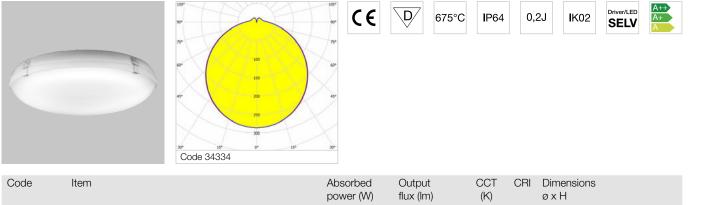
- 3F Petra OP 620 50W Sensor
- LED module with different power levels, colour temperatures and colour rendering index

Applications

Environments: architectural, transit areas, lobbies or waiting rooms, stairwells. Environments where ceiling indirect lighting and direct lighting supply a visual comfort. Virtually in all environments compatibly with the use of any chemicals which could compromise the use of plastic materials. Completely insect and dust proof.


Installation

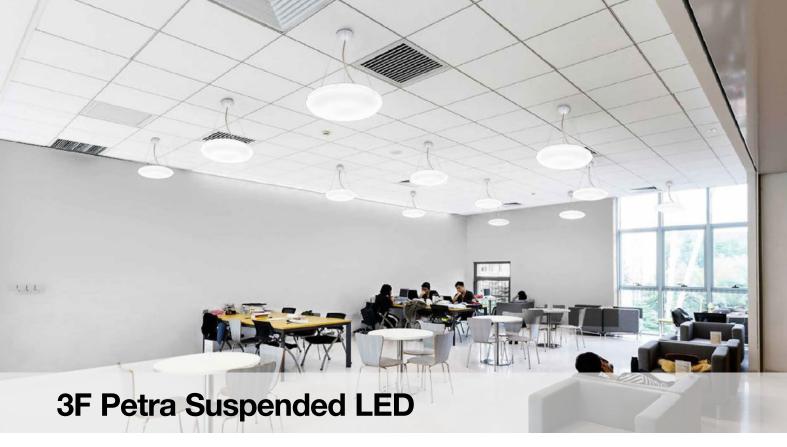
Wall or ceiling installation.


Light Management

For more information on 3F Sensor technology, refer to the specific chapter in the "Light Management" section.

Di	mei	nei	nno
		131	

3F Petra LED Sensor



(K)

øхН

Electronic wiring	230V-50/60Hz

34233	3F Petra OP 300 12W LED Sensor	14.3	1607	4000 >80 300x120
34334	3F Petra OP 380 22W LED Sensor	25.4	2841	4000 >80 380x117

Illuminotechnical characteristics Diffuse distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in self-

extinguishing V2 polycarbonate, UV stabilized, injection moulded, glazed. Ecologic anti-aging injected sealing gasket.

Diffuser in opal PMMA, injection moulded. Gear-tray reflector unit in aluminium, painted in white polyester, fixed to the housing by quick-fastening steel devices, hinged opening.

Snug fit safety snap-lock clips for diffuser mounting in transparent polycarbonate, screwdriver opening.

Adjustable suspension with Rose in white polycarbonate, with stainless steel cables, 2 m long.

Electrical characteristics

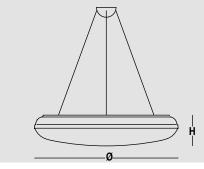
In compliance with EN 60598-1. Entry for power-supply cable at the top by means of double-membrane sealing grommet, or side-entry after drilling. Transparent 5x1.5 mm² power-supply cable.

Source characteristics

- Circular LED module.
- Color initial tolerance (MacAdam): SDCM 3.

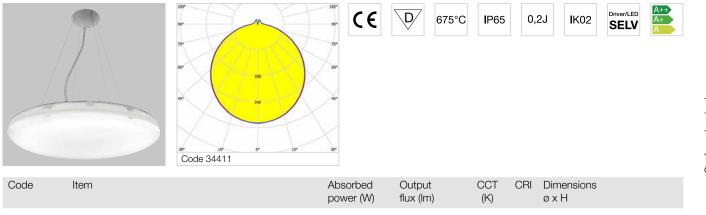
On request

- wiring: dimmable, CLO (more information on page 542)
- EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse, in compliance with EN 60598-2-22
- LED module with different power levels, colour temperatures and colour rendering index


Applications

Environments: transit areas, great halls. Environments where ceiling indirect lighting and direct lighting supply a visual comfort. Virtually in all environments compatibly with the use of any chemicals which could compromise the use of plastic materials. Completely insect and dust proof.

Installation


Suspension installation.

Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Petra Suspended LED

Electronic wiring 230V-50/60Hz

34411	3F Petra OP 620 50W LED SO	55.5	5740	4000 >	80 620x134

•

Construction characteristics

Illuminotechnical characteristics

Diffused symmetric distribution. Lifetime (L90/B20): 30000 h. (tq+25°C) Lifetime (L80/B20): 50000 h. (tq+25°C) Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Gear-tray casing in white painted aluminium for ceiling or wall installation. Single-piece in die-cast aluminium with passive dissipation, white colour, with perimeter cooling slots on upper edge, giving a crown of light effect to the fitting. Invisible lock for positioning the luminous flux.

PMMA opal methacrylate lens. Positioning arm in galvanized brass with sphere to allow for vertical positioning at angles from 0° to 90° and horizontal positioning from 0° to 290°.

Source characteristics

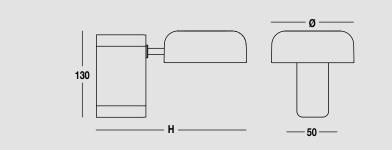
- Compact LED module.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request

- LED module with different power levels, colour temperatures and colour rendering index
- housing in different RAL colours
- dimmable wiring

Applications

Environments: commercial, museums, shops.


Environments: transit areas, lobbies or waiting rooms, corridors, stairwells. Environments where soft diffuse light is required for optimal visual comfort.

Installation

Wall or ceiling installation.

In cases where the body of the luminaire is facing the ceiling (for indirect lighting), to maintain high luminous efficiency we recommend cleaning the lens regularly.

166 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Emilio Wall

	109 109 109 109 109 109 109 109	PMMA opal methacrylate	e lens.		
Code Item		osorbed Output ower (W) flux (Im)	CCT CRI (K)	Dimensions ø x H	

Electronic wiring 230V-50/60Hz

47509 3F Emilio P LED 3000/840 50° 27.9 2844 4000 >80 130x156

Illuminotechnical characteristics

Asymmetric indirect distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tg+25°Ć) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted steel. Flow recuperator in specular aluminium with superficial titanium-magnesium treatment.

Electrical characteristics

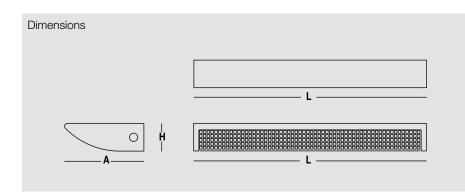
In compliance with EN 60598-1.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): • SDCM 3.

On request

- housing in different RAL colours
- wiring: dimmable, CLO (more • information on page 542)


Applications

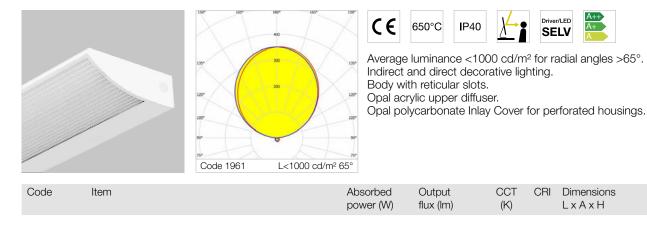
Environments: with VDTs, meeting rooms, offices.

Environments: transit areas, lobbies or waiting rooms, corridors, stairwells. Environments where soft diffuse light is required for optimal visual comfort.

Installation

Wall installation.

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com


Mira Par LED Ind

C	195° 1959	Indirect li Upper cl		selfextir ized.		r/LED A++ A++ A+- A+- A+- A+- A+- A+- A+- A+-	
Code Item		Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
Electropic wiring 220V 50/60	4-						

Electronic wiring 230V-50/60Hz

1959	MIRA PAR LED 4x12W IND L675	56	6453	4000	>80	675x230x80	

Mira Par LED Dec

Electronic wiring 230V-50/60Hz

1961 MIRA PAR LED DE 4x12W L675	56	6321	4000 >	80 675x230x80	
---------------------------------	----	------	--------	---------------	--

Accessories

5-pole terminal block, connection capacity from 2.5 to 6 mm², on galvanized steel bracket for cascade connection lines.

Code Item

A0090 Bracket/5-pole terminal block

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing with squared shape in white painted steel, with nonreflecting surface.

Electrical characteristics

In compliance with EN 60598-1. 5-pole terminal block for cascade line connection with connection capacity 2x2.5 mm².

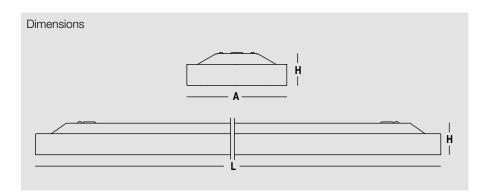
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 2.

On request

- different power levels, colour rendering indices and colour temperatures
- different dimensionshousing and accessories in
- different RAL colours
- wiring: emergency, CLO (more information on page 542)

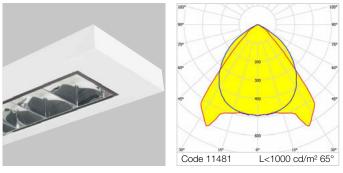
Applications


Environments: exhibition areas, staterooms, with VDTs, halls, shops, great halls, offices. Environments where soft diffuse light is required for optimal visual comfort.

Installation

Ceiling mounted or suspension installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

170 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Travetta LED 2MG

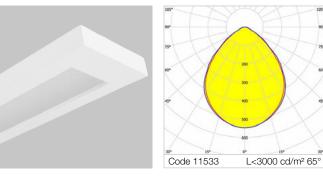
Specular louvre, high efficiency

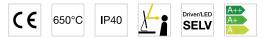
Driver/LED CE 650°C **I**P20 SELV

Average luminance <1000 cd/m² for radial angles >65°. 2MG parabolic louvre, high efficiency, in specular aluminium with superficial titanium-magnesium treatment, non-iridescent, with transverse blades closed at the top.

Prismatic PMMA diffuser for total shielding of the louvre compartment.

Film protective against dust and finger marks, adhesive, attached to louvre.


Code	Item	Absorbed	Output	CCT	CRI Dimensions	
		power (W)	flux (lm)	(K)	LxAxH	


DALI electronic wiring 230V-50/60Hz

11481	3F Travetta LED 1x22W DALI 2MG L1590	24.5	3168	4000 >80 1590x190x60
11484	3F Travetta LED 2x22W DALI 2MG L1590	49	6236	4000 >80 1590x190x60

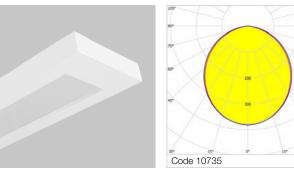
3F Travetta LED LGS

Flat micro-prismatic diffuser with low luminance film

Average luminance <3000 cd/m² for radial angles >65°. Flow recuperator in semi-specular aluminium, high efficiency. LGS micro-prismatic flat diffuser in transparent methacrylate, multi-lenticular exterior, anti-glare.

Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item	Absorbed power (W)			Dimensions L x A x H	
Electroni	c wiring 230V-50/60Hz					
11528	3F Travetta LED 1x24W LGS L1290	28	3022	4000	>80	1290x190x60
11530	3F Travetta LED 1x30W LGS L1590	35	3783	4000	>80	1590x190x60
11531	3F Travetta LED 2x18W LGS L1290	40	4690	4000	>80	1290x190x60
11533	3F Travetta LED 2x22W LGS L1590	49	5865	4000	>80	1590x190x60
DALI elec	tronic wiring 230V-50/60Hz					
11537	3F Travetta LED 1x24W DALI LGS L1290	28	3022	4000	>80	1290x190x60
11539	3F Travetta LED 1x30W DALI LGS L1590	35	3783	4000	>80	1590x190x60
11540	3F Travetta LED 2x18W DALI LGS L1290	40	4690	4000	>80	1290x190x60
11542	3F Travetta LED 2x22W DALI LGS L1590	49	5865	4000	>80	1590x190x60


60*

3F Travetta LED OP

Opal PMMA flat diffuser

Item

Code

Output

flux (lm)

90*

Absorbed

power (W)

OP opal methacrylate flat diffuser, anti-glare. Flow recuperator in semi-specular aluminium, high efficiency.

CCT

(K)

CRI

Dimensions

LxAxH

		1	- ()	()					
Electronic	wiring 230V-50/60Hz								
LICOUOTIIC									
10731	3F Travetta LED 1x18W OP L1290	20	2335	4000	>80	1290x190x60			
10732	3F Travetta LED 1x22W OP L1590	24.5	2920	4000	>80	1590x190x60			
10734	3F Travetta LED 2x18W OP L1290	40	4545	4000	>80	1290x190x60			
10775	3F Travetta LED 1x40W OP L2200	44	4887	4000	>80	2200x190x60			
10735	3F Travetta LED 2x22W OP L1590	49	5683	4000	>80	1590x190x60			
10777	3F Travetta LED 2x40W OP L2200	88	9511	4000	>80	2200x190x60			
DALI electronic wiring 230V-50/60Hz									
11494	3F Travetta LED 1x18W DALI OP L1290	20	2335	4000	>80	1290x190x60			
11495	3F Travetta LED 1x22W DALI OP L1590	24.5	2920	4000	>80	1590x190x60			
11497	3F Travetta LED 2x18W DALI OP L1290	40	4545	4000	>80	1290x190x60			
11511	3F Travetta LED 1x40W DALI OP L2200	44	4887	4000	>80	2200x190x60			
11498	3F Travetta LED 2x22W DALI OP L1590	49	5683	4000	>80	1590x190x60			
11513	3F Travetta LED 2x40W DALI OP L2200	88	9511	4000	>80	2200x190x60			

Illuminotechnical characteristics

Direct-indirect distribution. Average luminance <1000 cd/m² for radial angles >65°.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing with squared shape in white painted steel, with nonreflecting surface. 2MG parabolic louvre, high efficiency, in specular aluminium with superficial titanium-magnesium treatment, noniridescent, with transverse blades closed at the top.

Prismatic PMMA diffuser for total shielding of the louvre compartment. Film protective against dust and finger marks, adhesive, attached to louvre. Upper holes closing film made of opal polycarbonate.

Electrical characteristics

In compliance with EN 60598-1. 5-pole terminal block for cascade line connection with connection capacity 2x2.5 mm².

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 2.

On request

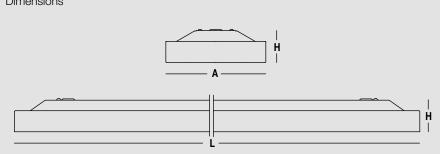
- different power levels, colour rendering indices and colour temperatures
- different dimensions
- housing and accessories in different RAL colours
- wiring: emergency, CLO (more information on page 542)
- version with LGS screen

Applications

Environments: exhibition areas, staterooms, with VDTs, halls, shops, great halls, offices.

Environments where soft diffuse light is required for optimal visual comfort.

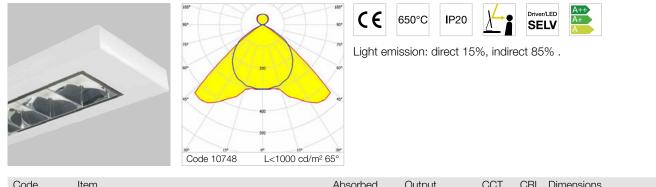
Installation


Suspension installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

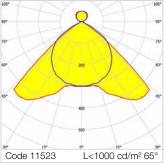
The DALI SENSOR (LS) products from this product family are all fitted with DALI light and presence sensors integrated into the luminaire (see "Light Management" chapter).


Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

3F Travetta LED DI 2MG

Specular louvre, high efficiency



Code		power (W)	flux (lm)	(K)		L x A x H	
Electronic	wiring 230V-50/60Hz						
Electronic							
10747	3F Travetta LED DI 2x15W 2MG L1590	35	3958	4000	>80	1590x190x60	
10748	3F Travetta LED DI 2x22W 2MG L1590	49	5865	4000	>80	1590x190x60	
DALI electi	onic wiring 230V-50/60Hz						
	-						
11503	3F Travetta LED DI 2x15W DALI 2MG L1590	35	3958	4000	>80	1590x190x60	
11504	3F Travetta LED DI 2x22W DALI 2MG L1590	49	5865	4000	>80	1590x190x60	

3F Travetta LED DI DALI Sensor 2MG

Specular louvre, high efficiency

Light emission: direct 15%, indirect 85%. Integrated DALI light and presence sensor on the luminaire, to keep lighting levels constant in accordance with the amount of natural light and the presence of persons. Turns on and off and is regulated according to the level of light and

lurns on and off and is regulated according to the level of light and the presence of persons.

Code Item	Absorbe power (V	 CCT (K)	CRI	Dimensions L x A x H
DALI electronic wi	ring 230V-50/60Hz			

11522	3F Trav. LED DI 2x15W DALI LS 2MG L1590	35	3958	4000	>80	1590x190x60	
11523	3F Trav. LED DI 2x22W DALI LS 2MG L1590	49	5865	4000	>80	1590x190x60	

3F Travetta LED Tunable White

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Average luminance <1000 cd/m² for radial angles >65°.

The color temperature can be adjusted between 2700 K and 6500 K. Lifetime (L90/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Lifetime (L75/B10): 80000 h. (tq+25°C) Lifetime (L70/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing with squared shape in white painted steel, with nonreflecting surface. 2MG parabolic louvre, high efficiency, in specular aluminium with superficial titanium-magnesium treatment, noniridescent, with transverse blades closed at the top.

Opal methacrylate diffuser for total shielding of the louvre compartment. Film protective against dust and finger marks, adhesive, attached to louvre.

Electrical characteristics

In compliance with EN 60598-1. Cable with a DALI DT8 driver. 5-pole terminal block (L-N-PE-DA/DA) for line connection with connection capacity 2x2.5 mm².

Source characteristics

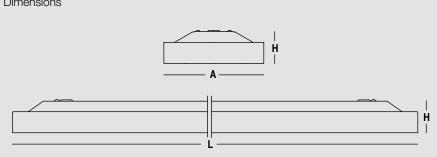
- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different dimensions
- housing and accessories in different RAL colours
- wiring: emergency

Applications

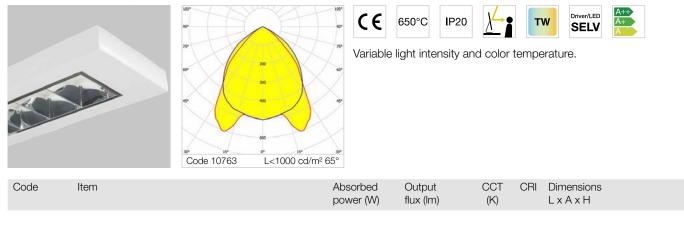
Any environments requiring light which aims for the wellness of people. Environments with VDTs. Environments where demanding visual tasks are performed and soft diffuse light is required for optimal visual comfort and total shielding of the light source.


Installation

Ceiling mounted or suspension installation. WARNING FOR SUSPENSION INSTALLATION it is necessary to order suspension fixtures that are not equipped with cables and a 7 pin power cable.

Light Management

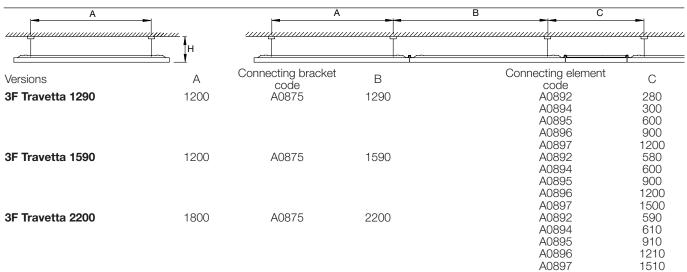
Products in the 3F Tunable White range can be controlled manually or automatically with 3F HCL for TW fixtures technology (see the chapter on "Light Management").


Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

3F Travetta LED Tunable White 2MG

Specular louvre, high efficiency


DALI DT8 electronic wiring 230V-50/60Hz

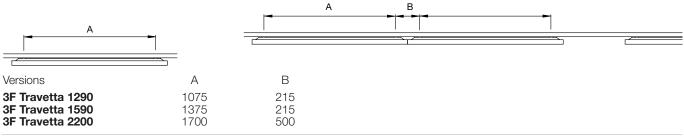
10763 3F TRAV. LED 2X22W DALI DT8 TW 2MG L1590 51 5530 2700 >80 1590x190x60 6214 4000 5996 6500	
---	--

3F Travetta LED

Installations

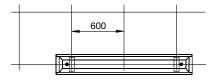
Mounting with fixed suspension H = 300-500-1000mm

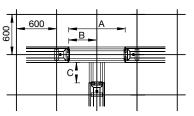
Mounting with adjustable suspension H max 1000mm


A	_	D	-	-	E F	
	H					
Versions	А	Connecting bracket code	D	E	Connecting element code	F
3F Travetta 1290	1250	A0875	1270	1290	A0892 A0894 A0895 A0896 A0897	190 210 510 810 1110
3F Travetta 1590	1550	A0875	1570	1590	A0892 A0894 A0895 A0896 A0897	190 210 510 810 1110
3F Travetta 2200	2160	A0875	2180	2200	A0892 A0894 A0895 A0896 A0897	190 210 510 810 1110
					A0031	1110

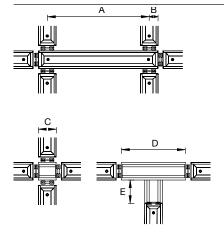
Ceiling mounting

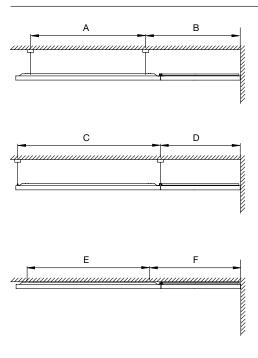
A	►1	A		B	C/C	× ► <
	1 ment		<u>mmm</u>			<u></u>
Versions	А	Connecting bracket code	В	Connecting element code	С	C*
3F Travetta 1290 (C)	1075	A0875	215	A0892	405	
3F Travetta 1590 (C)	1375	A0875	215	A0892	405	690
3F Travetta 2200 (C*)	1700	A0875	500	A0894	425	710
				A0895	725	1010
				A0896	1025	1310
				A0897	1325	1610


Installation on 3F Linux system


This type of installation avoids the use of connecting elements for 3F Travetta direct version.

Installation to false ceiling with exposed structure 600x600 - 600x1200


For this type of installation only fixed suspensions are to be used.


				Connecting for branche		
	A0894	A0895	A0896	A0897	A0951	A0952
Versions	А	А	A/B	A/B	С	С
3F Travetta 1290		510		1110/505		460
3F Travetta 1590	210		810/405		310	

Formation of composition or branch

Versions 3F Travetta 1290 3F Travetta 1590		A 1100 1400		B 95 95		
Linear cor elements d					Connecting ele branches code	
A0892	A0894	A0895	A0896	A0897	A0951	A0952
С	D	D	D	D	E	E
190	210	510	810	1110	310	460

Wall power-supply

Fixed suspension			
Versions	А	Connecting bracket code	В
3F Travetta 1290	1200	A0941 A0942	855 1155
3F Travetta 1590	1200	A0941 A0942	1005 1305
3F Travetta 2200	1800	A0941 A0942	1010 1310
Adjustable suspension Versions	С	Connecting bracket	D
3F Travetta 1290	1270	code A0941 A0942	810 1110
3F Travetta 1590	1570	A0941 A0942	810 1110
3F Travetta 2200	2180	A0941 A0942	810 1110
Ceiling mounting Versions	Е	Connecting bracket code	F
3F Travetta 1290	1075	A0941 A0942	918 1218
3F Travetta 1590	1375	A0941 A0942	918 1218
3F Travetta 2200	1700	A0941 A0942	1060 1360

3F Travetta Accessories

in 2

Connecting bracket to form linear channels or branches of single luminaires, in galvanized steel with upper holes for adjustable suspensions.

CodeItemA0875Connecting bracket for linear channels or branches

Linear connecting element and for branch, between luminaires or between luminaires and wall, to form channels, in steel with accessorizable cover, white colour. It allows the passage of the power-supply line. Concerning the use of connecting elements in false ceilings 600x600, see installation.

Code	Item
A0892	White connecting element 190x190 3F Travetta GR
A0894	White connecting element 190x210 3F Travetta GR
A0895	White connecting element 190x510 3F Travetta GR
A0896	White connecting element 190x810 3F Travetta GR
A0897	White connecting element 190x1110 3F Travetta GR
A0941	White connecting element lum/wall 810 3F Travetta
A0942	White connecting element lum/wall 1110 3F Travetta

On request: elements of desired length. Connecting elements for false ceiling 625x625.

Branching in correspondence with the steel linear connecting elements with a white colour accessory cover.

Item
White branches elem. 190x310 3F Travetta
White branches elem. 190x460 3F Travetta
Bracket for T-branch for 3F Travetta
Bracket for X-branch for 3F Travetta

It allows the passage of the power-supply line. The 190x190 linear connecting element can also be used for T junctions (request a bracket code A0875) and X junctions (request two brackets code A0875). To obtain an excellent T or X junction for connecting elements of a false ceiling with 600x600 visible profiles, the combination of a 1110 mm linear element with a 460 mm junction and the combination of a 810 mm linear element with a 310 mm junction are recommended.

Connecting element between luminaires or between luminaire and wall, white colour, composed of aluminium tube 1.5 m long Ø20 mm, which can be sectioned to any desired length, it allows the passage of the power-supply line.

Code	Item
A0870	White connecting element with boss for luminaires
A0872	White connecting element to wall with boss for luminaires

Linear connecting element end cap to be used when there are connecting elements at the beginning or end of a channel.

Code	Item
A01368	Travetta B joint closing cap

Adjustable suspension with polycarbonate case in white colour, internal bracket in galvanized steel. Wired version with transparent power-supply cable $5x1.5 \text{ mm}^2$. Stainless steel cables Ø 1.25 mm, length 1 m, leaded at one end with adjusters for coupling on the luminaire.

Code Item	
A01318 White rectangular case suspension-adj. 1 m	
A01325 Wired suspension 5P white rectangular case-adj.1 m	

On request: for suspensions longer than 1 m, it is necessary order stainless steel cables Ø 1,25 mm in spool of 100 m and pack of n° 100 clamps. Accessory always required for 2200 mm long products.

Fixed suspension with white polycarbonate case, internal bracket in galvanized steel. Wired version with transparent power-supply cable 5x1.5 mm². Ø 1.25 mm stainless steel cables leaded at the end for coupling

on the luminaire.

	Code	Item
	A01314	White rectangular case suspension- fixed 0,3m
	A01315	White rectangular case suspension- fixed 0,5m
	A01317	White rectangular case suspension- fixed 1m
	A01321	Wired susp. 5P white rectangular case-fixed 0,3m
	A01322	Wired susp. 5P white rectangular case-fixed 0,5m
	A01324	Wired suspension 5P white rectangular case-fixed 1m

Coil of stainless steel cable Ø 1.25 mm, length 100 m.

Code	Item
A0620	Spool with stainless steel cable diam. 1,25mm 100 m The pack contains 100 metres.

Clamps in nickel-plated brass suitable for fixing of steel wire (diameter 1.25 mm - 1.5 mm - 2 mm), complete with locking screws.

Code	Item
A0622	Clamp 1 hole - 100 pcs The pack contains 100 pieces.

Electric supp	bly with white polycarbonate case, internal bracket in galvanized steel.
Code	Item

A0679 5-pole rectangular rose (no cable)

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester. Metal end caps with cover element in

white polycarbonate, removable to form channels.

Electrical characteristics

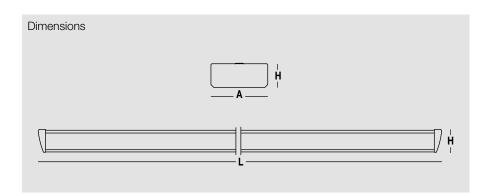
In compliance with EN 60598-1.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 2.

On request

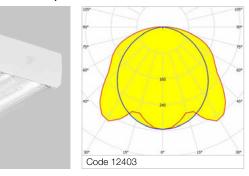
- different power levels, colour rendering indices and colour temperatures
- asymmetric luminaireshousing and accessories in
- different RAL colours
- wiring: dimmable, CLO (more information on page 542), emergency


Applications

2US version

Environments: with VDTs, schools, offices. Environments: commercial, exhibition areas, transit areas, lobbies or waiting rooms, shops, schools. High energy efficiency systems.

Installation


Ceiling mounted or suspension installation. In the event of ceiling installation of the 2US fixture the invisible sliding brackets (accessories) are always required. Installation and assembly diagrams on page 184.

182 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

Filigare 180 LED RSP

Flow recuperator with prismatic screen

Output

flux (Im)

Flow recuperator in specular aluminium, high efficiency, with superficial titanium-magnesium treatment, non-iridescent. SP diffuser in self-extinguishing V2 transparent polycarbonate, photo-engraved inside, UV stabilised, injection moulded with smooth outside.

CCT

(K)

CRI

Dimensions

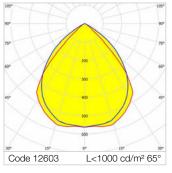
LxAxH

Flectronic	wiring	230V-50/60Hz	

Item

12403	Fil 180 LED 2x24W RSP AMPIO L1280	56	6965	4000	>80 1280x180x8	5
12404	Fil 180 LED 2x30W RSP AMPIO L1590	70	8718	4000	>80 1590x180x8	5

Absorbed


power (W)

Filigare 180 LED 2US

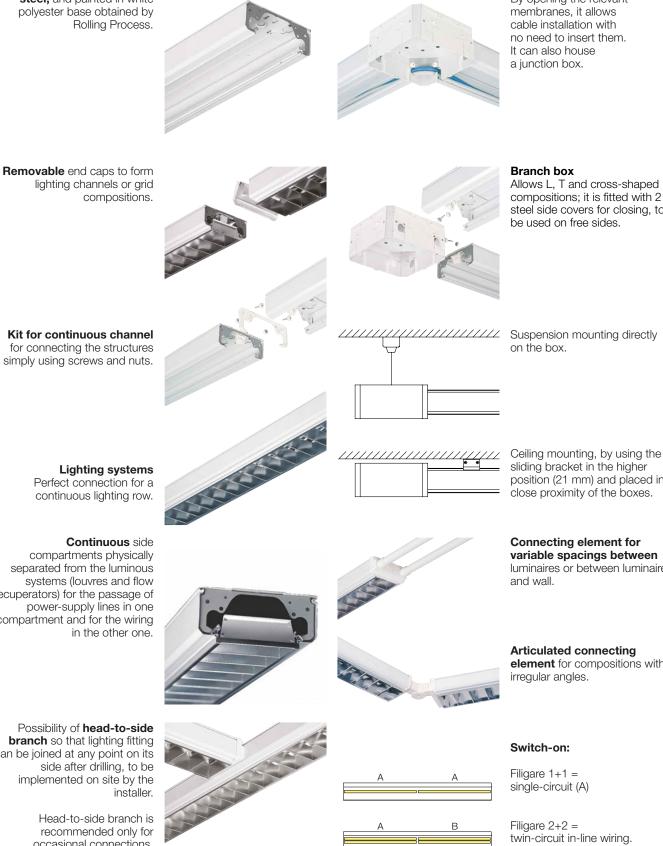
Semi-glossy louvre

Code

Average luminance <1000 cd/m² for radial angles >65°. 2US parabolic louvre in semi-glossy aluminium, anti-glare, with transverse blades closed at the top.

Prismatic PMMA diffuser for total shielding of the louvre compartment.

Film protective against dust and finger marks, adhesive, attached to louvre.


2+2 in-line twin circuit wiring.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
12601	Fil 180 LED 1x24W 2US L1280	28	2910	4000	>80	1280x180x85
12603	Fil 180 LED 1x30W 2US L1590	35	3643	4000	>80	1590x180x85
12605	Fil 180 LED 2x24W 2US L1280	56	5066	4000	>80	1280x180x85
12607	Fil 180 LED 2x30W 2US L1590	70	6341	4000	>80	1590x180x85
12614	Fil 180 LED 1+1x30W 2US L3140	70	7285	4000	>80	3140x180x85
12618	Fil 180 LED 2+2x30W 2US L3140	140	12682	4000	>80	3140x180x85

Filigare 180 LED

Characteristics and installations

Housing in hot-galvanised steel, and painted in white polyester base obtained by Rolling Process.

Branch box

By opening the relevant membranes, it allows cable installation with no need to insert them. It can also house

Allows L, T and cross-shaped compositions; it is fitted with 2 steel side covers for closing, to be used on free sides.

Suspension mounting directly

Lighting systems

Perfect connection for a continuous lighting row.

compartments physically separated from the luminous systems (louvres and flow recuperators) for the passage of power-supply lines in one compartment and for the wiring in the other one.

Possibility of head-to-side branch so that lighting fitting can be joined at any point on its side after drilling, to be implemented on site by the

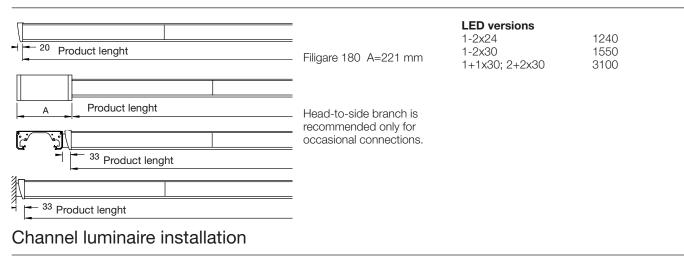
> Head-to-side branch is recommended only for occasional connections.

> > Reference point for alignment

A1

B1

sliding bracket in the higher position (21 mm) and placed in close proximity of the boxes.


Connecting element for variable spacings between luminaires or between luminaire

Articulated connecting element for compositions with

twin-circuit in-line wiring. (A/B and A1/B1)

184

Formation of channels, branches and wall-mounting

For creating continuous lighting channels, in order to reduce purchase and installation costs, we recommend using the longest (1+1 e 2+2) Filigare versions rather than the shorter ones.

Luminaire typeOn-centre installation distance for channelOn-centre installation distance with junction boxFiligare 180 LED3100 mm3321 mm

Mounting directly to the ceiling

	LED versions with sliding brackets and louvre			
	1-2x24	1118	1240	
81 A 81	1-2x30	1428	1550	
	1+1x30; 2+2x30	2978	3100	

Mounting with suspension and sliding brackets for channel luminaires

·/////////////////////////////////////		
	д в	Y
200-300 200-300 _	200-300	

Use sliding brackets and suspension with case accessories (see list of accessories) LED versions 1+1x30;2+2x30 2500-2700 3100

Mounting with suspension for luminaires or single structures

20 - 	- -			Use suspension with rose accessory	LED versions 1-2x24 1-2x30 1+1x30;2+2x30	1020 1330 2880	130 120 130
-	B	Α	B				

Filigare Accessories

		Structure ir	n hot-galvanized steel painted in white polyester.
		Code	Item
		A0006	Fil 180 CP620 Structure
		A0008	Fil 180 CP1240 Structure
		A0009	Fil 180 CP1550 Structure
		_	

These accessories must ALWAYS be used with one of the following codes: A0030.

Kit for conti	nuous channel composed of blend stop and two screws with nuts.
Code	Item
A0030	Fil 180 CC (continuous channel kit)

Bracket to strengthen structures connection in white painted steel for continuous channel of considerable length, complete with kit for continuous channel, one bracket every two connections is recommended.

Code	Item
A0066	Strength. Brack.+Connect. Kit - Fil 180

necting element for variable interdistances between luminaires, compose	ed of a pair of adapter cylinders
aluminium tube 1.5 m long, Ø 35 mm, which can be sectioned to any de	esired length.
	son oa longan

Code	Item
A0034	Pair of white cylinders
A0035	Aluminium tube 1.5 m white

The branch end cap (cod. A0033) is always necessary.

Branch box in white painted steel for L, T and cross-shaped branches. Possibility of suspension at the centre of the box, see suspension (cod. A0045 - A0046 - A0047 - A0762 - A0766 - A0770). A hermetic junction box can be housed internally.

Code	Item
A0036	Fil 180 BL (box for branch)

Elements for branch and for wall-mounting for Filigare 180, in white polycarbonate, interchangeable with standard end caps.

Code Item A0033 Fil 180 DT (element for branch)

Articulated connecting element in white polycarbonate; it is not a mechanical support; it allows the passage of power-supply line. It must always be coupled with 2 elements for branch connection (cod. A0033).

Code	Item
A0038	White articulated connecting element

Pair of end cap cover elements (in white polycarbonate), complete with fixing bolts.

Code	Item
A0039	Pair of white end caps Fil 180

Fil 180 SS (sliding bracket) Always required for Filigare 180 LED 2US version.

Code

A0042

Item

Adjustable suspension for single-unit, composed by: polycarbonate ceiling white rose Ø 110 mm, stainless steel cable Ø 1,25 mm (length 1 m), quick adjuster, white power cable 1,5 mm² section, H05VV-F (length 2 m).

Concealed sliding bracket for free positioning, in galvanized steel, for mounting to or suspension from the ceiling. It can be adjusted at two heights to position the structure at distances of 16 or 21 mm from the

Code	Item
A0124	Rose 110 (Adjust. susp.1m unwired)
A0125	Rose 110 (Adjust. susp.1m wired with 4-pole cable)
A0114	Rose 110 (Adjust. susp.1m wired with 5-pole cable)

ceiling. Allows for installation even on surfaces that are normally flammable.

A0125	Rose 110 (Adjust. susp.1m wired with 4-pole cable)
A0114	Rose 110 (Adjust. susp.1m wired with 5-pole cable)

Adjustable suspension for continuous channel composed of white polycarbonate case, internal bracket in galvanized steel, cables Ø 2 mm in galvanized steel, quick adjusters, maximum load 50 kg.

Code	Item
A0045	Adjustable suspension for channel 1m
A0046	Adjustable suspension for channel 1.5m
A0047	Adjustable suspension for channel 2m
A0762	Adjustable suspension for channel 3m
A0766	Adjustable suspension for channel 4m
A0770	Adjustable suspension for channel 6m

For continuous channel it is always necessary to use the sliding bracket (cod. A0042). The box is fixed directly. On request galvanized steel cable of Ø 2 mm, spool of 100 m.

Coil of stainless steel cable Ø 1.25 mm, length 100 m.

Code Item A0620 Spool with stainless steel cable diam. 1,25mm 100 m The pack contains 100 metres.

Code A0622

Clamps in nickel-plated brass suitable for fixing of steel wire (diameter 1.25 mm - 1.5 mm - 2 mm), complete with locking screws.

Item
Clamp 1 hole - 100 pcs The pack contains 100 pieces

Cable clip in polycarbonate, snap-lock fastening in side compartment; it is advisable to use it every meter.

Code	Item
A0053	Fil 19 BF (cable clip) The pack contains 20 pieces.

White closing strip in PVC to be attached by fitting into position in structure.CodeItemA001632 IF (PVC closing top Fil 180-620)A001832 MH (PVC closing top Fil 180-1240)A001932 HA (PVC closing top Fil 180-1550)

These accessories must ALWAYS be used with one of the following codes: A0006 - A0008 - A0009.

850°C

White clos	sing strip in steel, to be attached by fitting into position in structure.
Code	Item
A0021	Fil 180 AB620 (steel closing top)
A0023	Fil 180 AB1240 (steel closing top)
A0024	Fil 180 AB1550 (steel closing top)

These accessories must ALWAYS be used with one of the following codes: A0006 - A0008 - A0009.

Wall-mounting bracket, in white painted steel, suitable for mounting on the sliding bracket A0042 (always necessary).

CodeItemA0052Fil 15 FP (wall-mounting bracket Fil 180)

P 200 LED

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Average luminance $<1000 \text{ cd/m}^2$ for radial angles $>65^\circ$.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

2US parabolic louvre in semi-glossy aluminium with transverse blades closed at the top and prismatic PMMA diffusers for total shielding of the louvre compartment.

Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

- Linear LED modules.
- 10W version
- Color initial tolerance (MacAdam): SDCM 2.
- 24W, 30W versions
- Color initial tolerance (MacAdam): SDCM 3.

On request

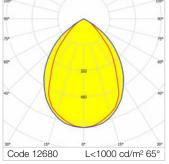
- parabolic louvres 2M, 2MG, 3AO
- different power levels, colour rendering indices and colour temperatures
- housing in RAL colours
- wiring: dimmable, CLO (more information on page 542), emergency

Applications

Environments: with VDTs, schools, offices.

Installation

Ceiling mounted installation.


Dimensions

190 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

P 200 LED 2US

Semi-glossy louvre

Average luminance <1000 cd/m² for radial angles >65°. 2US parabolic louvre in semi-glossy aluminium, anti-glare, with transverse blades closed at the top.

Prismatic PMMA diffuser for total shielding of the louvre compartment.

Film protective against dust and finger marks, adhesive, attached to louvre.

Code Item Absorbed Output CCT CRI Dimensions power (W) flux (Im) LxAxH (K) Electronic wiring 230V-50/60Hz 12675 P 201x30W | ED 2US 156x1531 35 3529 4000 >80 1531x156x82

	12075	1 201X00W LLD 200 100X1001	00	0029	4000	>00	1001010002
	12692	P 203x10W LED 2US 596x596	34	3748	4000	>80	596x596x82
	12687	P 202x24W LED 2US 270x1231	56	5531	4000	>80	1231x270x82
	12680	P 202x24W LED 2US 196x1231	56	5871	4000	>80	1231x196x82
	12689	P 202x30W LED 2US 270x1531	70	6922	4000	>80	1531x270x82
	12682	P 202x30W LED 2US 196x1531	70	7348	4000	>80	1531x196x82

P 200 LED IP54

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

VS version

3x - Average luminance <1500 cd/m² for radial angles >65°.

4x - Average luminance <3000 cd/m² for radial angles >65°.

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

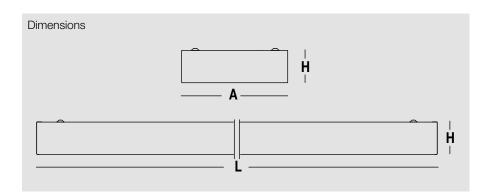
- Linear LED modules.
- 10W version
- Color initial tolerance (MacAdam): SDCM 2.
- 24W version
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- diffuser in SMP microprismatic PMMA or
- SP polycarbonate, Selfextinguishing V2housing in different RAL colours
- wiring: dimmable, CLO (more
- information on page 542), emergency

Applications

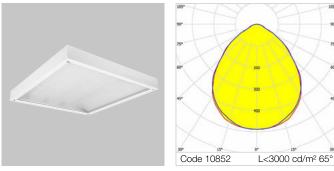
Particularly suitable for environments where protection against water and dust is required, such as hospitals, pharmaceutical and chemical laboratories. In environments with foodstuffs or machines with moving parts, with considerable sudden temperature changes, and in general in any environments requiring total protection against falling fragments, use the P 200 LED IP54 SP PC version (polycarbonate diffuser) available on request.


Tempered glass is not immune to falling fragments from harmless and caused by shocks or exceptionally derived from the tempering process.

SP version

Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Installation


Ceiling mounted installation.

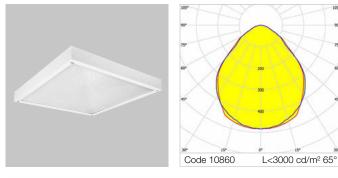
192 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

P 200 LED IP54 VS

Moulded glass

3x - Average luminance <1500 cd/m² for radial angles >65°.
4x - Average luminance <3000 cd/m² for radial angles >65°.
VS moulded glass, anti-glare, tempered, non-combustible, thickness 4 mm, locked to the white painted aluminium perimetrical frame, sealing gasket, hinged opening.

Driver/LED


SELV

Code	Item	Absorbed power (W)	Output flux (Im)	CCT ((K)	CRI Dimensions L x A x H	
Electronic	c wiring 230V-50/60Hz					

10851	P 203x10W LED VS IP54 596x596	34	3986	4000	>80 596x596x82	
10852	P 204x10W LED VS IP54 596x596	45	5253	4000	>80 596x596x82	
10848	P 202x24W LED VS IP54 196x1231	56	6302	4000	>80 1231x196x82	

P 200 LED IP54 SP

Flat diffuser, prismatic in methacrylate

SP transparent PMMA diffuser, prismatic, anti-glare, locked to the pre-painted white aluminium perimeter frame with sealing gasket, hinged opening.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	ic wiring 230V-50/60Hz					
10859	P 203x10W LED SP IP54 596x596	34	4142	4000	>80	596x596x82
10860	P 204x10W LED SP IP54 596x596	45	5474	4000	>80	596x596x82
10856	P 202x24W LED SP IP54 196x1231	56	6567	4000	>80	1231x196x82

P 230 LED

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

SP version

Average luminance $<3000 \text{ cd/m}^2$ for radial angles $>65^\circ$.

LGS version

Average luminance ${<}1500~cd/m^2$ for radial angles ${>}65^\circ.$

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester. Height only 55 mm.

Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

- Linear LED modules.
- 10W version
- Color initial tolerance (MacAdam): SDCM 2.
- 24W, 30W versions
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- diffuser in SMP microprismatic PMMA or
- SP polycarbonate, Selfextinguishing V2housing in different RAL colours
- wiring: dimmable, CLO (more
- information on page 542), emergency

Applications

Particularly suitable for low height environments.

SP version

Environments: with VDTs, offices. Environments with exacting visual tasks, where diffused soft light for optimum visual comfort is required.

OP version

Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.

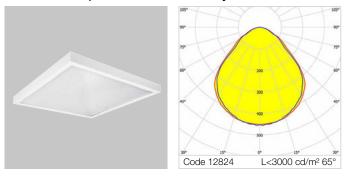
LGS version

Environments: with video terminals,

representative areas, offices.

Environments with exacting visual tasks, where diffused soft light for optimum visual comfort is required.

Installation


Ceiling mounted installation.

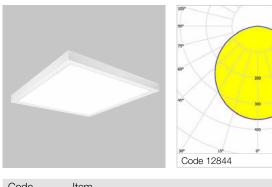
Dimensions	
	Ļ
	A
	L

194 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

P 250 LED SP

Flat diffuser, prismatic in methacrylate

IP40

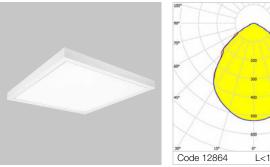

Average luminance <3000 cd/m² for radial angles >65°. SP transparent PMMA diffuser, prismatic, anti-glare, locked to the pre-painted white aluminium perimeter frame with sealing gasket, hinged opening.

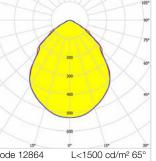
Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
Electroni	c wiring 230V-50/60Hz						
12824	P 253x10W LED SP 596x596	34	4360	4000	>80	596x596x55	
12815	P 251x30W LED SP 156x1531	35	4364	4000	>80	1531x156x55	
10000		4 5		4000	00		

12826	P 254x10W LED SP 596x596	45	5765	4000	>80 596x596x55
12820	P 252x24W LED SP 196x1231	56	6916	4000	>80 1231x196x55
12822	P 252x30W LED SP 196x1531	70	8655	4000	>80 1531x196x55

P 250 LED OP

Opal PMMA flat diffuser





OP opal PMMA flat diffuser, anti-glare, locked to the pre-painted white aluminium perimeter frame with sealing gasket, hinged opening.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
12844	P 253x10W LED OP 596x596	34	4080	4000	>80	596x596x55
12835	P 251x30W LED OP 156x1531	35	4084	4000	>80	1531x156x55
12846	P 254x10W LED OP 596x596	45	5405	4000	>80	596x596x55
12840	P 252x24W LED OP 196x1231	56	6484	4000	>80	1231x196x55
12842	P 252x30W LED OP 196x1531	70	8116	4000	>80	1531x196x55

P 250 LED LGS

CE	650°C	I P40
----	-------	--------------

Average luminance <1500 cd/m² for radial angles >65°. LGS micro-prismatic flat diffuser in transparent methacrylate, multilenticular exterior, anti-glare, locked to the white painted aluminium perimetral frame, sealing gasket, hinged opening. Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
Electron	ic wiring 230V-50/60Hz						
12864	P 253x10W LED LGS 596x596	34	3696	4000	>80	596x596x55	
12855	P 251x30W LED LGS 156x1531	35	3700	4000	>80	1531x156x55	
12866	P 254x10W LED LGS 596x596	45	4894	4000	>80	596x596x55	
12860	P 252x24W LED LGS 196x1231	56	5871	4000	>80	1231x196x55	
12862	P 252x30W LED LGS 196x1531	70	7348	4000	>80	1531x196x55	

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L90/B20): 30000 h. (tq+25°C) Lifetime (L80/B20): 50000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

LGS version

Average luminance $<1500 \text{ cd/m}^2$ for radial angles $>65^\circ$.

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester. Height only 55 mm.

Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

- Squared LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- diffuser in SMP microprismatic PMMA or SP polycarbonate, Selfextinguishing V2
- housing in different RAL colours

Applications

Particularly suitable for low height environments.

LGS version

Environments: with video terminals, representative areas, offices. Environments with exacting visual tasks, where diffused soft light for optimum visual comfort is required.

OP version

Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.

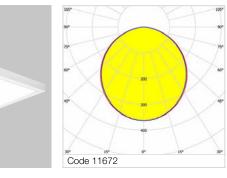
Installation

Ceiling mounted installation.

Dimensions

198 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

P 250 LED Diffused Light LGS


Average luminance <1500 cd/m² for radial angles >65°. LGS micro-prismatic flat diffuser in transparent methacrylate, multi-lenticular exterior, anti-glare, locked to the white painted aluminium perimeter frame, hinged opening.

Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item		Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
			pono. (11)		()			
Electroni	c wiring 230V-50/60H	Z						
11686	P 250 32W LED LGS	596x596	37	3620	4000	>80	596x596x55	
DALI elec	tronic wiring 230V-50)/60Hz						
11688	P 250 32W LED DALI	LGS 596x596	37	3620	4000	>80	596x596x55	

P 250 LED Diffused Light OP

Opal PMMA flat diffuser

OP opal PMMA flat diffuser, anti-glare, locked to the pre-painted white aluminium perimeter frame, hinged opening.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
11672	P 250 32W LED OP 596x596	37	3950	4000	>80	596x596x55
DALI elec	tronic wiring 230V-50/60Hz					
11674	P 250 32W LED DALI OP 596x596	37	3950	4000	>80	596x596x55

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Natural anodised extruded aluminium housing.

Removable gear-tray, functions as flux recuperator, in specular aluminium, high efficiency, with titanium-magnesium surface treatment, non-iridescent.

Electrical characteristics

In compliance with EN 60598-1. 1+1 wiring in twincircuit. Upper power entry near an end cap.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- wiring: dimmable, CLO (more information on page 542), emergency
- possibility to create lighting corners

Applications

Environments: with VDTs, meeting rooms, offices.

Environments: architectural, commercial, staterooms, banks.

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

Installation

Ceiling mounted or suspension installation.

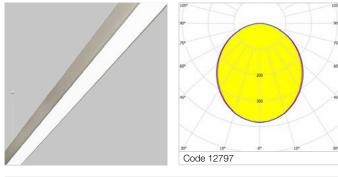
Dimensions		
Single	L	
Channel	L	<u> </u>

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

200

Barraluce P LED OP - Single

Opal PMMA flat diffuser


Code	ltem	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
Electroni	o wiring 220V 50/60Hz						

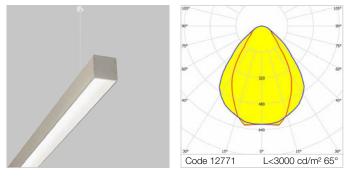
Electronic wiring 230V-50/60Hz

	-					
12787	Barraluce P 1x30W LED OP L1471	35	3004	4000 >80	0 1471x99x100	
12789	Barraluce P 1+1x30W LED OP L2937	70	6009	4000 >80	0 2937x99x100	

Barraluce P LED OP - Channel

Opal PMMA flat diffuser

Luminaire for continuous channel installation (end caps not included).


OP opal methacrylate flat diffuser, anti-glare.

Through-wiring, 5-pole, 2.5 mm² section with irreversible fastconnection plug/socket, with irreversible fast-connection socket for branch, connecting to the socket positioned on the gear-tray unit.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
Electron	ic wiring 230V-50/60Hz						
12795	Barraluce P 1x30W LED OP 5P L1466	35	3004	4000	>80	1466x99x100	
12797	Barraluce P 1+1x30W LED OP 5P L2932	70	6009	4000	>80	2932x99x100	

Barraluce P LED SP - Single

Flat diffuser, prismatic in methacrylate

Average luminance <3000 cd/m² for radial angles >65°. Luminaire for standalone installation with aluminium end caps. SP flat diffuser in PMMA transparent prismatic methacrylate, anti-glare.

CCT

(K)

CRI

Dimensions

LxAxH

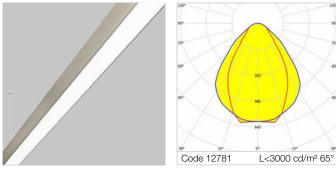
Electronic wiring 230V-50/60Hz

Item

Code

	•				
12771	Barraluce P 1x30W LED SP L1471	35	3383	4000 >8	80 1471x99x100
12773	Barraluce P 1+1x30W LED SP L2937	70	6766	4000 >8	80 2937x99x100

Absorbed


power (W)


Output

flux (Im)

Barraluce P LED SP - Channel

Flat diffuser, prismatic in methacrylate

Average luminance <3000 cd/m² for radial angles >65°. Luminaire for continuous channel installation (end caps not included).

SP flat diffuser in PMMA transparent prismatic methacrylate, anti-glare.

Through-wiring, 5-pole, 2.5 mm² section with irreversible fastconnection plug/socket, with irreversible fast-connection socket for branch, connecting to the socket positioned on the gear-tray unit.

	Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
--	------	------	--------------------	---------------------	------------	-----	-------------------------	--

Electronic wiring 230V-50/60Hz

12779	Barraluce P 1x30W LED SP 5P L1466	35	3383	4000	>80	1466x99x100
12781	Barraluce P 1+1x30W LED SP 5P L2932	70	6766	4000	>80	2932x99x100

Barraluce P Accessories

Concealed sliding bracket in galvanized steel for free positioning, with locking screws.

CodeItemA01429Sliding bracket for Barraluce P

Linear connecting elements in hot-galvanized steel with grub screws for fast and rigid installation.

Code	Item
A01423	Linear connecting elements Barraluce
These acces	sories are not suitable for single-unit installation.

Pair of end caps for channels, in grey painted aluminium, with screws for fixing to housing, always required. Thickness: 2 mm each cap.

CodeItemA01434Pair of end caps for Barraluce L channels with diffuser

These accessories are not suitable for single-unit installation.

Terminal block (plug/socket) with irreversible snap-in double clamp, for power-supply connection at beginning and end of the channel, 5 poles.

	Code	Item
a opa	A02484	5P socket/plug terminal block Beginning/End Channel
	These acce	essories are not suitable for single-unit installation.

Suspension for Barraluce P with regulator, galvanized steel cable of 2 mm diameter, load 25 kg.

Code	Item
A0693	Suspension with adjustment for Barraluce P - 1m
A0694	Suspension with adjustment for Barraluce P - 2 m
A0695	Suspension with adjustment for Barraluce P - 3 m
A0696	Suspension with adjustment for Barraluce P - 4 m
A0697	Suspension with adjustment for Barraluce P - 5 m
A0698	Suspension with adjustment for Barraluce P - 6 m

It is always necessary to use the sliding bracket (cod. A01429).

Electric supply with white polycarbonate case, internal bracket in galvanized steel.

CodeItemA06795-pole rectangular rose (no cable)

3F Reno	3F Emilio R	3F Dìagon
	Grand	
L 320	L 350	L 360
L 480	L 560	L 580
L 590	Barraluce L	Lucequadro
Galassia	3F HD	

Recessed luminaires

Page		Product	Lay-installation	Pull-up installation	Sterile environments Slat ceiling
206		3F Reno			
212		3F Reno White		•	
220		3F Reno Black		•	
228		3F Emilio R			
228		3F Emilio R		•	
232		3F Dìagon			
238		3F Dìagon Lay-in installation	•		
242	NEW	3F Diagon Tunable White Lay-in installation	•		
246	UPDATE	3F Dìagon Pull-up installation		•	
252		L 320			
252		L 320 LED	•	with brackets	
258		L 320 LED Diffused Light	•		
262		L 320 LED Tunable White	•	with brackets	
264		L 320 LED Sensor	•	with brackets	
270		L 350			
270		L 350 LED	•	with brackets	
274		L 360			
274	NEW	L 360	•		
276		L 480			
276	NEW	L 480		•	
280		L 560			
280		L 560 LED			•
284		L 580			
284	UPDATE	L 580 LED IP54	•	•	•
288		L 590			
288	UPDATE	L 590 LED IP65	•	•	•
292		Barraluce L			
292		Barraluce L LED		•	
296		Lucequadro			
296		Lucequadro LED		•	
300		Galassia			
300		Galassia 220		•	
300		Galassia 220		•	

3F Reno

Focused on efficiency

To combine comfort, effectiveness and efficiency: this is the objective of 3F Reno, the new recessed spotlight designed to provide quality lighting in every context, from professional to commercial environments.

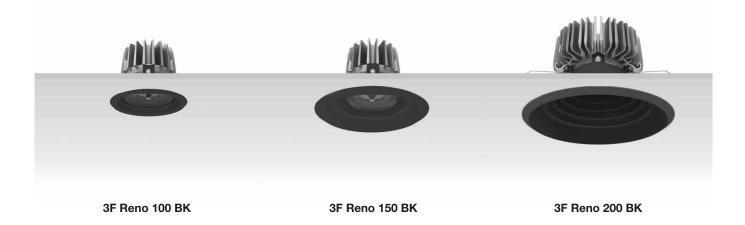
Available in 3 different sizes (100, 150 and 200 millimetre recessed holes), it provides maximum installation flexibility: a wide range of luminous fluxes (from 900 lumen right up to more than 4000 lumen), excellent colour rendering and a high level of visual comfort.

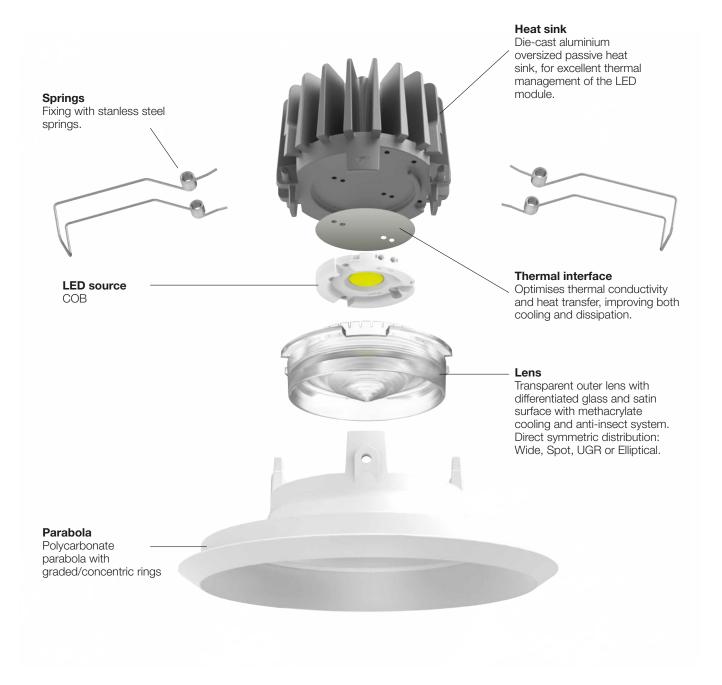
3F Reno is available with 4 different luminous flux distributions: Wide, Spot, Elliptical and UGR.

3F Reno comes in two different colours (black and white) to adapt better to the different contexts it is used in.

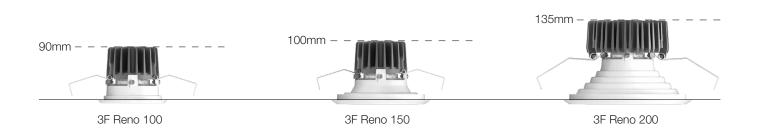
3F Reno Product range

3F Reno was developed to obtain the lowest luminance level possible by working with the lens on flow distribution: the percentage of light emitted directly (which therefore does not interact with the reflector) is higher than **95%**.


The stepped surface visibly halves the reflective surface: this structure practically eliminates annoying reflections that can affect the viewer's eye even if they are at a discrete distance from the product (as in open plan offices).

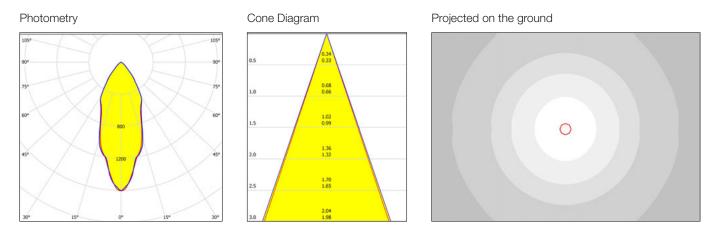

In installations where minimum luminance values are required, the BK version with black reflector has reduced values up to **95%** (3F Reno 200 BK WIDE) compared to the WH version made of white polycarbonate.

Versions with a White reflector (WH):


Versions with a Black reflector (BK):

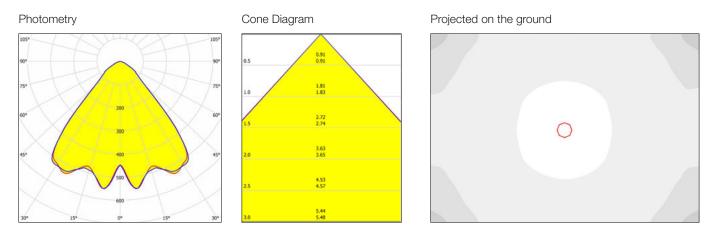
Every environment is unique: to provide the most appropriate lighting according to specific needs and requirements 3F Reno comes in 3 different sized recessed holes: 100mm, 150mm and 200mm (actual sizes 116mm, 166mm and 216mm). To facilitate the installation of every product every fixture is supplied with a template to make the hole.

All versions share a significant advantage in terms of practicality: we have developed a highly efficient, compact heat sink that facilitates installation in shallow technical spaces, ensuring that these sizes do not vary **regardless of the photometric distribution used** (unlike what happens for most products on the market). This way the recessed dimensions from the external edge of the plasterboard are as follows:



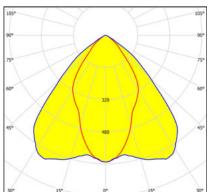
3F Reno

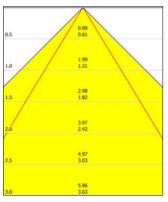
Luminous distribution for all requirements


A light for every environment. 3F Reno was designed to provide the most suitable lighting according to the architectural context. The 4 luminous flux beam openings make it possible to enhance all illuminated space to the full using suitable beam openings, according to the use of the environment.

Spot Distribution

SPOT distribution is recommended to provide concentrated lighting in specific points and is the ideal choice for those environments with high ceilings or to create accent lighting. High performance with a highly controlled beam. Beam opening angle: 37°.

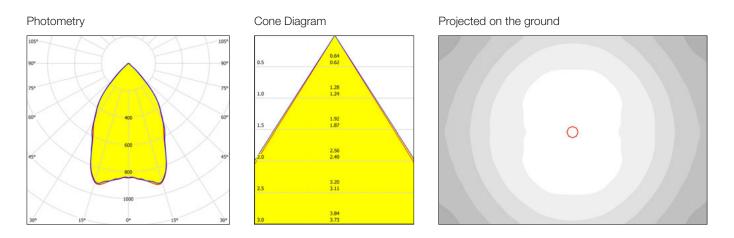

Wide Distribution


WIDE distribution is recommended to broadly cover an area thus creating diffused and homogeneous light. The light is produced given the shape of the lens that optimises the LED source distributing the light in a soft, diffused way. Beam opening angle: 84°.

Elliptical Distribution (ELL)

Photometry

Cone Diagram



Projected on the ground

ELLIPTICAL distribution is recommended to create elliptical, precise and efficient light. It is particularly suitable for use in corridors or in applications where it is necessary to highlight lanes. Beam opening angle: 90° (longitudinal axis) and 64° (transversal axis).

UGR Distribution

UGR distribution is recommended for all those environments bound by the EN12464-1 standard on limits on direct glare, as well as environments with extremely high or double volume ceilings where light control is critical to ensure good lighting value, precision and visual comfort.

Beam opening angle: 64°.

3F Reno White

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution: wide, spot, UGR, elliptical.

Lifetime (L90/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Lifetime (L70/B10): 80000 h. (tq+25°C) Colour temperature available /840 and /930. **UGR version**

Average luminance $<1000 \text{ cd/m}^2$ for radial angles $>65^\circ$.

Mechanical characteristics

Passive heat dissipator in die-casting aluminium, oversized, for optimum thermal management of the LED module. Parabolic element with graduated/ concentric rings in white polycarbonate. Transparent external lens with glossy and satin differentiated surfaces, with a cooling and anti-insect system in methacrylate. Internal specular metallic louvre to optimise control of the luminous flux in polycarbonate in Spot, UGR and Elliptical versions.

Fastening spring clips in stainless steel.

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant.

Wiring on a separate unit. Class II.

Source characteristics

- · Compact LED module.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request

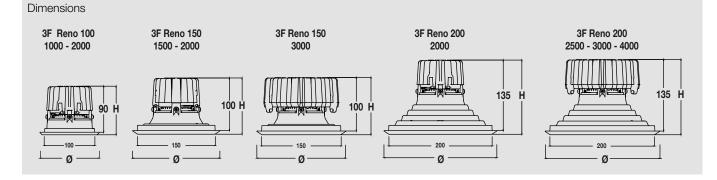
- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- on/off ballast, compliant with EN 60598-2-22 (high-risk areas excluded)

Applications

Environments: architectural, commercial, exhibition areas, transit areas, corridors, shops, display windows, service areas. In false ceilings with narrow voids. **Wide version**

Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

UGR version

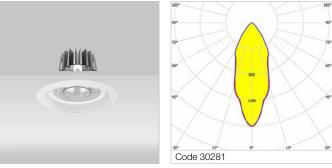

In environments with VDTs, managerial offices and staterooms, public offices and schools.

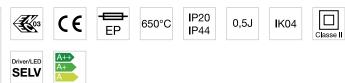
Installation

Pull-up installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).




212 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Reno White Spot

30302

3F Reno 150 WH 3000/930 EP SPOT

Internal spotlight louvre in metallic polycarbonate. External lens in transparent methacrylate. Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

	Code 30281									
Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H			
3F Reno	100 - Electronic wiring 230V-50/60Hz									
30005	3F Reno 100 WH 1000/930 SPOT	37°	14	1424	3000	>90	116x95			
30001	3F Reno 100 WH 1000/840 SPOT	37°	14	1550	4000	>80	116x95			
30009	3F Reno 100 WH 2000/840 SPOT	37°	19	2419	4000	>80	116x95			
30013	3F Reno 100 WH 2000/930 SPOT	37°	24	2316	3000	>90	116x95			
3F Reno 100 - DALI electronic wiring 230V-50/60Hz										
30039	3F Reno 100 WH 1000/930 DALI SPOT	37°	14	1424	3000	>90	116x95			
30035	3F Reno 100 WH 1000/840 DALI SPOT	37°	14	1550	4000	>80	116x95			
30043	3F Reno 100 WH 2000/840 DALI SPOT	37°	19	2419	4000	>80	116x95			
30047	3F Reno 100 WH 2000/930 DALI SPOT	37°	24	2316	3000	>90	116x95			
3F Reno 100 - EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)										
30022	3F Reno 100 WH 1000/930 EP SPOT	37°	15	1424	3000	>90	116x95			
30018	3F Reno 100 WH 1000/840 EP SPOT	37°	15	1550	4000	>80	116x95			
30026	3F Reno 100 WH 2000/840 EP SPOT	37°	20	2419	4000	>80	116x95			
30030	3F Reno 100 WH 2000/930 EP SPOT	37°	25	2316	3000	>90	116x95			
3F Reno	150 - Electronic wiring 230V-50/60Hz									
30273	3F Reno 150 WH 2000/840 SPOT	37°	19	2424	4000	>80	166x107			
30277	3F Reno 150 WH 2000/930 SPOT	37°	24	2321	3000	>90	166x107			
30281	3F Reno 150 WH 3000/840 SPOT	37°	26	3090	4000	>80	166x107			
30285	3F Reno 150 WH 3000/930 SPOT	37°	33	2911	3000	>90	166x107			
3F Reno	150 - DALI electronic wiring 230V-50/	60Hz								
30307	3F Reno 150 WH 2000/840 DALI SPOT	37°	19	2424	4000	>80	166x107			
30311	3F Reno 150 WH 2000/930 DALI SPOT	37°	24	2321	3000	>90	166x107			
30315	3F Reno 150 WH 3000/840 DALI SPOT	37°	28	3304	4000	>80	166x107			
30319	3F Reno 150 WH 3000/930 DALI SPOT	37°	37	3227	3000	>90	166x107			
3F Reno	150 - EP maintained emergency wirin	ig, 1hr dura	ation with 24	Ihrs recharge,	, fuse (flu	xes o	n page 560)			
30290	3F Reno 150 WH 2000/840 EP SPOT	37°	20	2424	4000	>80	166x107			
30294	3F Reno 150 WH 2000/930 EP SPOT	37°	25	2321	3000	>90	166x107			
30298	3F Reno 150 WH 3000/840 EP SPOT	37°	27	3090	4000	>80	166x107			

37°

34

2911

3000 >90 166x107

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
3F Reno 2	00 - Electronic wiring 230V-50/60Hz						
30521	3F Reno 200 WH 2000/840 SPOT	37°	19	2413	4000	>80	216x142
30525	3F Reno 200 WH 2000/930 SPOT	37°	24	2311	3000	>90	216x142
30529	3F Reno 200 WH 3000/840 SPOT	37°	26	3076	4000	>80	216x142
30537	3F Reno 200 WH 4000/840 SPOT	37°	36	4103	4000	>80	216x142
30533	3F Reno 200 WH 3000/930 SPOT	37°	33	2898	3000	>90	216x142
30541	3F Reno 200 WH 4000/930 SPOT	37°	43	3664	3000	>90	216x142
3F Reno 2	00 - DALI electronic wiring 230V-50/60	Ηz					
30571	3F Reno 200 WH 2000/840 DALI SPOT	37°	19	2413	4000	>80	216x142
30575	3F Reno 200 WH 2000/930 DALI SPOT	37°	24	2311	3000	>90	216x142
30579	3F Reno 200 WH 3000/840 DALI SPOT	37°	28	3289	4000	>80	216x142
30587	3F Reno 200 WH 4000/840 DALI SPOT	37°	36	4103	4000	>80	216x142
30583	3F Reno 200 WH 3000/930 DALI SPOT	37°	37	3212	3000	>90	216x142
30591	3F Reno 200 WH 4000/930 DALI SPOT	37°	43	3664	3000	>90	216x142
3F Reno 2	00 - EP maintained emergency wiring,	1hr dura	tion with 24h	rs recharge,	fuse (flu	xes o	n page 560)
30546	3F Reno 200 WH 2000/840 EP SPOT	37°	20	2413	4000	>80	216x142
30550	3F Reno 200 WH 2000/930 EP SPOT	37°	25	2311	3000	>90	216x142

27

37

34

44

3076

4103

2898

3664

4000 >80 216x142

>80 216x142

>90 216x142

>90 216x142

4000

3000

3000

37°

37°

37°

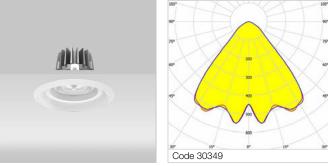
37°

30554

30562

30558

30566

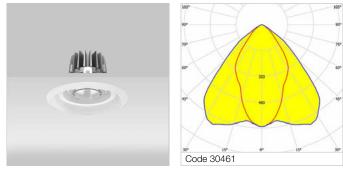

3F Reno 200 WH 3000/840 EP SPOT

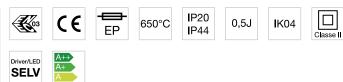
3F Reno 200 WH 4000/840 EP SPOT

3F Reno 200 WH 3000/930 EP SPOT

3F Reno 200 WH 4000/930 EP SPOT

3F Reno White Wide


Wide lens in transparent methacrylate. Photobiological safety RG0 (excluding versions 4000 - RG1), risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).


	Code	30349		~						
Code	Item			Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H		
3F Reno	100 - Electronic wiring 230	V-50/60Hz								
30073	3F Reno 100 WH 1000/930		84°	14	1150	3000	>90	116x95		
30069	3F Reno 100 WH 1000/840		84°	14	1252	4000		116x95		
30077	3F Reno 100 WH 2000/840		84°	19	1953	4000		116x95		
30081	3F Reno 100 WH 2000/930		84°	24	1870	3000		116x95		
3F Reno 100 - DALI electronic wiring 230V-50/60Hz										
30107	3F Reno 100 WH 1000/930	DALI WIDE	84°	14	1150	3000	>90	116x95		
30103	3F Reno 100 WH 1000/840	DALI WIDE	84°	14	1252	4000		116x95		
30111	3F Reno 100 WH 2000/840	DALI WIDE	84°	19	1953	4000	>80	116x95		
30115	3F Reno 100 WH 2000/930	DALI WIDE	84°	24	1870	3000	>90	116x95		
3F Reno 100 - EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)										
30090	3F Reno 100 WH 1000/930		84°	15	1150	3000		116x95		
30086	3F Reno 100 WH 1000/840	EP WIDE	84°	15	1252	4000		116x95		
30094	3F Reno 100 WH 2000/840	EP WIDE	84°	20	1953	4000	>80	116x95		
30098	3F Reno 100 WH 2000/930	EP WIDE	84°	25	1870	3000		116x95		
3F Reno	150 - Electronic wiring 230	V-50/60Hz								
30341	3F Reno 150 WH 2000/840		84°	19	2014	4000	>80	166x107		
30345	3F Reno 150 WH 2000/930	WIDE	84°	24	1928	3000	>90	166x107		
30349	3F Reno 150 WH 3000/840	WIDE	84°	26	2567	4000	>80	166x107		
30353	3F Reno 150 WH 3000/930	WIDE	84°	33	2418	3000		166x107		
3F Reno	150 - DALI electronic wirin	a 230V-50/60Hz	,							
30375	3F Reno 150 WH 2000/840	•	- 84°	19	2014	4000	>80	166x107		
30379	3F Reno 150 WH 2000/930		84°	24	1928	3000		166x107		
30383	3F Reno 150 WH 3000/840		84°	28	2744	4000		166x107		
30387	3F Reno 150 WH 3000/930		84°	37	2680	3000		166x107		
2E Dono	150 - EP maintained emerg	onov wiring 14	or durot	ion with 24b	re recharge f			n nago 560)		
	3F Reno 150 WH 2000/840		84°	20	2014	-				
30358								166x107		
30362	3F Reno 150 WH 2000/930		84°	25	1928	3000		166x107		
30366	3F Reno 150 WH 3000/840		84°	27	2567	4000		166x107		
30370	3F Reno 150 WH 3000/930	EP WIDE	84°	34	2418	3000	>90	166x107		

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
2E Dono	200 - Electronic wiring 230V-50/60Hz						
SF REIIU	200 - Electronic wirnig 230V-50/00Hz						
30621	3F Reno 200 WH 2000/840 WIDE	85°	19	1925	4000	>80	216x142
30625	3F Reno 200 WH 2000/930 WIDE	85°	24	1843	3000	>90	216x142
30629	3F Reno 200 WH 3000/840 WIDE	85°	26	2454	4000	>80	216x142
30637	3F Reno 200 WH 4000/840 WIDE	85°	36	3273	4000	>80	216x142
30633	3F Reno 200 WH 3000/930 WIDE	85°	33	2312	3000	>90	216x142
30641	3F Reno 200 WH 4000/930 WIDE	85°	43	2922	3000	>90	216x142
3F Reno	200 - DALI electronic wiring 230V-50/60	Hz					
30671	3F Reno 200 WH 2000/840 DALI WIDE	85°	19	1925	4000	<u> </u>	216x142
30675	3F Reno 200 WH 2000/930 DALI WIDE	85°	24	1843	3000		216x142
30679	3F Reno 200 WH 3000/840 DALI WIDE	85°	28	2623	4000	>80	216x142
30687	3F Reno 200 WH 4000/840 DALI WIDE	85°	36	3273	4000	>80	216x142
30683	3F Reno 200 WH 3000/930 DALI WIDE	85°	37	2562	3000	>90	216x142
30691	3F Reno 200 WH 4000/930 DALI WIDE	85°	43	2922	3000	>90	216x142
3F Beno	200 - EP maintained emergency wiring,	1hr dur	ation with 24	ors recharge	fuso (flu	YAS 0	n nage 560)
				• •	-		
30646	3F Reno 200 WH 2000/840 EP WIDE	85°	20	1925	4000	>80	216x142
			~ -				

30650	3F Reno 200 WH 2000/930 EP WIDE	85°	25	1843	3000	>90 216x142	
30654	3F Reno 200 WH 3000/840 EP WIDE	85°	27	2454	4000	>80 216x142	
30662	3F Reno 200 WH 4000/840 EP WIDE	85°	37	3273	4000	>80 216x142	
30658	3F Reno 200 WH 3000/930 EP WIDE	85°	34	2312	3000	>90 216x142	
30666	3F Reno 200 WH 4000/930 EP WIDE	85°	44	2922	3000	>90 216x142	

3F Reno White Elliptical

Internal elliptical louvre in metallic polycarbonate. External lens in transparent methacrylate. Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

3000 >90 116x95

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
3F Reno 1	00 - Electronic wiring 230V-50/60Hz						
30209	3F Reno 100 WH 1000/930 ELL	90° - 64°	14	1221	3000	>90	116x95
30205	3F Reno 100 WH 1000/840 ELL	90° - 64°	14	1330	4000	>80	116x95
30213	3F Reno 100 WH 2000/840 ELL	90° - 64°	19	2075	4000	>80	116x95
30217	3F Reno 100 WH 2000/930 ELL	90° - 64°	24	1987	3000	>90	116x95
3F Reno 1	00 - DALI electronic wiring 230V-50/6	60Hz					
30243	3F Reno 100 WH 1000/930 DALI ELL	90° - 64°	14	1221	3000	>90	116x95
30239	3F Reno 100 WH 1000/840 DALI ELL	90° - 64°	14	1330	4000	>80	116x95
30247	3F Reno 100 WH 2000/840 DALI ELL	90° - 64°	19	2075	4000	>80	116x95

90° - 64°

3F Reno 10	DU - EP maintained emergency wiring	, inr duration	with 24nrs	recnarge, t	use (tiu	xes ol	n page 560)
30226	3F Reno 100 WH 1000/930 EP ELL	90° - 64°	15	1221	3000	>90	116x95
30222	3F Reno 100 WH 1000/840 EP ELL	90° - 64°	15	1330	4000	>80	116x95
30230	3F Reno 100 WH 2000/840 EP ELL	90° - 64°	20	2075	4000	>80	116x95
30234	3F Reno 100 WH 2000/930 EP ELL	90° - 64°	25	1987	3000	>90	116x95

24

1987

3F Reno 150 - Electronic wiring 230V-50/60Hz

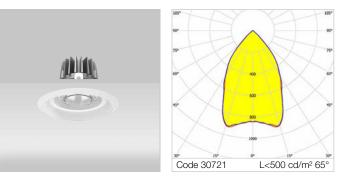
3F Reno 100 WH 2000/930 DALI ELL

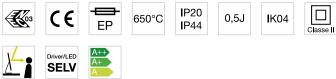
30251

30453	3F Reno 150 WH 2000/840 ELL	90° - 62°	19	2097	4000	>80 166x107
30457	3F Reno 150 WH 2000/930 ELL	90° - 62°	24	2008	3000	>90 166x107
30461	3F Reno 150 WH 3000/840 ELL	90° - 62°	26	2673	4000	>80 166x107
30465	3F Reno 150 WH 3000/930 ELL	90° - 62°	33	2518	3000	>90 166x107

3F Reno 150 - DALI electronic wiring 230V-50/60Hz

30487	3F Reno 150 WH 2000/840 DALI ELL	90° - 62°	19	2097	4000	>80 166x107
30491	3F Reno 150 WH 2000/930 DALI ELL	90° - 62°	24	2008	3000	>90 166x107
30495	3F Reno 150 WH 3000/840 DALI ELL	90° - 62°	28	2858	4000	>80 166x107
30499	3F Reno 150 WH 3000/930 DALI ELL	90° - 62°	37	2791	3000	>90 166x107


3F Reno 150 - EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)


30470	3F Reno 150 WH 2000/840 EP ELL	90° - 62°	20	2097	4000 >80 166x107
30474	3F Reno 150 WH 2000/930 EP ELL	90° - 62°	25	2008	3000 >90 166x107
30478	3F Reno 150 WH 3000/840 EP ELL	90° - 62°	27	2673	4000 >80 166x107
30482	3F Reno 150 WH 3000/930 EP ELL	90° - 62°	34	2518	3000 >90 166x107

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
3F Reno 20	0 - Electronic wiring 230V-50/60Hz						
30785	3F Reno 200 WH 2000/840 ELL	90° - 65°	19	2053	4000	>80	216x142
30789	3F Reno 200 WH 2000/930 ELL	90° - 65°	24	1965	3000	>90	216x142
30793	3F Reno 200 WH 3000/840 ELL	90° - 65°	26	2617	4000	>80	216x142
30801	3F Reno 200 WH 4000/840 ELL	90° - 65°	36	3490	4000	>80	216x142
30797	3F Reno 200 WH 3000/930 ELL	90° - 65°	34	2465	3000	>90	216x142
30805	3F Reno 200 WH 4000/930 ELL	90° - 65°	43	3116	3000	>90	216x142
3F Reno 20	0 - DALI electronic wiring 230V-50/60)Hz					
30835	3F Reno 200 WH 2000/840 DALI ELL	90° - 65°	19	2053	4000	>80	216x142
30839	3F Reno 200 WH 2000/930 DALI ELL	90° - 65°	24	1965	3000	>90	216x142
30843	3F Reno 200 WH 3000/840 DALI ELL	90° - 65°	28	2797	4000	>80	216x142
30851	3F Reno 200 WH 4000/840 DALI ELL	90° - 65°	36	3490	4000	>80	216x142
30847	3F Reno 200 WH 3000/930 DALI ELL	90° - 65°	37	2732	3000	>90	216x142
30855	3F Reno 200 WH 4000/930 DALI ELL	90° - 65°	43	3116	3000	>90	216x142
3F Reno 20	0 - EP maintained emergency wiring,	, 1hr dura	tion with 24h	rs recharge, f	use (flu	xes o	n page 560)
30810	3F Reno 200 WH 2000/840 EP ELL	90° - 65°	20	2053	4000	>80	216x142
30814	3F Reno 200 WH 2000/930 EP ELL	90° - 65°	25	1965	3000	>90	216x142

30814	3F Reno 200 WH 2000/930 EP ELL	90° - 65°	25	1965	3000	>90 216x142
30818	3F Reno 200 WH 3000/840 EP ELL	90° - 65°	27	2617	4000	>80 216x142
30826	3F Reno 200 WH 4000/840 EP ELL	90° - 65°	37	3490	4000	>80 216x142
30822	3F Reno 200 WH 3000/930 EP ELL	90° - 65°	34	2465	3000	>90 216x142
30830	3F Reno 200 WH 4000/930 EP ELL	90° - 65°	44	3116	3000	>90 216x142

3F Reno White UGR

150 WH - Average luminance <1000 cd/m² for radial angles >65°. 200 WH - Average luminance <500 cd/m² for radial angles >65°. Internal UGR louvre in metallic polycarbonate. External lens in transparent methacrylate. Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Code	Item	Beam angle	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions ø x H
3F Reno	150 - Electronic wiring 230V-50/60Hz						
30408	3F Reno 150 WH 1500/840 UGR	64°	14	1756	4000	>80	166x107
30409	3F Reno 150 WH 2000/840 UGR	64°	19	2430	4000	>80	166x107
3F Reno	150 - DALI electronic wiring 230V-50/60	Hz					
30430	3F Reno 150 WH 1500/840 DALI UGR	64°	14	1756	4000	>80	166x107
30431	3F Reno 150 WH 2000/840 DALI UGR	64°	19	2430	4000	>80	166x107
3F Reno ⁻	150 - EP maintained emergency wiring,	1hr dura	ation with 24	nrs recharge,	fuse (flu	xes o	n page 560)
30419	3F Reno 150 WH 1500/840 EP UGR	64°	15	1756	4000	>80	166x107
30420	3F Reno 150 WH 2000/840 EP UGR	64°	20	2430	4000	>80	166x107
3F Reno 2	200 - Electronic wiring 230V-50/60Hz						
30721	3F Reno 200 WH 2000/840 UGR	65°	19	2411	4000	>80	216x142
30725	3F Reno 200 WH 2000/930 UGR	65°	24	2308	3000	>90	216x142
30730	3F Reno 200 WH 2500/930 UGR	65°	29	2571	3000	>90	216x142
30726	3F Reno 200 WH 3000/840 UGR	65°	26	3073	4000	>80	216x142
3F Reno 2	200 - DALI electronic wiring 230V-50/60	Hz					
30753	3F Reno 200 WH 2000/840 DALI UGR	65°	19	2411	4000	>80	216x142
30757	3F Reno 200 WH 2000/930 DALI UGR	65°	24	2308	3000	>90	216x142
30762	3F Reno 200 WH 2500/930 DALI UGR	65°	29	2571	3000	>90	216x142
30758	3F Reno 200 WH 3000/840 DALI UGR	65°	28	3285	4000	>80	216x142
3E Beno 2	200 - EP maintained emergency wiring,	1hr dura	ation with 24	ors recharge.	fuse (flu	xes o	n page 560)
30737	3F Reno 200 WH 2000/840 EP UGR	65°	20	2411	4000		216x142
30741	3F Reno 200 WH 2000/930 EP UGR	65°	25	2308	3000		216x142
30746	3F Reno 200 WH 2500/930 EP UGR	65°	29	2571	3000		216x142
30742	3F Reno 200 WH 3000/840 EP UGR	65°	27	3073	4000		216x142

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution: wide, spot, UGR, elliptical.

Lifetime (L90/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Lifetime (L70/B10): 80000 h. (tq+25°C) Colour temperature available /840 and /930. **UGR version**

Average luminance $<500 \text{ cd/m}^2$ for radial angles $>65^\circ$.

Mechanical characteristics

Passive heat dissipator in die-casting aluminium, oversized, for optimum thermal management of the LED module. Parabolic element with graduated/ concentric rings in black polycarbonate. Transparent external lens with glossy and satin differentiated surfaces, with a cooling and anti-insect system in methacrylate. Internal specular metallic louvre to optimise control of the luminous flux in polycarbonate in Spot, UGR and Elliptical versions.

Fastening spring clips in stainless steel.

Electrical characteristics

Wiring on a separate unit. Class II.

Source characteristics

- Compact LED module.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request

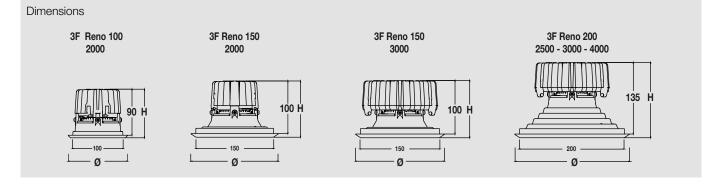
- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- EP maintained emergency wiring, in compliance with EN 60598-2-22
- on/off ballast, compliant with EN 60598-2-22 (high-risk areas excluded)

Applications

Environments: architectural, commercial, exhibition areas, transit areas, corridors, shops, display windows, service areas. In false ceilings with narrow voids. **Wide version**

Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

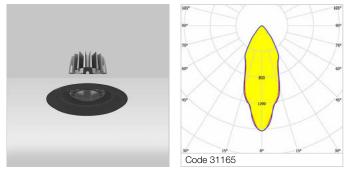
UGR version


In environments with VDTs, managerial offices and staterooms, public offices and schools.

Installation

Pull-up installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

220

3F Reno Black Spot

Internal spotlight louvre in metallic polycarbonate. External lens in transparent methacrylate. Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
3F Reno	100 - Electronic wiring 230V-50/60Hz						
30893	3F Reno 100 BK 2000/840 SPOT	37°	19	2375	4000	>80	116x95
30897	3F Reno 100 BK 2000/930 SPOT	37°	24	2274	3000	>90	116x95
3F Reno	100 - DALI electronic wiring 230V-50/60	Hz					
30927	3F Reno 100 BK 2000/840 DALI SPOT	37°	19	2375	4000	>80	116x95
30931	3F Reno 100 BK 2000/930 DALI SPOT	37°	24	2274	3000	>90	116x95
3F Reno	150 - Electronic wiring 230V-50/60Hz						
31165	3F Reno 150 BK 3000/840 SPOT	37°	26	3030	4000	>80	166x107
31169	3F Reno 150 BK 3000/930 SPOT	37°	33	2855	3000	>90	166x107
3F Reno	150 - DALI electronic wiring 230V-50/60	Hz					
31199	3F Reno 150 BK 3000/840 DALI SPOT	37°	28	3239	4000	>80	166x107
31203	3F Reno 150 BK 3000/930 DALI SPOT	37°	37	3164	3000	>90	166x107
3F Reno	200 - Electronic wiring 230V-50/60Hz						
31421	3F Reno 200 BK 4000/840 SPOT	37°	36	3985	4000	>80	216x142
31425	3F Reno 200 BK 4000/930 SPOT	37°	43	3558	3000	>90	
3F Reno	200 - DALI electronic wiring 230V-50/60	Hz					
31471	3F Reno 200 BK 4000/840 DALI SPOT	37°	36	3985	4000	>80	216x142
31475	3F Reno 200 BK 4000/930 DALI SPOT	37°	43	3558	3000	>90	216x142

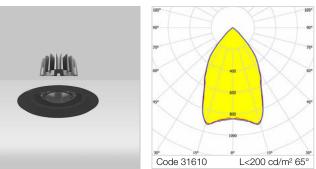
3F Reno Black Wide



Wide lens in transparent methacrylate. Photobiological safety RG0 (excluding versions 4000 - RG1), risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Code	ltem	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
3F Reno	100 - Electronic wiring 230V-50/60Hz						
30961	3F Reno 100 BK 2000/840 WIDE	83°	19	1703	4000	>80	116x95
30965	3F Reno 100 BK 2000/930 WIDE	83°	24	1631	3000	>90	116x95
3F Reno	100 - DALI electronic wiring 230V-50/60	Hz					
30995	3F Reno 100 BK 2000/840 DALI WIDE	83°	19	1703	4000	>80	116x95
30999	3F Reno 100 BK 2000/930 DALI WIDE	83°	24	1631	3000	>90	116x95
3F Reno	150 - Electronic wiring 230V-50/60Hz						
31233	3F Reno 150 BK 3000/840 WIDE	83°	26	2221	4000	>80	166x107
31237	3F Reno 150 BK 3000/930 WIDE	83°	33	2092	3000	>90	166x107
3F Reno	150 - DALI electronic wiring 230V-50/60	Hz					
31267	3F Reno 150 BK 3000/840 DALI WIDE	83°	28	2374	4000	>80	166x107
31271	3F Reno 150 BK 3000/930 DALI WIDE	83°	37	2319	3000	>90	166x107
	200 - Electronic wiring 230V-50/60Hz						
31521	3F Reno 200 BK 4000/840 WIDE	84°	36	2801	4000	>80	216x142
31525	3F Reno 200 BK 4000/930 WIDE	84°	43	2501	3000	>90	216x142
3F Reno	200 - DALI electronic wiring 230V-50/60	Hz					
31571	3F Reno 200 BK 4000/840 DALI WIDE	84°	36	2801	4000	>80	216x142
31575	3F Reno 200 BK 4000/930 DALI WIDE	84°	43	2501	3000	>90	216x142

3F Reno Black Elliptical



Internal elliptical louvre in metallic polycarbonate. External lens in transparent methacrylate. Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
3F Reno	100 - Electronic wiring 230V-50/60Hz						
31097	3F Reno 100 BK 2000/840 ELL	89° - 62°	19	1917	4000	>80	116x95
31101	3F Reno 100 BK 2000/930 ELL	89° - 62°	24	1835	3000	>90	116x95
3F Reno	100 - DALI electronic wiring 230V-50/6	60Hz					
31131	3F Reno 100 BK 2000/840 DALI ELL	89° - 62°	19	1917	4000	>80	116x95
31135	3F Reno 100 BK 2000/930 DALI ELL	89° - 62°	24	1835	3000	>90	116x95
3F Reno	150 - Electronic wiring 230V-50/60Hz						
31345	3F Reno 150 BK 3000/840 ELL	89° - 61°	26	2479	4000	>80	166x107
31349	3F Reno 150 BK 3000/930 ELL	89° - 61°	33	2335	3000	>90	166x107
3F Reno	150 - DALI electronic wiring 230V-50/6	60Hz					
31379	3F Reno 150 BK 3000/840 DALI ELL	89° - 61°	28	2650	4000	>80	166x107
31383	3F Reno 150 BK 3000/930 DALI ELL	89° - 61°	37	2588	3000	>90	166x107
3F Reno	200 - Electronic wiring 230V-50/60Hz						
31685	3F Reno 200 BK 4000/840 ELL	89° - 62°	36	3117	4000	>80	216x142
31689	3F Reno 200 BK 4000/930 ELL	89° - 62°	43	2783	3000	>90	216x142
3F Reno	200 - DALI electronic wiring 230V-50/6	60Hz					
31735	3F Reno 200 BK 4000/840 DALI ELL	89° - 62°	36	3117	4000	>80	216x142
31739	3F Reno 200 BK 4000/930 DALI ELL	89° - 62°	43	2783	3000	>90	216x142

3F Reno Black UGR

150 BK - Average luminance <500 cd/m² for radial angles >65°. 200 BK - Average luminance <200 cd/m² for radial angles >65°. Internal UGR louvre in metallic polycarbonate. External lens in transparent methacrylate. Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
3F Reno	150 - Electronic wiring 230V-50/60Hz						
31293	3F Reno 150 BK 2000/840 UGR	65°	19	2413	4000	>80	166x107
3F Reno	150 - DALI electronic wiring 230V-50/60	Hz					
31315	3F Reno 150 BK 2000/840 DALI UGR	65°	19	2413	4000	>80	166x107
3F Reno	200 - Electronic wiring 230V-50/60Hz						
31614	3F Reno 200 BK 2500/930 UGR	64°	29	2530	3000	>90	216x142
31610	3F Reno 200 BK 3000/840 UGR	64°	26	3023	4000	>80	216x142
3F Reno	200 - DALI electronic wiring 230V-50/60	Hz					
31646	3F Reno 200 BK 2500/930 DALI UGR	64°	29	2530	3000	>90	216x142
31642	3F Reno 200 BK 3000/840 DALI UGR	64°	26	3232	4000	>80	216x142

3F Reno Accessories

VS moulded glass, micro-prismatic, anti-glare, tempered, non-combustible glass, affixed to the white polycarbonate trim. Accessory suitable for versions with wide distribution.

Accessory compatible with 3F Reno White.

Code	Item	
A01035	VS 3F RENO WH 150	
A01037	VS 3F RENO WH 200	

1J IK06

VS moulded glass, micro-prismatic, anti-glare, tempered, non-combustible glass, affixed to the black polycarbonate trim. Accessory suitable for versions with wide distribution.

Accessory compatible with 3F Reno Black.

Code	Item
A01036	VS 3F RENO BK 150
A01038	VS 3F RENO BK 200

1J IK06

VT transparent glass, tempered, not flammable, locked and in line with the trim, in white polycarbonate. Accessory suitable for versions with spot, UGR and elliptic distribution.

AccessoryEmployeeCodeItemA01023VT 3F RENO WH 150A01025VT 3F RENO WH 200

VT transparent glass, tempered, not flammable, locked and in line with the trim, in black polycarbonate. Accessory suitable for versions with spot, UGR and elliptic distribution.

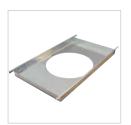
Accessory compatible with 3F Reno Black.

A01024	VT 3F RENO BK 150
A01026	VT 3F RENO BK 200

Micro-prismatic SMP antiglare diffuser in PMMA, locked and in line with the trim, in white polycarbonate. Accessory suitable for versions with wide distribution.

Accessory compatible with 3F Reno White.

Code	Item
A01046	SMP 3F RENO WH 150
A01048	SMP 3F RENO WH 200


Micro-prismatic SMP antiglare diffuser in PMMA, locked and in line with the trim, in black polycarbonate. Accessory suitable for versions with wide distribution.

Accessory compatible with 3F Reno Black.CodeItemA01047SMP 3F RENO BK 150A01049SMP 3F RENO BK 200

0,7J IK05

Reinforcing bracket for panels 600x600, 600x1200 with exposed structure, in hot-galvanized steel.

Code	Item
A0804	SF 3F Reno 150
A0805	SF 3F Reno 200

Reinforcing bracket for metal panels 600x600 with concealed structure, in hot-galvanized steel.

Code	Item
A0806	SM 3F Reno 150
A0807	SM 3F Reno 200

Construction characteristics

Illuminotechnical characteristics

Vertical distribution adjustable from 0° to 70°.

Lifetime (L90/B20): 30000 h. (tq+25°C) Lifetime (L80/B20): 50000 h. (tq+25°C) Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Single-piece in die-cast aluminium with passive dissipation with perimeter cooling slots on upper edge, giving a crown of light effect to the fitting. Invisible lock for positioning the luminous

flux. Positioning arm in galvanized brass with sphere to allow for vertical positioning at angles from 0° to 65° and horizontal positioning from 0° to 360°. Fastening spring clips in stainless steel.

Electrical characteristics

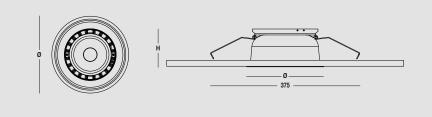
In compliance with EN 60598-1. Wiring on a separate unit. Class II.

Source characteristics

- Compact LED module. ٠
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request

- different power levels, colour rendering indices and colour temperatures
- housing in different RAL colours
- wiring: dimmable

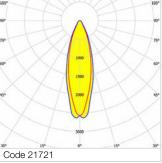

Applications

Environments: commercial, museums, shops.

Installation

Pull-up installation.

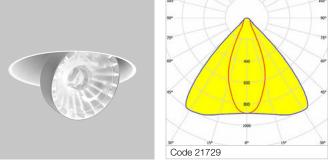
Dimensions



Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

228

3F Emilio R Spot

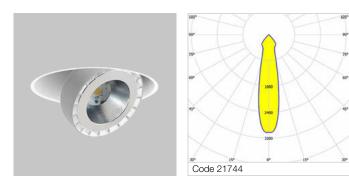


Spot lens.

Lens made from transparent PMMA methacrylate with glossy surface and differentiated photo-etched.

Code	Item	Beam angle	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions ø x H
Electroni	c wiring 230V-50/60Hz						
21720	3F Emilio R LED 2000/840 SPOT	29°	19	2189	4000	>80	193x95
21721	3F Emilio R LED 2000/930 SPOT	29°	23	2000	3000	>90	193x95

3F Emilio R Elliptical



Driver/LED CE **K**03 650°C IP20 SELV Classe II

Horizontal ELL elliptical lens provides greater installation distances. Lens made from transparent PMMA methacrylate with glossy surface and differentiated photo-etched.

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
Electronic	c wiring 230V-50/60Hz						
21728	3F Emilio R LED 2000/840 ELL	42° - 85°	19	2484	4000	>80	193x95
21729	3F Emilio R LED 2000/930 ELL	42° - 85°	23	2270	3000	>90	193x95

3F Emilio R Iperconcentrated

Bright anodised parabola in semi-specular, anti-reflective, anti-iridescent aluminum.

Code	Item	Beam angle	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions ø x H
Electroni	c wiring 230V-50/60Hz						
21736	3F Emilio R LED 2000/840 IPER	23°	19	2433	4000	>80	193x95
21737	3F Emilio R LED 2000/930 IPER	23°	23	2223	3000	>90	193x95
21744	3F Emilio R LED 3000/840 IPER	23°	28	3216	4000	>80	193x95

230 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

Recessed luminaires

Safety in Light. Uniformly.

Patented

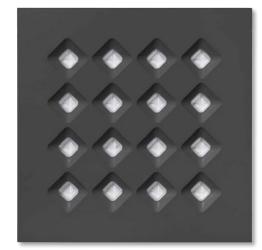
Light to improve working environments, shops and passage ways: providing this is 3F Diagon, a square shaped recessed fixture whose 16 recessed cells are equipped with state-of-the-art LED sources. The fixture is only 30 millimetres high which allows installation in ceiling cavities up to a minimum height of 110 mm.

Every truncated square pyramid shaped cell is equipped with a lens that is designed to maximise the light output of the state-of-the-art LED sources.

This means a system efficiency of up to 155 lm/ W for the version with transparent lenses and up to 120 lm/ W for the Soft UGR version.

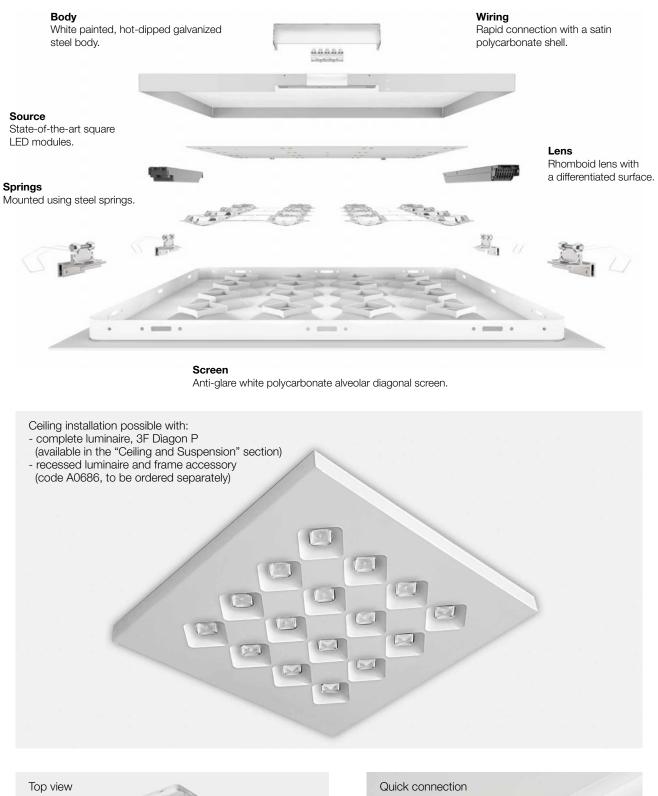
Available in three different sizes (596x596 mm, 599x599mm and 621x621mm) and with two different types of lenses (transparent and Soft UGR), the fixture comes with on/off wiring, DALI control, Tunable White and an Emergence light.
3F Diagon is suitable for surface installation on false ceilings with a visible support system, a pull-up installation version on plasterboard false ceilings, metal ceilings and for ceiling installation.

3F Dìagon


Finishes and construction details

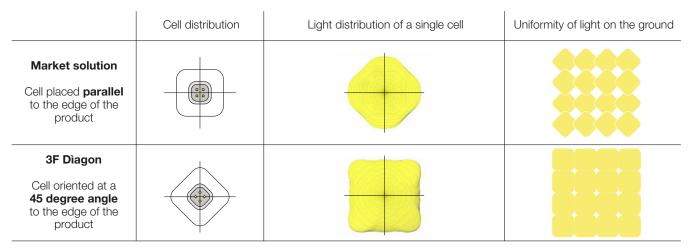
White Transparent lenses

Gray On request

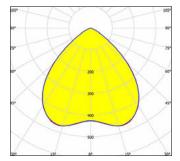


Black On request

White Soft UGR lenses



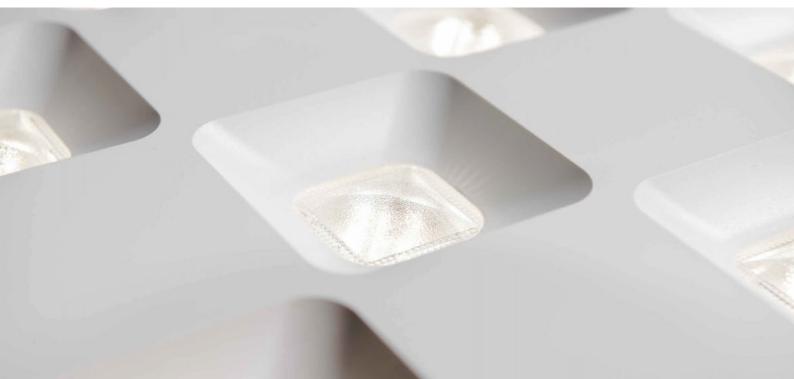
3F Dìagon


Lenses and photometric distributions

45° angle cells

The 45° angle cells were designed to minimise shadow areas inside the illuminated space. This idea came from careful analysis of multilens fixtures on the market that have the lenses parallel to the edge of the fixture:

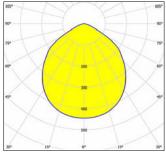
As can be seen with 45 degree angled cells uniformity on the ground is higher because the light distribution of the cell fills most of the available space even by using micro prisms on the lens edges and state-of-the-art LED sources.



3F Diagon | Transparent lenses

Versions equipped with transparent lenses, suitable for boardrooms with visual display terminals, offices or environments with exacting visual tasks where a diffused soft light is required for optimal visual comfort.

The 15W, 19W and 25W power versions provide a glare degree lower than 1500 cd/m² and UGR <16.


The 39W power version provides luminances with values below 3000 cd/m², despite output fluxes from the luminaire exceeding 5500 lumens.

LED/Lens Features

- Direct symmetric distribution
- Colour temperatures available: /830 /840, /930 /940 or HCL (on request)
- Useful life (L80/B10): 80000 hours (tq+25°C)
- Photobiological safety conforms with the risk free RG0 group
 State-of-the-art square LED modules
- Initial colour tolerance (MacAdam): SDCM 3
 Transparent lens performance > 90%
- Soft UGR lens efficiency> 75%

3F Diagon Soft UGR

The versions equipped with Soft UGR lens are particularly suitable for illuminating environments where maximum comfort is required for diffused and soft lighting.

Suitable for representative environments, with video terminals, offices, meeting rooms, transit areas, reception and waiting rooms.

They provide luminance control with values lower than 3000 cd/m² for angles> 65°.

3F Diagon | Lay-in installation

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Colour temperature available /830 - /840, /930 - /940.

Lifetime (L95/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L80/B10): 80000 h. (tq+25°C) Lifetime (L75/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester. Honeycombed diagonal screen in white

anti-glare polycarbonate.

Height only 30 mm.

Installation in false ceilings with exposed structure.

The 621x621 version is intended for false ceilings that have recess dimensions of 625x625.

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant. Quick connection.

Source characteristics

- Squared LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: twin-circuit, CLO (more information on page 542)
- Sensor version

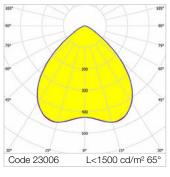
Applications

Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source. Representative environments, with video terminals, offices, meeting rooms, transit areas, reception and waiting rooms.

Installation

Lay-in installation. Installation and assembly diagrams on page 244.

Light Management

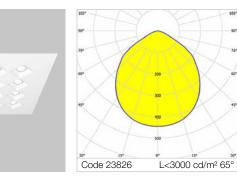

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions A = L A A A C A = L IH IH

238 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Dìagon

Average luminance <1500 cd/m² for radial angles >65°. 39W - Average luminance <3000 cd/m² for radial angles >65°. Installation Interdistance Transv.D = $1.40 \times hu - Long.D = 1.40 \times hu$.


Rhomboidal lenses with differentiated surfaces, etched and prismatic to optimise the orientation of the luminous flux, in transparent methacrylate.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
3F Dìago	n 596x596 - Electronic wiring 230V-50/60Hz					
23025	3F Diagon 15W/840 596x596	17	2738	4000	>80	596x596x30
23024	3F Diagon 19W/840 596x596	21	3291	4000	>80	596x596x30
23098	3F Diagon 25W/930 596x596	28	3487	3000	>90	596x596x30
23122	3F Diagon 25W/940 596x596	28	3509	4000	>90	596x596x30
23002	3F Diagon 25W/830 596x596	28	4079	3000	>80	596x596x30
23026	3F Diagon 25W/840 596x596	28	4386	4000	>80	596x596x30
23027	3F Diagon 39W/840 596x596	40	5547	4000	>80	596x596x30
3F Dìago	n 596x596 - DALI electronic wiring 230V-50/6	0Hz				
23029	3F Diagon 15W/840 DALI 596x596	17	2738	4000	>80	596x596x30
23028	3F Diagon 19W/840 DALI 596x596	21	3291	4000	>80	596x596x30
23102	3F Diagon 25W/930 DALI 596x596	28	3487	3000	>90	596x596x30
23126	3F Diagon 25W/940 DALI 596x596	28	3509	4000	>90	596x596x30
23006	3F Diagon 25W/830 DALI 596x596	28	4079	3000	>80	596x596x30
23030	3F Diagon 25W/840 DALI 596x596	28	4386	4000	>80	596x596x30
23031	3F Diagon 39W/840 DALI 596x596	40	5547	4000	>80	596x596x30
6 5 B)					(4)	500)
-	n 596x596 - EP maintained emergency wiring			-		
23033	3F Diagon 15W/840 EP 596x596	18	2738	4000		596x596x30
23032	3F Diagon 19W/840 EP 596x596	22	3291	4000	>80	
23106	3F Diagon 25W/930 EP 596x596	29	3487	3000	>90	
23130	3F Diagon 25W/940 EP 596x596	29	3509	4000	>90	596x596x30
23010	3F Diagon 25W/830 EP 596x596	29	4079	3000	>80	
23034	3F Diagon 25W/840 EP 596x596	29	4386	4000	>80	
23035	3F Diagon 39W/840 EP 596x596	41	5547	4000	>80	596x596x30
3F Dìago	n 621x621 - Electronic wiring 230V-50/60Hz					
23409	3F Diagon 15W/840 621x621	17	2738	4000	<u> </u>	621x621x30
23409	3F Diagon 19W/840 621x621	21	3291	4000		621x621x30
23482	3F Diagon 25W/930 621x621	28	3487	3000		
23506	3F Diagon 25W/940 621x621	28	3509	4000		621x621x30
23386	3F Diagon 25W/830 621x621	28	4079	3000		621x621x30
23410	3F Diagon 25W/840 621x621	28	4386	4000	>80	
23411	3F Diagon 39W/840 621x621	40	5547	4000		621x621x30
2011 I		40	0047	4000	200	

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H					
3F Dìagon 621x621 - DALI electronic wiring 230V-50/60Hz											
23413	3F Diagon 15W/840 DALI 621x621	17	2738	4000	>80	621x621x30					
23412	3F Diagon 19W/840 DALI 621x621	21	3291	4000	>80	621x621x30					
23486	3F Diagon 25W/930 DALI 621x621	28	3487	3000	>90	621x621x30					
23510	3F Diagon 25W/940 DALI 621x621	28	3509	4000	>90	621x621x30					
23390	3F Diagon 25W/830 DALI 621x621	28	4079	3000	>80	621x621x30					
23414	3F Diagon 25W/840 DALI 621x621	28	4386	4000	>80	621x621x30					
23415	3F Diagon 39W/840 DALI 621x621	40	5547	4000	>80	621x621x30					
3F Dìagor	1 621x621 - EP maintained emergency wiring, 1	hr duration v	vith 24hrs rec	charge, fu	se (flu	uxes on page 560)					
23417	3F Diagon 15W/840 EP 621x621	18	2738	4000	>80	621x621x30					

23416	3F Diagon 19W/840 EP 621x621	22	3291	4000	>80	621x621x30
23490	3F Diagon 25W/930 EP 621x621	29	3487	3000	>90	621x621x30
23514	3F Diagon 25W/940 EP 621x621	29	3509	4000	>90	621x621x30
23394	3F Diagon 25W/830 EP 621x621	29	4079	3000	>80	621x621x30
23418	3F Diagon 25W/840 EP 621x621	29	4386	4000	>80	621x621x30
23419	3F Diagon 39W/840 EP 621x621	41	5547	4000	>80	621x621x30

3F Diagon Soft UGR

Average luminance $<3000 \text{ cd/m}^2$ for angles $>65^\circ$. Installation Interdistance Transv.D = 1.20 x hu - Long.D = 1.20 x hu.

Rhomboidal lenses with differentiated surfaces, etched and prismatic to optimise the orientation of the luminous flux, in opal methacrylate.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
3F Diagor	n 596x596 - Electronic wiring 230V-50/60Hz					
23826 NEW	3F Diagon 25W/830 SOFT UGR 596x596	28	3531	3000	>80	596x596x30

20020		20	0001	0000	200	000000000	
23812 ^{NEW}	3F Diagon 25W/840 SOFT UGR 596x596	28	3797	4000	>80	596x596x30	
23842 ^{NEW}	3F Diagon 39W/930 SOFT UGR 596x596	40	3819	3000	>90	596x596x30	
23834 NEW	3F Diagon 39W/940 SOFT UGR 596x596	40	3843	4000	>90	596x596x30	
	0		0010				

3F Diagon 596x596 - DALI electronic wiring 230V-50/60Hz

23828 ^{NEW}	3F Diagon 25W/830 DALI SOFT UGR 596x596	28	3531	3000	>80	596x596x30
23814 ^{NEW}	3F Diagon 25W/840 DALI SOFT UGR 596x596	28	3797	4000	>80	596x596x30
23844 NEW	3F Diagon 39W/930 DALI SOFT UGR 596x596	40	3819	3000	>90	596x596x30
23836 ^{NEW}	3F Diagon 39W/940 DALI SOFT UGR 596x596	40	3843	4000	>90	596x596x30

3F Diagon 596x596 - EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

er Blagen	000/000		ngono, minig, mi a			ai 90, ie		ande en page eee,	
23827 NEW	3F Diagon	25W/830 EP SOFT UG	iR 596x596	29	3531	3000	>80	596x596x30	
23813 ^{NEW}	3F Diagon	25W/840 EP SOFT UG	iR 596x596	29	3797	4000	>80	596x596x30	
23843 ^{NEW}	3F Diagon	39W/930 EP SOFT UG	iR 596x596	41	3819	3000	>90	596x596x30	
23835 ^{NEW}	3F Diagon	39W/940 EP SOFT UG	iR 596x596	41	3843	4000	>90	596x596x30	
3F Dìagon	621x621 -	Electronic wiring 2	30V-50/60Hz						
23830 ^{NEW}	3F Diagon	25W/830 SOFT UGR 6	21x621	28	3531	3000	>80	621x621x30	
23819 ^{NEW}	3F Diagon	25W/840 SOFT UGR 6	21x621	28	3797	4000	>80	621x621x30	
23846 ^{NEW}	3F Diagon	39W/930 SOFT UGR 6	21x621	40	3819	3000	>90	621x621x30	
23838 NEW	3F Diagon	39W/940 SOFT UGR 6	21x621	40	3843	4000	>90	621x621x30	
3F Dìagon	621x621 -	DALI electronic wir	ing 230V-50/60Hz						
23832 ^{NEW}	3F Diagon	25W/830 DALI SOFT U	JGR 621x621	28	3531	3000	>80	621x621x30	
23821 NEW	3F Diagon	25W/840 DALI SOFT U	JGR 621x621	28	3797	4000	>80	621x621x30	
23848 NEW	3F Diagon	39W/930 DALI SOFT U	JGR 621x621	40	3819	3000	>90	621x621x30	
23840 ^{NEW}	3F Diagon	39W/940 DALI SOFT U	JGR 621x621	40	3843	4000	>90	621x621x30	
3F Dìagon	621x621 -	EP maintained eme	ergency wiring, 1hr d	uration with	24hrs rech	arge, fu	use (flu	uxes on page 560)	

23831 NEW	3F Diagon 25W/830 EP SOFT UGR 621x621	29	3531	3000 >80 621x621x30
23820 ^{NEW}	3F Diagon 25W/840 EP SOFT UGR 621x621	29	3797	4000 >80 621x621x30
23847 NEW	3F Diagon 39W/930 EP SOFT UGR 621x621	41	3819	3000 >90 621x621x30
23839 ^{NEW}	3F Diagon 39W/940 EP SOFT UGR 621x621	41	3843	4000 >90 621x621x30

3F Diagon Tunable White | Lay-in installation

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. The color temperature can be adjusted between 2700 K and 6500 K. Lifetime (L90/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Lifetime (L80/B20): 80000 h. (tq+25°C) Lifetime (L70/B20): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester. Honeycombed diagonal screen in white anti-glare polycarbonate. Rhomboidal lenses with differentiated surfaces, etched and prismatic to optimise the orientation of the luminous flux, in opal methacrylate. Height only 30 mm. Installation in false ceilings with exposed structure.

Electrical characteristics

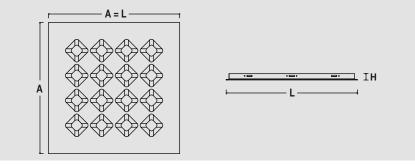
In compliance with EN 60598-1. Cable with a DALI DT8 driver. 5-pole terminal block (L-N-PE-DA/DA) quick connection for line connection with connection capacity 2x2.5 mm².

Source characteristics

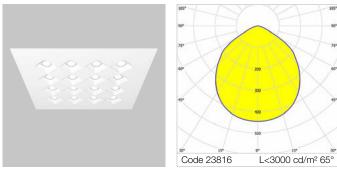
- Squared LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

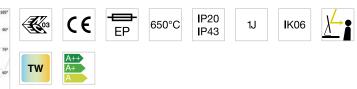
Applications

Any environments requiring light which aims for the wellness of people. Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source. Representative environments, with video terminals, offices, meeting rooms, transit areas, reception and waiting rooms.


Installation

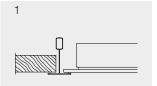
Lay-in installation. Installation and assembly diagrams on page 244.

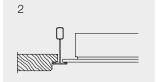

Light Management


Products in the 3F Tunable White range can be controlled manually or automatically with 3F HCL for TW fixtures technology (see the chapter on "Light Management").

Dimensions

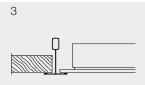
3F Diagon Soft UGR Tunable White

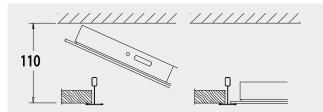




Average luminance <3000 cd/m² for angles >65°. Installation Interdistance Transv.D = 1.20 x hu - Long.D = 1.20 x hu.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H			
3F Dìagoi	1 596x596 - DALI electronic wiring 230V-50/60F	Ηz							
23816 ^{NEW}	3F Diagon 25W DT8 TW SOFT UGR 596x596	31,5 30 29	3686	2700 4000 6500	>80	596x596x30			
3F Dìagon 621x621 - DALI electronic wiring 230V-50/60Hz									
23823 NEW	3F Diagon 25W DT8 TW SOFT UGR 621x621	31,5 30 29	3686	2700 4000 6500	>80	621x621x30			


Mounting details


Panels in mineral fibre with exposed structure 600x600.

Panels in mineral fibre with decoration in relief 600x600.

Panels in mineral fibre with exposed structure 625x625.

Installation

Installation following false ceiling mounting, supported by the exposed structure, minimum void of 110 mm from the structure's lower edge.

4	
60	

Installation simultaneously with the false ceiling, minimum void of 60 mm from the structure's lower edge.

3F Diagon | Pull-up installation

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L95/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L80/B10): 80000 h. (tq+25°C) Lifetime (L75/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

Honeycombed diagonal screen in white anti-glare polycarbonate.

Height only 30 mm.

The FP (For Plasterboard) version is dedicated to plasterboard false ceilings. The FCL (For Complanar Low) version is dedicated to plasterboard with metal panels and low structures.

The FCH (For Complanar High) version is dedicated to plasterboard with metal panels and high structures. For all versions, spring fixing in stainless steel.

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant. Quick connection.

Source characteristics

- Squared LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: emergency, twin-circuit, CLO (more information on page 542)
- Iuminaires for pull-up installation with brackets
- 3F Tunable White versione
- 3F Diagon Soft UGR, for FCL and FCH versions

Applications

FCL, FCH, FP versions

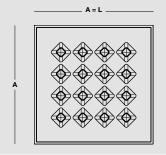
Environments: staterooms, with VDTs, offices.

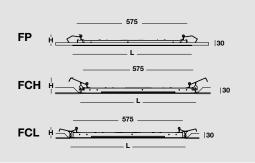
Environments with exacting visual tasks, where diffused soft light for optimum visual comfort is required.

Version FP Soft UGR

Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source.

Installation

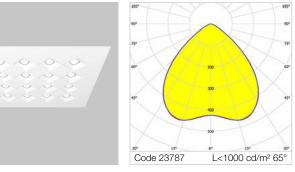

Installation and assembly diagrams on page 249.


Do not hesitate to contact our Sales Network or our Technical Offices to check the compatibility of the FCH and FCL models with the various types of metallic false ceilings.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions



246

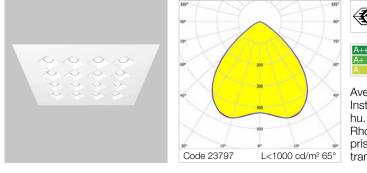
3F Diagon FCL

Version for metal panels with low structures

Average luminance <1500 cd/m² for radial angles >65°. Installation Interdistance Transv.D = $1.40 \times hu - Long.D = 1.40 \times hu$.

Rhomboidal lenses with differentiated surfaces, etched and prismatic to optimise the orientation of the luminous flux, in transparent methacrylate.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H


3F Diagon 599x599 - Electronic wiring 230V-50/60Hz

0	0								
23785	3F Diagon FCL 19W/840 599x599	21	3291	4000	>80	599x599x60			
23786	3F Diagon FCL 25W/840 599x599	28	4386	4000	>80	599x599x60			
3F Diagon 599x599 - DALI electronic wiring 230V-50/60Hz									
23787	3F Diagon FCL 19W/840 DALI 599x599	21	3291	4000	>80	599x599x60			
23788	3F Diagon FCL 25W/840 DALI 599x599	28	4386	4000	>80	599x599x60			

3F Dìagoi	n 599x599 - EP maintained emergency wiring,	1hr duration wi	th 24hrs red	charge, fu	ıse (flu	ixes on page 5	60)
23789	3F Diagon FCL 19W/840 EP 599x599	22	3291	4000	>80	599x599x60	
23790	3F Diagon FCL 25W/840 EP 599x599	29	4386	4000	>80	599x599x60	

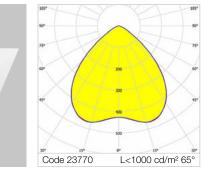
3F Diagon FCH

Version for metal panels with high structures

*	K 03	CE	EP	650°C	IP20 IP43	1J	I K06	<u>}</u>
-	<u>A++</u>							

Average luminance <1500 cd/m² for radial angles >65°. Installation Interdistance Transv.D = $1.40 \times hu - Long.D = 1.40 \times hu$

Rhomboidal lenses with differentiated surfaces, etched and prismatic to optimise the orientation of the luminous flux, in transparent methacrylate.


Code Item Absorbed Output CCT CRI Dimensions power (W) flux (Im) (K) L x A x H							
	Code	ltem		001	CRI		

3F Diagon 599x599 - Electronic wiring 230V-50/60Hz

23795 3F Diagon FCH 19W/840 599x599 21 3291 4000 >80) 599x599x60											
23796 3F Diagon FCH 25W/840 599x599 28 4386 4000 >80) 599x599x60											
3F Diagon 599x599 - DALI electronic wiring 230V-50/60Hz												
23797 3F Diagon FCH 19W/840 DALI 599x599 21 3291 4000 >80) 599x599x60											
23798 3F Diagon FCH 25W/840 DALI 599x599 28 4386 4000 >80) 599x599x60											
3F Diagon 599x599 - EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)												
23799 3F Diagon FCH 19W/840 EP 599x599 22 3291 4000 >80) 599x599x60											
23800 3F Diagon FCH 25W/840 EP 599x599 29 4386 4000 >80) 599x599x60											

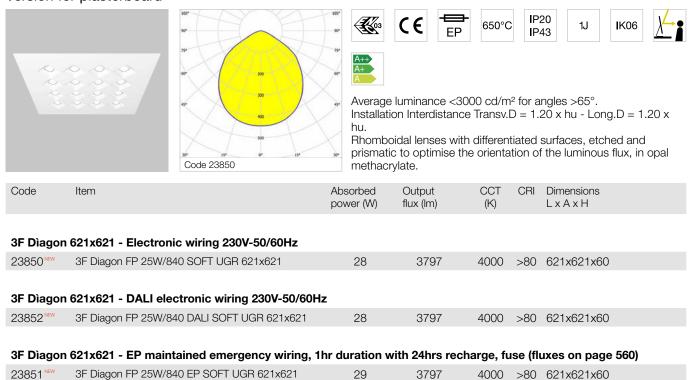
3F Dìagon FP

Version for plasterboard

Average luminance <1500 cd/m² for radial angles >65°. Installation Interdistance Transv.D = 1.40 x hu - Long.D = 1.40 x hu.

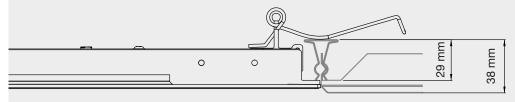
Rhomboidal lenses with differentiated surfaces, etched and prismatic to optimise the orientation of the luminous flux, in transparent methacrylate.

Code	Item	Absorbed	Output	CCT	CRI	Dimensions
		power (W)	flux (lm)	(K)		LxAxH

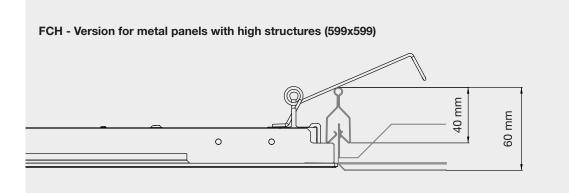

3F Diagon 621x621 - Electronic wiring 230V-50/60Hz

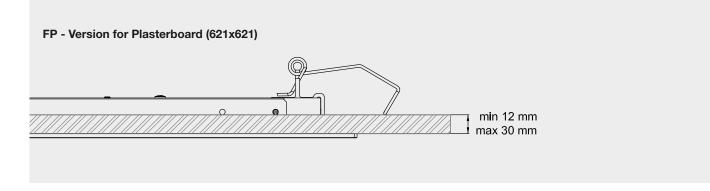
0	5									
23768	3F Diagon FP 19W/840 621x621	21	3291	4000 >	>80 621x621x60					
23769	3F Diagon FP 25W/840 621x621	28	4386	4000 >	>80 621x621x60					
3F Diagon 621x621 - DALI electronic wiring 230V-50/60Hz										
23770	3F Diagon FP 19W/840 DALI 621x621	21	3291	4000 >	>80 621x621x60					
23771	3F Diagon FP 25W/840 DALI 621x621	28	4386	4000 >	>80 621x621x60					
3E Diagon 621x621 - EP maintained emergency wiring 1br duration with 24brs recharge fuse (fluxes on page 560)										

or Diagor	i oz ixozi - Li maintaineu emergency wining, mi			narge, it	130 (iii	uxes on page 500)	
23772	3F Diagon FP 19W/840 EP 621x621	22	3291	4000	>80	621x621x60	
23773	3F Diagon FP 25W/840 EP 621x621	29	4386	4000	>80	621x621x60	


3F Diagon FP Soft UGR

Version for plasterboard




Mounting details

FCL - Version for metal panels with low structures (599x599)

Do not hesitate to contact our Sales Network or our Technical Offices to check the compatibility of the FCH and FCL models with the various types of metallic false ceilings.

In the event that the type of false ceiling reported is not that envisaged by the installation, it is necessary to consult our Sales Network.

3F Dìagon Accessories

Anti-fall safety cable for fixing the housing to the building structure. Length 2.5 m.

Code	Item
A0477	Safety wire

White painted polyester hot-dip galvanised steel frame for 3F Diagon Plafone. Height only 40 mm.

Accessory compatible with 3F Diagon | Lay-in installation, 3F Diagon Tunable White | Lay-in installation.

CodeItemA0686596x596 Diagon frame for Ceiling installation

Suction cup to extract "3F Diagon" installed in abutment. To be used in false ceilings with metal panels, where the space between the luminaire and the surrounding panels does not allow the use of other tools.

Accessory compatible with 3F Diagon | Pull-up installation.

CodeItemA0702Suction cup for Diagon maintenance

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

Attention: before ordering these products, we ask you to check the Installation instructions if the type of installation requires accessory brackets.

Electrical characteristics

In compliance with EN 60598-1. Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant.

Source characteristics

- Linear LED modules.
- 10W version
- Color initial tolerance (MacAdam): SDCM 2.
- 18W version
- Color initial tolerance (MacAdam): SDCM 3.

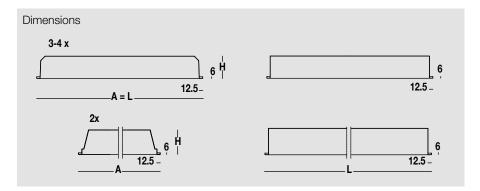
On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- diffuser in OP opal PMMA or SP polycarbonate, self-extinguishing V2
- luminaires for pull-up installation with brackets

Applications

Environments: staterooms, with VDTs, offices.

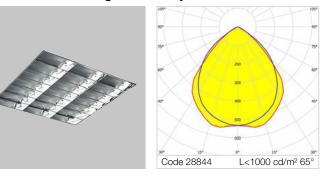
Environments where demanding visual tasks are performed and soft diffuse light is required for optimal visual comfort and total shielding of the light source. **SP version**


Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Installation

Lay-in or pull-up installation with brackets.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

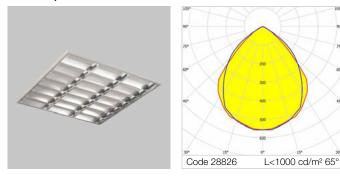
252

L 320 LED 2MG

Specular louvre, high efficiency

Average luminance <1000 cd/m² for radial angles >65°. 2MG parabolic louvre, high efficiency, in specular aluminium with superficial titanium-magnesium treatment, non-iridescent, with transverse blades closed at the top.

Prismatic PMMA diffuser for total shielding of the louvre compartment.


Film protective against dust and finger marks, adhesive, attached to louvre.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
Electronic	c wiring 230V-50/60Hz						
28844	L 323x10W LED 2MG 596x596	34	4287	4000	>80	596x596x80	
22722	L 323x10W/940 LED 2MG 596x596	34	3430	4000	>90	596x596x80	
28846	L 322x18W LED 2MG 296x1196	40	5179	4000	>80	1196x296x95	
DALI elec	tronic wiring 230V-50/60Hz						
28856	L 323x10W LED DALI 2MG 596x596	34	4287	4000	>80	596x596x80	
22724	L 323x10W/940 LED DALI 2MG 596x596	34	3430	4000	>90	596x596x80	
28858	L 322x18W LED DALI 2MG 296x1196	40	5179	4000	>80	1196x296x95	

28847	L 323x10W LED EP 2MG 596x596	35	4287	4000	>80	596x596x80	
22723	L 323x10W/940 LED EP 2MG 596x596	35	3430	4000	>90	596x596x80	
28849	L 322x18W LED EP 2MG 296x1196	41	5179	4000	>80	1196x296x95	

L 320 LED 2S

Semi-specular louvre

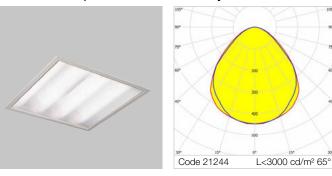
Average luminance <1000 cd/m² for radial angles >65°. 2S parabolic louvre in semi-specular aluminium, non-reflecting, with transverse blades closed at the top.

IP20

Prismatic PMMA diffuser for total shielding of the louvre compartment.

Film protective against dust and finger marks, adhesive, attached to louvre.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	s wiring 230V-50/60Hz					
28826	L 323x10W LED 2S 596x596	34	3997	4000	>80	596x596x80
22716	L 323x10W/940 LED 2S 596x596	34	3197	4000	>90	596x596x80
28828	L 322x18W LED 2S 296x1196	40	4730	4000	>80	1196x296x95
DALI elec	tronic wiring 230V-50/60Hz					
28838	L 323x10W LED DALL 2S 596x596	34	3997	4000	>80	596x596x80
22718	L 323x10W/940 LED DALI 2S 596x596	34	3197	4000	>90	596x596x80
28840	L 322x18W LED DALI 2S 296x1196	40	4730	4000	>80	1196x296x95


60*

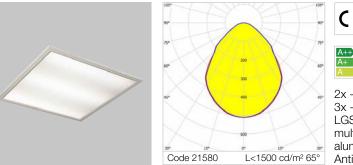
44

28829	L 323x10W LED EP 2S 596x596	35	3997	4000	>80	596x596x80
22717	L 323x10W/940 LED EP 2S 596x596	35	3197	4000	>90	596x596x80
28831	L 322x18W LED EP 2S 296x1196	41	4730	4000	>80	1196x296x95

L 320 LED SP

Flat diffuser, prismatic in methacrylate

Average luminance <3000 cd/m² for radial angles >65°. SP transparent PMMA diffuser, prismatic exterior, anti-glare, locked to the prepainted white aluminium perimeter frame with sealing gasket, hinged opening.


Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Flootropi	- wiring 220V 50/60Hz					
Electronic	c wiring 230V-50/60Hz					
21244	L 323x10W LED SP 596x596	34	4163	4000	>80	596x596x80
22701	L 323x10W/940 LED SP 596x596	34	3330	4000	>90	596x596x80
21287	L 322x18W LED SP 296x1196	40	5272	4000	>80	1196x296x95
21245	L 324x10W LED SP 596x596	45	5516	4000	>80	596x596x80
22702	L 324x10W/940 LED SP 596x596	45	4413	4000	>90	596x596x80
DALI elec	tronic wiring 230V-50/60Hz					
21256	L 323x10W LED DALI SP 596x596	34	4163	4000	>80	596x596x80
22703	L 323x10W/940 LED DALI SP 596x596	34	3330	4000	>90	596x596x80
21290	L 322x18W LED DALI SP 296x1196	40	5272	4000	>80	1196x296x95
21257	L 324x10W LED DALI SP 596x596	45	5516	4000	>80	596x596x80
22704	L 324x10W/940 LED DALI SP 596x596	45	4413	4000	>90	596x596x80

20

		- ·				
21262	L 323x10W LED EP SP 596x596	35	4163	4000	>80	596x596x80
22705	L 323x10W/940 LED EP SP 596x596	35	3330	4000	>90	596x596x80
21293	L 322x18W LED EP SP 296x1196	41	5272	4000	>80	1196x296x95
21263	L 324x10W LED EP SP 596x596	46	5516	4000	>80	596x596x80
22706	L 324x10W/940 LED EP SP 596x596	46	4413	4000	>90	596x596x80

L 320 LED LGS

Low glaring flat diffuser, microprismatic in methacrylate

2x - 4x - Average luminance <3000 cd/m² for radial angles >65°. 3x - Average luminance <1500 cd/m² for radial angles >65°. LGS micro-prismatic flat diffuser in transparent methacrylate, multilenticular exterior, anti-glare, locked to the white painted aluminium perimetral frame, sealing gasket, hinged opening. Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
	•					
21580	L 323x10W LED LGS 596x596	34	3178	4000	>80	596x596x80
21600	L 322x18W LED LGS 296x1196	40	4102	4000	>80	1196x296x95
21581	L 324x10W LED LGS 596x596	45	4292	4000	>80	596x596x80
22709	L 324x10W/940 LED LGS 596x596	45	3434	4000	>90	596x596x80
DALI elec	tronic wiring 230V-50/60Hz					
21586	L 323x10W LED DALI LGS 596x596	34	3178	4000	>80	596x596x80
21603	L 322x18W LED DALI LGS 296x1196	40	4102	4000	>80	1196x296x95
21587	L 324x10W LED DALI LGS 596x596	45	4292	4000	>80	596x596x80
22710	L 324x10W/940 LED DALI LGS 596x596	45	3434	4000	>90	596x596x80
EP mainta	ained emergency wiring, 1hr duration with 24hr	s recharge, f	use (fluxes or	page 56	60)	
21589	L 323x10W/LED EP LGS 596x596	35	3178	4000	<u> 80</u>	5962596280

21589	L 323x10W LED EP LGS 596x596	35	3178	4000	>80	596x596x80
21606	L 322x18W LED EP LGS 296x1196	41	4102	4000	>80	1196x296x95
21590	L 324x10W LED EP LGS 596x596	46	4292	4000	>80	596x596x80
22711	L 324x10W/940 LED EP LGS 596x596	46	3434	4000	>90	596x596x80

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L90/B20): 30000 h. (tq+25°C) Lifetime (L80/B20): 50000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

Height only 55 mm.

The 621x621 version is intended for false ceilings that have recess dimensions of 625x625.

Warning: both are suitable for lay-in installation, but only the 596x596 version is suitable for pull-up installation (using accessory A0798).

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant. Quick connection.

Source characteristics

- Squared LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

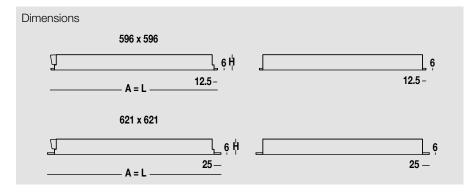
On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- diffuser in SMP microprismatic PMMA or SP polycarbonate, Selfextinguishing V2
- housing in RAL colours

Applications

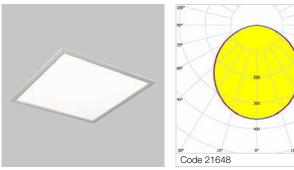
OP version

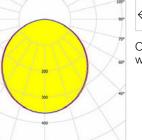
Environments where soft diffuse light is required for optimal visual comfort and total shielding of the source. **LGS version**


Environments: staterooms, with VDTs, offices.

Installation

Lay-in installation.


Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

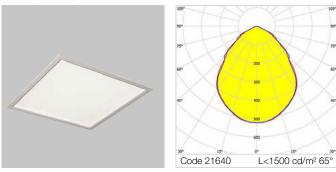
L 320 LED Diffused Light OP

Opal PMMA flat diffuser

650°C EΡ

IP40

5J


OP opal PMMA flat diffuser, anti-glare, locked to the pre-painted white aluminium perimeter frame, hinged opening.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
21648	L 320 32W LED OP 596x596	36	3950	4000	>80	596x596x55
22742	L 320 32W/940 LED OP 596x596	36	3160	4000	>90	596x596x55
21660	L 320 32W LED OP 621x621	36	3950	4000	>80	621x621x55
DALI elec	tronic wiring 230V-50/60Hz					
21649	L 320 32W LED DALI OP 596x596	36	3950	4000	>80	596x596x55
22743	L 320 32W/940 LED DALI OP 596x596	36	3160	4000	>90	596x596x55
21661	L 320 32W LED DALI OP 621x621	36	3950	4000	>80	621x621x55

21650	L 320 32W LED EP OP 596x596	37	3950	4000	>80	596x596x55
22744	L 320 32W/940 LED EP OP 596x596	37	3160	4000	>90	596x596x55
21662	L 320 32W LED EP OP 621x621	37	3950	4000	>80	621x621x55

L 320 LED Diffused Light LGS

Low glaring flat diffuser, microprismatic in methacrylate

Average luminance <1500 cd/m² for radial angles >65°. LGS micro-prismatic flat diffuser in transparent methacrylate, multi-lenticular exterior, anti-glare, locked to the white painted aluminium perimeter frame, hinged opening. Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
21640	L 320 32W LED LGS 596x596	36	3620	4000	>80	596x596x55
22732	L 320 32W/940 LED LGS 596x596	36	2896	4000	>90	596x596x55
21652	L 320 32W LED LGS 621x621	36	3620	4000	>80	621x621x55
DALI elec	tronic wiring 230V-50/60Hz					
21641	L 320 32W LED DALI LGS 596x596	36	3620	4000	>80	596x596x55
22733	L 320 32W/940 LED DALI LGS 596x596	36	2896	4000	>90	596x596x55
21653	L 320 32W LED DALI LGS 621x621	36	3620	4000	>80	621x621x55

21642	L 320 32W LED EP LGS 596x596	37	3620	4000	>80	596x596x55
22734	L 320 32W/940 LED EP LGS 596x596	37	2896	4000	>90	596x596x55
21654	L 320 32W LED EP LGS 621x621	37	3620	4000	>80	621x621x55

Illuminotechnical characteristics

Direct symmetric distribution. The color temperature can be adjusted between 2700 K and 6500 K. Lifetime (L90/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Lifetime (L80/B20): 80000 h. (tq+25°C) Lifetime (L70/B20): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

LGS micro-prismatic flat diffuser in transparent methacrylate, multilenticular exterior, anti-glare, locked to the white painted aluminium perimetral frame, sealing gasket, hinged opening. Anti-glare opal polycarbonate filter for brightness uniformity.

Attention: before ordering these products, we ask you to check the Installation instructions if the type of installation requires accessory brackets.

Electrical characteristics

In compliance with EN 60598-1. Cable with a DALI DT8 driver. 5-pole terminal block (L-N-PE-DA/DA) for line connection with connection capacity 2x2.5 mm².

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- diffuser in SP prismatic PMMA or SP polycarbonate, Selfextinguishing V2
- Iuminaires for pull-up installation with brackets

Applications

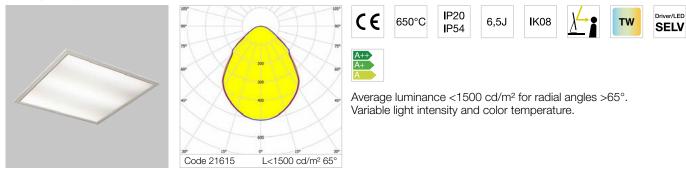
Any environments requiring light which aims for the wellness of people. Environments with VDTs. Environments where demanding visual tasks are performed and soft diffuse light is required for optimal visual comfort and total shielding of the light source.

Installation

Lay-in or pull-up installation with brackets.

Light Management

Products in the 3F Tunable White range can be controlled manually or automatically with 3F HCL for TW fixtures technology (see the chapter on "Light Management").


Dimensions			
A	12.5 _	L	6

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10).
 Datasheets, product updates and specifications on our website: www.3f-filippi.com

262

L 320 LED Tunable White LGS

Low glaring flat diffuser, microprismatic in methacrylate

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H

DALI DT8 electronic wiring 230V-50/60Hz

21615 L 323x10W LED DALI DT8 TW LGS 596x596 33	35 2685 2700 >80 596x596x80 3017 4000 2911 6500	
--	---	--

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

Attention: before ordering these products, we ask you to check the Installation instructions if the type of installation requires accessory brackets.

Electrical characteristics

In compliance with EN 60598-1. On board DALI light sensor (no cables to be added).

CF Corridor function: even with the environment free of people, the luminous flux is maintained at 10%.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 2.

On request

- diffuser in OP opal PMMA or SP polycarbonate, self-extinguishing V2
- different power levels, colour rendering indices and colour temperatures
- wiring: emergency
- luminaires for pull-up installation with brackets

Applications

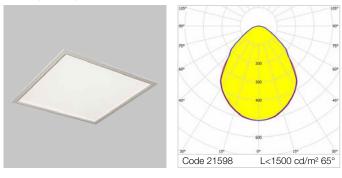
Environments: staterooms, with VDTs, offices.

Environments where demanding visual tasks are performed and soft diffuse light is required for optimal visual comfort and total shielding of the light source. **SP version**

Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Installation

Lay-in or pull-up installation with brackets.


Light Management

For more information on 3F Sensor technology, refer to the specific chapter in the "Light Management" section.

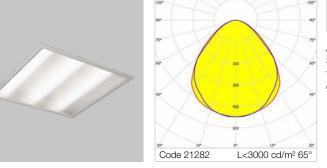
Dimensions	
6 H	6 L12.5_

L 320 LED Sensor LGS

Low glaring flat diffuser, microprismatic in methacrylate

CE	650°C	IP20 IP54	5J	IK08	$\lambda \rightarrow \bullet$	Driver/LED	A++ A+
		IP54			<u> </u>	SELV	А

Average luminance <1500 cd/m² for radial angles >65°. LGS micro-prismatic flat diffuser in transparent methacrylate, multilenticular exterior, anti-glare, locked to the white painted aluminium perimetral frame, sealing gasket, hinged opening. Anti-glare opal polycarbonate filter for brightness uniformity.


Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H

Electronic wiring 230V-50/60Hz

	······································					
21598	L 323x10W LED Sensor CF LGS 596x596	34	3178	4000	>80 596x596x80	

L 320 LED Sensor SP

Flat diffuser, prismatic in methacrylate

CE	650°C	IP20 IP54	5J	IK08	<u>}</u>	Driver/LED	A++ A+ A
----	-------	--------------	----	------	----------	------------	----------------

Average luminance <3000 cd/m² for radial angles >65°. SP transparent PMMA diffuser, prismatic exterior, anti-glare, locked to the prepainted white aluminium perimeter frame with sealing gasket, hinged opening.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	s wiring 230V-50/60Hz					

21282 L 323x10W LED Sensor CF SP 596x596	34 4163	3 4000 >80 596x596x80
--	---------	-----------------------

L 320 Accessories

Code

A0477

Anti-fall safety cable for fixing the housing to the building structure. Length 2.5 m.

Accessory compatible with L 320 LED, L 320 LED Tunable White, L 320 LED Sensor.

Anti-fall safety cable for fixing the housing to the building structure. Length 2.5 m. Accessory compatible with L 320 LED Diffused Light. Code Item

A0445 Safety wire H55

Item

Safety wire

Plug for quick connection of the luminaire, 3-pole irreversible to be snapped (Snap-in), with integrated locking device, H07 V2-U HT90° 1.5 mm² cables, for the connection to the terminal block of the luminaire. Connection for single-circuit wiring: order white plug. Connection for twin-circuit, dimmable, emergency wiring: order white plug plus black plug.

Accessory compatible with L 320 LED, L 320 LED Sensor.

Code	Item
A0720	Wieland (white plug)
A0721	Wago (white plug)
A0722	Ensto (white plug+ adapter)
A0725	Wieland (black plug)
A0726	Wago (black plug)
A0727	Ensto (black plug+ adapter)

This accessory is suitable for square products only.

Adapter frame in white-painted steel, for installing luminaries with dimensions of 596x596 mm on false ceilings with dimensions of 625x625 mm. Also useful for pull-up installations on plasterboard false ceilings.

Code	Item	
A0798	621x621 frame + brackets	

This accessory is suitable for square products only.

Galvanized steel fixing bracket for pull-up installation on plasterboard. Pack for 1 luminaire.

Accessory compatible with L 320 LED, L 320 LED Tunable White, L 320 LED Sensor.

Code	Item
A0173	15HI - L320-L350-L450 The pack contains 4 pieces.

Excursion min. 0 mm, max. 25 mm. This accessory is suitable for square products only. Not suitable for diffused light recessed luminaires.

Fixing bracket in galvanized steel. Pack for 1 luminaire.

Accessory compatible with L 320 LED, L 320 LED Tunable White, L 320 LED Sensor.

Code	Item
A0177	15ZH - L320-L350-L560 The pack contains 4 pieces.

For square luminaires with louvre (excursion min. 0 mm, max. 60 mm), with diffuser and glass (excursion min. 15 mm, max. 60 mm).

For rectangular luminaires (excursion min. 45 mm, max. 72 mm), with diffuser and glass (excursion min. 27 mm, max. 65 mm). Suitable for pull-up installation on plasterboard.

Not suitable for diffused light recessed luminaires.

Fixing bracket in galvanized steel for ceiling pull-up installation. Pack for 1 luminaire.

Accessory compatible with L 320 LED, L 320 LED Tunable White, L 320 LED Sensor.

<u>i</u>	

5

Code	Item
A0170	15BS - L320-L400-L560 The pack contains 4 pieces.

For rectangular luminaires with louvre (excursion min. 18 mm, max. 45 mm), with diffuser (excursion min. 0 mm, max. 40 mm).

Not suitable for diffused light recessed luminaires.

Fixing bracket in galvanized steel for installation coplanar with metal panels with concealed structure. Pack for 1 luminaire.

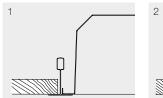
Accessory compatible with L 320 LED, L 320 LED Tunable White, L 320 LED Sensor.

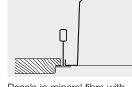
Cable clip system that protects the luminaire if the power cables are pulled accidentally.

Code	Item
A0179	15LB - L320-350 pann.met. The pack contains 4 pieces.

For square luminaires with louvre, mounting in two positions (23/36 mm, 53/66 mm) with diffuser (36 mm and 66 mm).

Not suitable for diffused light recessed luminaires.



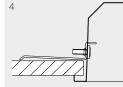

Accessory compatible with L 320 LED Diffused Light.

Code Item A0800 Cable locker - 10 pcs The pack contains 10 pieces.

Mounting details

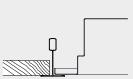
Square version H80 - 596x596

Panels in mineral fibre with exposed structure 600x600. Panels in mineral fibre with decoration in relief 600x600.

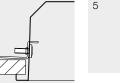

voids. Luminaires on request, installed flush with bracket accessory 15 ZH.

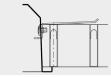
8

Panels in mineral fibre with

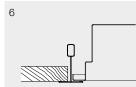

decoration 600x600, small

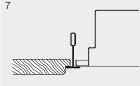
3




Plasterboard. Luminaires on request, installed flush with bracket accessory 15 ZH.

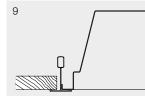
Square version H55 - 621x621


Panels in mineral fibre with exposed structure 625x625.



Pull-up installation on grid false ceilings. Luminaires on request, installed flush with bracket accessory 15 ZH.

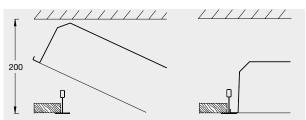
Square version H55 - 596x596



Panels in mineral fibre with exposed structure 600x600.

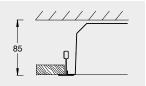
Panels in mineral fibre with decoration in relief 600x600.

Rectangular version H95 - 296x1196

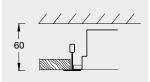

~~~~~_ 300 300

Mineral fibre panels600x600, 600x1200 with exposed structure.

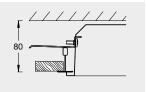
Note: rectangular luminaires have a width of 296mm. When installed on 600mm wide panels with exposed structure (600x600 or 600x1200), a further T profile must be used.


Installation (square versions only)

H55 and H80 version

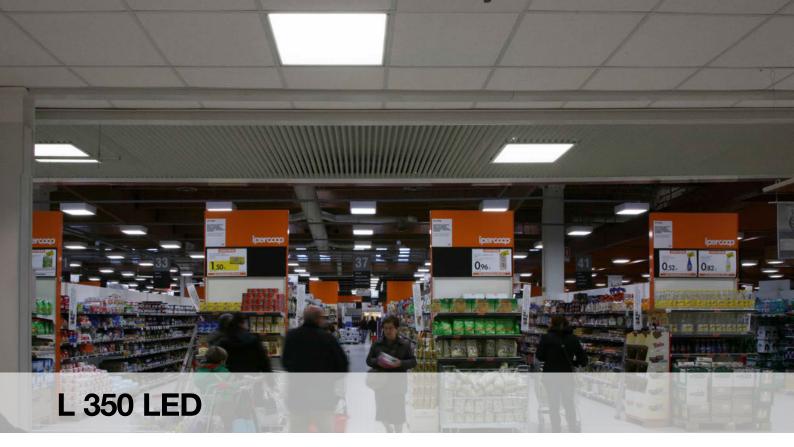

Installation following false ceiling mounting, supported by the exposed structure, minimum void of 200 mm from the structure's lower edge.

H80 version



Installation simultaneously with the false ceiling, minimum void of 85 mm from the structure's lower edge.

H55 version



Installation simultaneously with the false ceiling, minimum void of 60 mm from the structure's lower edge.

Minimum void of 80 mm from the structure's lower edge. Luminaires on request, installed flush with bracket accessory 15 ZH.

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L90/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Lifetime (L80/B20): 80000 h. (tq+25°C) Lifetime (L70/B20): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

Attention: before ordering these products, we ask you to check the Installation instructions if the type of installation requires accessory brackets.

Electrical characteristics

In compliance with EN 60598-1. Quick connection.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 7 compliant.

On request

- different power levels, colour rendering indices and colour temperatures
- luminaires for pull-up installation with brackets
- wiring: CLO (more information on page 542), emergency

Applications

Environments: architectural, commercial, exhibition areas.

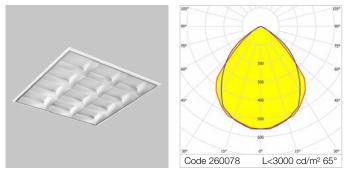
Environments where high levels of light are required.

Warning: 3AO luminaire not suitable for installation in false ceilings without heat removal capacity.

Minimum void of 200 mm required.

Installation

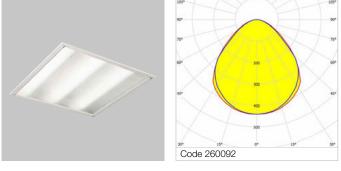
Lay-in or pull-up installation with brackets.


Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

L 350 LED 3AO

Matt silver decorative louvre



Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
260078	L 353x25W LED 3AO 596x596	82	9740	4000	>80	596x596x80
DALI elec	tronic wiring 230V-50/60Hz					
260080	L 353x25W LED DALI 3AO 596x596	82	9740	4000	>80	596x596x80

L 350 LED SP

Flat diffuser, prismatic in methacrylate

SP transparent PMMA diffuser, prismatic exterior, anti-glare, locked to the prepainted white aluminium perimeter frame with sealing gasket, hinged opening.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
260092	L 353x14W LED SP 54V 596x596	47	6160	4000	>80	596x596x80
DALI elec	tronic wiring 230V-50/60Hz					
260094	L 353x14W LED DALI SP 54V 596x596	47	6160	4000	>80	596x596x80

L 350 Accessories

Plug for quick connection of the luminaire, 3-pole irreversible to be snapped (Snap-in), with integrated locking device, H07 V2-U HT90° 1.5 mm² cables, for the connection to the terminal block of the luminaire. Connection for single-circuit wiring: order white plug. Connection for twin-circuit, dimmable, emergency wiring: order white plug plus black plug.

Code	Item
A0720	Wieland (white plug)
A0721	Wago (white plug)
A0722	Ensto (white plug+ adapter)
A0725	Wieland (black plug)
A0726	Wago (black plug)
A0727	Ensto (black plug+ adapter)
	and the Malaka Anna and all and

This accessory is suitable for square products only.

Galvanized steel fixing bracket for pull-up installation on plasterboard. Pack for 1 luminaire.

Code	Item
A0173	15HI - L320-L350-L450 The pack contains 4 pieces.

Excursion min. 0 mm, max. 25 mm.

Code	Item
A0177	15ZH - L320-L350-L560

Fixing bracket in galvanized steel. Pack for 1 luminaire.

The pack contains 4 pieces.			
	rsion min. 0 mm, max. 60 mm). sion min. 15 mm, max. 60 mm).		
	r pull-up installation on plasterboard.		

Fixing bracket in galvanized steel for installation coplanar with metal panels with concealed structure. Pack for 1 luminaire.

	Code	
•	A0179	

15LB - L320-350 pann.met. The pack contains 4 pieces.

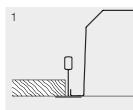
Item

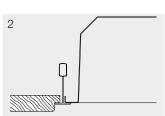
For square luminaires with louvre, mounting in two positions (23/36 mm, 53/66 mm) with diffuser (36 mm and 66 mm).

Anti-fall safety cable for fixing the housing to the building structure. Length 2.5 m.

	Code	
	A0477	
de la		

Code	Item
A0477	Safety wire

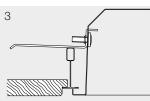



Adapter frame in white-painted steel, for installing luminaries with dimensions of 596x596 mm on false ceilings with dimensions of 625x625 mm. Also useful for pull-up installations on plasterboard false ceilings.

Code	Item
A0798	621x621 frame + brackets

This accessory is suitable for square products only.

Mounting details



Panels in mineral fibre with exposed structure 600x600.

L 350 SP IP54 exposed part

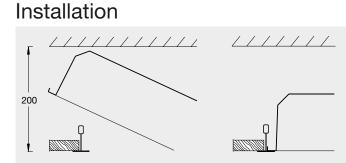
Panels in mineral fibre with decoration in relief 600x600.

Version on request. Panels in mineral fibre with decoration 600x600, narrow voids. Use fixing brackets item 15 ZH. 4

Version on request. Plasterboard. Use fixing brackets item 15 ZH.

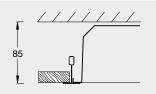
5

up installation on grid false ceilings. Applies only to square luminaires.


Version on request. Pull-

/ /

Recessed luminaires


By using fixing brackets item 15 ZH, minimum void of 80 mm from the structure's lower edge.

3x25 version with minimum void of 200 mm and with capability of heat dissipation.

Version on request

Installation following false ceiling mounting supported by the exposed structure, minimum void of 200 mm from the structure's lower edge.

Installation simultaneously with the false ceiling, minimum void of 85 mm from the structure's lower edge.

3x25 version with minimum void of 200 mm and with capability of heat dissipation.

Illuminotechnical characteristics

Direct symmetric distribution. Average luminance $<2500 \text{ cd/m}^2$ for angles $>45^\circ$.

Average luminance $<1500 \text{ cd/m}^2$ for angles $>65^\circ$.

Lifetime (L93/B10): 30000 h. $(tq+25^{\circ}C)$ Lifetime (L90/B10): 50000 h. $(tq+25^{\circ}C)$ Lifetime (L85/B10): 80000 h. $(tq+25^{\circ}C)$ Lifetime (L80/B10): 100000 h. $(tq+25^{\circ}C)$ Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted steel. Transparent methacrylate lenses with different facets to optimise the direction of the luminous flux. Anti-reflective white polycarbonate alveolar optic.

Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

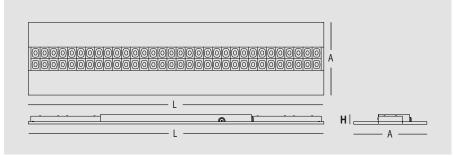
- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- anti-reflective black polycarbonate alveolar optic
- different dimensions

Applications

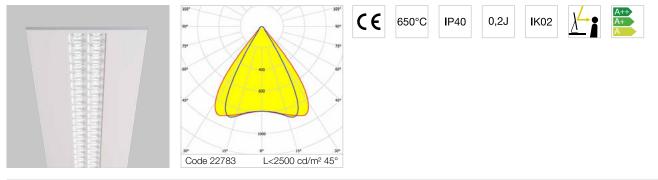
Environments with very exacting visual tasks and control of luminance at angles of >45° compared to the LEED certification. Environments: with VDTs, meeting rooms, offices. Environments: architectural, commercial, staterooms, banks.


Installation

Lay-in installation.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions

274 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

L 360 OCW

Optics Control White - LEED certification

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H		
Electronic	s wiring 230V-50/60Hz							
22782 ^{NEW}	L 362x12W LED OCW 296x1196	27	3407	4000	>80	1196x296x40		
22786 NEW	L 362x12W LED OCW 308x1246	27	3407	4000	>80	1246x308x40		
DALI elec	DALI electronic wiring 230V-50/60Hz							
22783 ^{NEW}	L 362x12W LED DALI OCW 296x1196	27	3407	4000	>80	1196x296x40		
22787 NEW	L 362x12W LED DALI OCW 308x1246	27	3407	4000	>80	1246x308x40		

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted white.

Removable gear-tray, functions as flux recuperator.

Pair of quick regulators for suspended installation (steel cable to be ordered separately).

Electrical characteristics

In compliance with EN 60598-1. Quick connection of the power supply from the outside of the body with the possibility of cascade connection in / out.

Source characteristics

- Linear LED module.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542)
- mounting brackets

Applications

Environments: with VDTs, meeting rooms, offices.

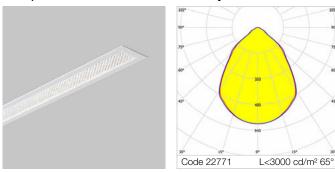
Environments: architectural, commercial, staterooms, banks.

OP version

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.

Installation

Pull-up recessed fitting, to be used with inspectable false-ceilings.

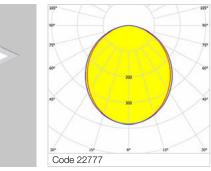

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions	
ſ <u></u>	
L	- A -

L 480 GSP

Flat prismatic diffuser in methacrylate with low luminance film


IP40

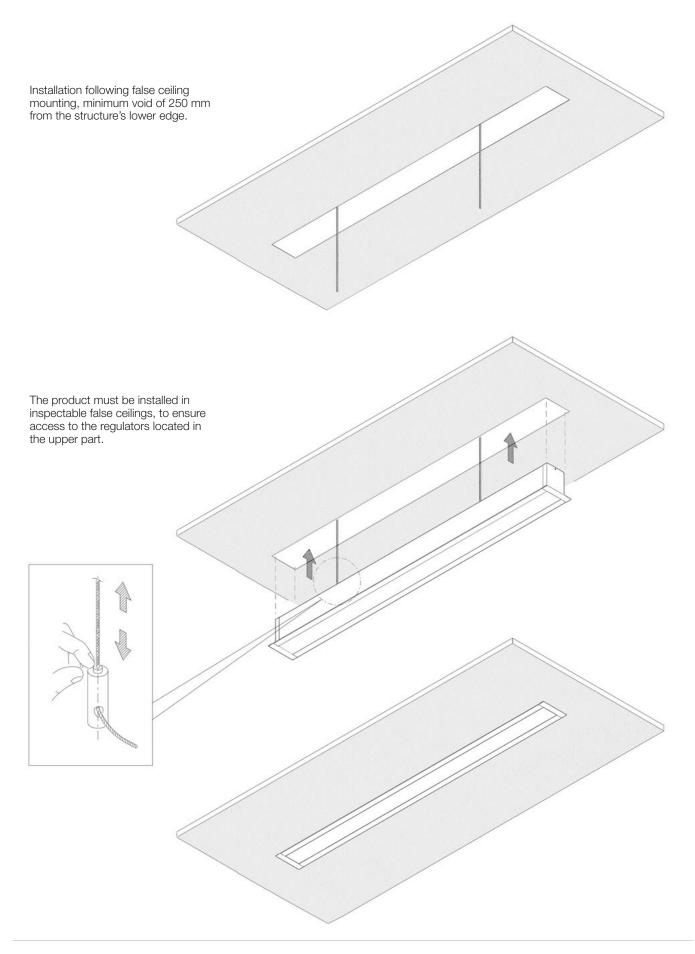
Average luminance $<3000 \text{ cd/m}^2$ for angles $>65^\circ$. SP transparent methacrylate diffuser, prismatic outside, antiglare. Anti-glare opal polycarbonate filter for brightness uniformity.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
22767 NEW	L 480 24W LED GSP 80x1210	28	2347	4000	>80	1210x80x95
22768 ^{NEW}	L 480 30W LED GSP 80x1510	35	2937	4000	>80	1510x80x95
DALI elec	tronic wiring 230V-50/60Hz					
22770 ^{NEW}	L 480 24W LED DALI GSP 80x1210	28	2347	4000	>80	1210x80x95
22771 NEW	L 480 30W LED DALI GSP 80x1510	35	2937	4000	>80	1510x80x95

L 480 OP

Opal diffuser

CE OP opal methacrylate flat diffuser, anti-glare.


IP40

A+

650°C

Code Item Absorbed Output CCT CRI Dimensions power (W) flux (Im) (K) LxAxH Electronic wiring 230V-50/60Hz L 480 24W LED OP 80x1210 22773™ 28 2699 4000 >80 1210x80x95 22774^{NEW} L 480 30W LED OP 80x1510 35 3378 4000 >80 1510x80x95 DALI electronic wiring 230V-50/60Hz 22776 ₩ L 480 24W LED DALI OP 80x1210 28 2699 4000 >80 1210x80x95 22777 NEW L 480 30W LED DALI OP 80x1510 1510x80x95 35 3378 4000 >80

Mounting details

L 480 Accessories

Suspension without controller, galvanized steel cable 1.5 mm diameter, load 15 kg.

Code	Item
A20485	Susp. without adjustment for Linux/HD - 0,5 m
A20486	Susp. without adjustment for Linux/HD - 1 m
A20487	Susp. without adjustment for Linux/HD - 2 m
A20488	Susp. without adjustment for Linux/HD - 3 m
A20489	Susp. without adjustment for Linux/HD - 4 m
A20490	Susp. without adjustment for Linux/HD - 5 m
A20491	Susp. without adjustment for Linux/HD - 6 m

Galvanized steel cable, diameter 1.5 mm, composed of 49 wires. 15 kg capacity (ratio 5:1).

Code	Item
A0716	Coil galvanized cable diam. 1.5mm - 100m The pack contains 100 metres.
A0717	Coil galvanized cable diam. 1.5mm - 500m The pack contains 500 metres.
A0718	Coil galvanized cable diam. 1.5mm - 1000m The pack contains 1000 metres.

Clamp in nickel-plated brass suitable for fixing and adjustment of galvanized steel wire (diameter 1,25 mm - 1,5 mm - 2 mm), complete with locking screws. The 2 hole clamp allows to block and adjust the cable on a bearing element (part of the building) or on rounded eye bolt.

Code	Item
A0714	Clamp 2 holes - 100 pcs The pack contains 100 pieces.

Clamp suitable for fixing and adjustment of galvanized steel wire (diameter 1.5 mm), with quick adjustment through unlock buttons. The clamp with 2 holes allow to fix and adjust the cable on the carrier structural element (belonging to the building) or with eye screw fixing.

Code A0659

Item

Adjustable clamp 2 holes - 10 pcs The pack contains 10 pieces.

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tg+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted galvanized steel. Attention: before ordering these products, we ask you to check the Installation instructions if the type of installation requires accessory brackets.

Electrical characteristics

In compliance with EN 60598-1.

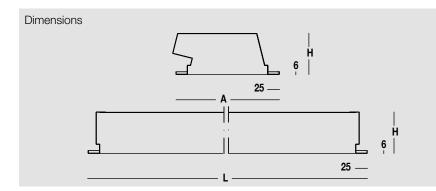
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- parabolic louvres 2M, 2MG, 2US, 3AO
- different power levels, colour rendering •
- indices and colour temperatures diffuser in SMP microprismatic PMMA or
- SP polycarbonate, Selfextinguishing V2 wiring: dimmable, CLO (more
- information on page 542), emergency

Applications

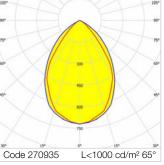

2S version

Environments: with VDTs, schools, offices. SP version

Environments where demanding visual tasks are performed and soft diffuse light is required for optimal visual comfort and total shielding of the light source.

Installation

Slat ceiling installation.

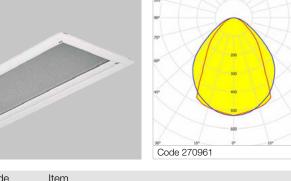

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

280

L 560 LED 2S

Semi-specular louvre

1x - Average luminance <1000 cd/m² for radial angles >65°.
2x - Average luminance <1500 cd/m² for radial angles >65°.
2S parabolic louvre in semi-specular aluminium, non-reflecting, with transverse blades closed at the top.


Prismatic PMMA diffuser for total shielding of the louvre compartment.

Film protective against dust and finger marks, adhesive, attached to louvre.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	s wiring 230V-50/60Hz					
270931	L 561x12W LED 2S 221x647	15	1452	4000	>80	647x221x95
270933	L 561x24W LED 2S 221x1256	28	2906	4000	>80	1256x221x95
270937	L 562x12W LED 2S 221x647	30	2771	4000	>80	647x221x95
270935	L 561x30W LED 2S 221x1556	35	3637	4000	>80	1556x221x95
270939	L 562x24W LED 2S 221x1256	56	5547	4000	>80	1256x221x95
270941	L 562x30W LED 2S 221x1556	70	6943	4000	>80	1556x221x95

L 560 LED SP

Flat diffuser, prismatic in methacrylate

SP transparent PMMA diffuser, prismatic exterior, anti-glare, locked to the prepainted white aluminium perimeter frame with sealing gasket, hinged opening.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
Electronic	3 WITHING 2308-30/00HZ					
270957	L 561x12W LED SP 221x647	15	1466	4000	>80	647x221x95
270959	L 561x24W LED SP 221x1256	28	2935	4000	>80	1256x221x95
270963	L 562x12W LED SP 221x647	30	2875	4000	>80	647x221x95
270961	L 561x30W LED SP 221x1556	35	3674	4000	>80	1556x221x95
270965	L 562x24W LED SP 221x1256	56	5755	4000	>80	1256x221x95
270967	L 562x30W LED SP 221x1556	70	7202	4000	>80	1556x221x95

604

L 560 Accessories

Fixing bracket in galvanized steel. Pack for 1 luminaire.

	Code	Item	
	A0177	15ZH - L320-L350-L560 The pack contains 4 pieces.	
/	Brackets for lay-in installation on load bearing side profiles parallel to the luminaire with louvre (min. adjustment 45 mm, max 72 mm) with diffuser (min. adjustment 27 mm, max 65 mm).		

Fixing bracket in galvanized steel for ceiling pull-up installation. Pack for 1 luminaire.

Code	Item
A0170	15BS - L320-L400-L560 The pack contains 4 pieces.

Brackets for lay-in installation on load bearing side profiles parallel to the luminaire with louvre (min. adjustment 18 mm, max 45 mm) with diffuser (min. adjustment 0 mm, max 40 mm).

here

Head fixings bracket for installation of the luminaire on load bearing structures (transverse by the luminaire). Pack for 1 luminaire.

Code	Item
A0174	15DP - L560 The pack contains 4 pieces.

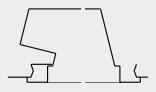
The bracket protruding 55 mm beyond the head side. Excursion min. 55 mm, max. 75 mm. Not suitable for diffused light recessed luminaires.

Head fixings bracket for installation of the luminaire on load bearing structures (transverse by the luminaire). Pack for 1 luminaire.

Code	Item
A0175	15GF - L560 The pack contains 4 pieces.

The bracket protruding 60 mm beyond the head side. Excursion min. 37 mm, max. 55 mm.

• •

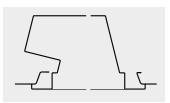

Head fixings bracket for installation of the luminaire on load bearing structures (transverse by the luminaire). Pack for 1 luminaire.

Code	Item
A0176	15XB - L560 The pack contains 4 pieces.

The bracket protruding 55 mm beyond the head side. Excursion min. 20 mm, max. 37 mm.

Mounting details

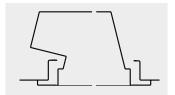
Staves spaced 100



Staves spaced 100

Fixing brackets item 15 DP, 15 GF, 15 XB.

HD staves, spaced 100


Fixing brackets item 15 DP, 15 GF.

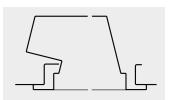
Staves spaced 100

Fixing brackets item 15 DP, 15 GF, 15 XB.

Staves spaced 100 - 200

Staves spaced 100-200

Fixing brackets item 15 DP, 15 GF.


Staves spaced 100-200

Fixing brackets item 15 DP, 15 GF.

Spacing of load-bearing profiles

For perfect installation of the luminaires, the load-bearing profile sections should be positioned at the distances indicated above (net space between profiles).

Staves spaced 100-200

Fixing brackets item 15 DP, 15 GF.

L 580 LED IP54

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted galvanized steel. Total IP54 protection degree.

Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 2.

On request

- diffuser in OP opal PMMA or SP polycarbonate, self-extinguishing V2
- different power levels, colour rendering indices and colour temperatures
- different dimensions
- wiring: dimmable D1-10V, CLO (more information on page 542), emergency
- brackets for pull-up installation
- HACCP versions for use in the food industry

Applications

Environments: hospital premises, aseptic, sterilised rooms, laboratories. Environments requiring a high level of protection, high levels of light, lamp shielding and simplified cleaning. Tempered glass is not immune to falling fragments from harmless and caused by shocks or exceptionally derived from the tempering process.

Environments in which there are foodstuffs

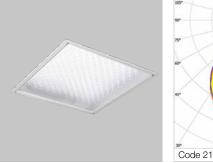
or machines with moving parts, with large temperature fluctuations, and generally, in any environments that require total protection against falling fragments, SP PC version with a polycarbonate diffuser can be supplied. If necessary an L/E version i.e. with the smooth part mounted externally, or specific luminaries with laminated glass (series L 350 and L 590) with suitable frame can also be supplied. **SP version**

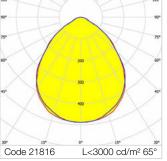
Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Installation

Lay-in or pull-up installation.

Light Management

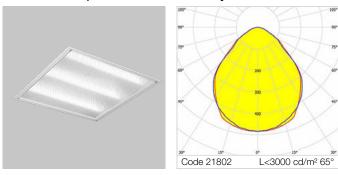

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions Standard		
	6 12.5 –	6 A = L6
Wide Edge	6 6	A = L256

284 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

L 580 LED VS

Moulded glass



Average luminance <3000 cd/m² for radial angles >65°. VS moulded glass, anti-glare, tempered, non-combustible, thickness 4 mm, locked to the white painted aluminium perimetrical frame, sealing gasket, hinged opening.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H				
Electronic wiring 230V-50/60Hz										
21815	L 583x10W LED VS IP54 596x596	34	3986	4000	>80	596x596x95				
21816	L 584x10W LED VS IP54 596x596	45	5253	4000	>80	596x596x95				
DALI elec	tronic wiring 230V-50/60Hz									
21843 ^{NEW}	L 583x10W LED DALI VS IP54 596x596	34	3986	4000	>80	596x596x95				
21844 ^{NEW}	L 584x10W LED DALI VS IP54 596x596	45	5253	4000	>80	596x596x95				
Wide edge	e - Electronic wiring 230V-50/60Hz									
21822	L 583x10W LED VS IP54 621x621	34	3986	4000	>80	621x621x95				
21823	L 584x10W LED VS IP54 621x621	45	5253	4000	>80	621x621x95				
Wide edge	e - DALI electronic wiring 230V-50/60Hz									
21850 ^{NEW}	L 583x10W LED DALI VS IP54 621x621	34	3986	4000	>80	621x621x95				
21851 NEW	L 584x10W LED DALI VS IP54 621x621	45	5253	4000	>80	621x621x95				

L 580 LED SP

Flat diffuser, prismatic in methacrylate

IP54

Average luminance <3000 cd/m² for radial angles >65°. SP transparent PMMA diffuser, prismatic, anti-glare, locked to the pre-painted white aluminium perimeter frame with sealing gasket, hinged opening.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H			
Electronic wiring 230V-50/60Hz									
21801	L 583x10W LED SP IP54 596x596	34	4142	4000	>80	596x596x95			
21802	L 584x10W LED SP IP54 596x596	45	5474	4000	>80	596x596x95			
DALI elec	tronic wiring 230V-50/60Hz								
21829 ^{NEW}	L 583x10W LED DALI SP IP54 596x596	34	4142	4000	>80	596x596x95			
21830 ^{NEW}	L 584x10W LED DALI SP IP54 596x596	45	5474	4000	>80	596x596x95			
Wide edge	e - Electronic wiring 230V-50/60Hz								
21808	L 583x10W LED SP IP54 621x621	34	4142	4000	>80	621x621x95			
21809	L 584x10W LED SP IP54 621x621	45	5474	4000	>80	621x621x95			
Wide edge	e - DALI electronic wiring 230V-50/60Hz								
21836 ^{NEW}	L 583x10W LED DALI SP IP54 621x621	34	4142	4000	>80	621x621x95			
21837 NEW	L 584x10W LED DALI SP IP54 621x621	45	5474	4000	>80	621x621x95			

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester.

Flow recuperator in specular aluminium, high efficiency, with superficial titaniummagnesium treatment, non-iridescent. Perimetrical frame in white painted stainless steel, sealing gasket, hinged opening, stainless steel closing screws. Total IP65 protection degree.

Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 2.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: dimmable D1-10V, CLO (more information on page 542), emergency
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- brackets for pull-up installation

Applications

Environments: hospital premises, transit areas, laboratories, platform-roof, underpasses.

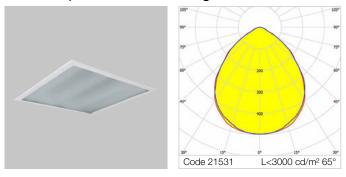
Environments: sterilized, aseptic. In hospital environments, food industry or machines with parts in motion, with considerable sudden temperature changes, and in general in any environments requiring total protection against falling fragments, use luminaires with laminated glass only. Tempered glass is not immune to falling fragments from harmless and caused by shocks or exceptionally derived from the tempering process.

Environments requiring a high level of protection, high levels of light, lamp shielding and simplified cleaning. Environments with exacting visual tasks, where diffused soft light for optimum visual comfort is required.


Installation

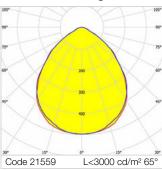
Lay-in or pull-up installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

L 590 LED RVS

Flow recuperator and molded glass

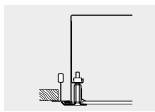

VS moulded glass, anti-glare, tempered, non-combustible, thickness 4 mm, locked to the white painted stainless steel perimetrical frame, sealing gasket, hinged opening. On request, HACCP versions for use in the food industry.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
Electronic	c wiring 230V-50/60Hz						
21522	L 594x10W LED RVS 599x599	45	5516	4000	>80	599x599x95	
21529	L 594x10W/940 LED RVS 599x599	45	4413	4000	>90	599x599x95	
22754	L 592x24W/940 LED RVS 299x1199	56	5294	4000	>90	1199x299x95	
21524	L 596x10W LED RVS 599x599	70	8274	4000	>80	599x599x95	
21531	L 596x10W/940 LED RVS 599x599	70	6619	4000	>90	599x599x95	
DALI elec	tronic wiring 230V-50/60Hz						
21536 ^{NEW}	L 594x10W LED DALI RVS 599x599	45	5516	4000	>80	599x599x95	
21538 ^{№₩}	L 596x10W LED DALI RVS 599x599	70	8274	4000	>80	599x599x95	
21543 ^{NEW}	L 594x10W/940 LED DALI RVS 599x599	45	4413	4000	>90	599x599x95	
21545 №	L 596x10W/940 LED DALI RVS 599x599	70	6619	4000	>90	599x599x95	
22757 NEW	L 592x24W/940 LED DALI RVS 299x1199	56	5294	4000	>90	1199x299x95	

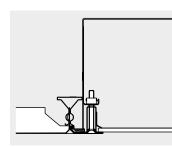
L 590 LED RVSS

Flux recuperator and laminated moulded glass

VSS moulded laminated dipped glass, non-combustible, thickness 7 mm, stuck to the perimeter frame in white painted stainless steel, with sealing gasket, hinged opening.

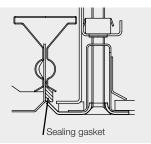

Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
21557	L 594x10W/940 LED RVSS 599x599	45	4103	4000	>90	599x599x95
22755	L 592x24W/940 LED RVSS 299x1199	56	4922	4000	>90	1199x299x95
21559	L 596x10W/940 LED RVSS 599x599	70	6154	4000	>90	599x599x95
DALI elec	tronic wiring 230V-50/60Hz					
21571 NEW	L 594x10W/940 LED DALI RVSS 599x599	45	4103	4000	>90	599x599x95
21573 ^{NEW}	L 596x10W/940 LED DALI RVSS 599x599	70	6154	4000	>90	599x599x95
22758 NEW	L 592x24W/940 LED DALI RVSS 299x1199	56	4922	4000	>90	1199x299x95




Anti-conde	nsation diffuser cable gland.
 Code	Item
A0187	Anti-condensation cable gland
Recommer condensati	nded for installations in environments with temperature sudden changes or subject to on.
Reducing s	ealing ring, dedicated to the use of cables with an external diameter of up to 8 mm.
Code	Item
A0521 NEW	Reducing sealing ring – diam.8mm

Mounting details


Mineral fibre panels with exposed structure. Hanging from rough ceiling.

Plasterboard. Hanging from rough ceiling.

false-ceiling with metal panels, we recommend installing adhesive gasket (not supplied by 3F Filippi) on the side of the panels surrounding the luminaire.

Notes:

- Luminaires for false ceilings with exposed structure 600x600 and plasterboard, pull-up installation.

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted extruded aluminium. Removable gear-tray, functions as flux

recuperator, in specular aluminium, high efficiency, with titanium-magnesium surface treatment, non-iridescent.

Electrical characteristics

In compliance with EN 60598-1. 1+1 wiring in twincircuit. Head entrance feeding.

Source characteristics

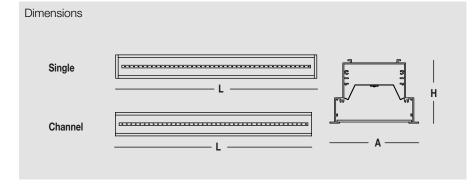
- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- wiring: dimmable, CLO (more information on page 542), emergency
- possibility to create lighting corners
- micro-prismatic diffuser

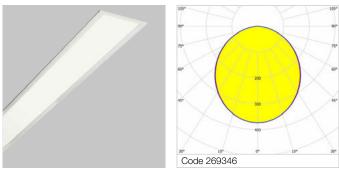
Applications

Environments: with VDTs, meeting rooms, offices.


Environments: architectural, commercial, staterooms, banks.

OP version

Environments where dynamic, soft and diffuse light is required for optimal visual comfort.


Installation

Pull-up installation.

Barraluce L LED OP - Single

Opal PMMA flat diffuser

CE 650°C IP40

Output

flux (Im)

3726

7451

Absorbed

power (W)

35

70

CRI

>80

Dimensions

LxAxH

>80 1496x140x100

2962x140x100

Luminaire for standalone installation with aluminium end caps (included).

CCT

(K)

4000

4000

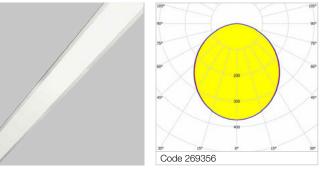
OP opal methacrylate flat diffuser, anti-glare.

Barraluce L LED OP - Channel

Barraluce L 1x30W LED OP L1496

Barraluce L 1+1x30W LED OP L2962

Opal PMMA flat diffuser


Item

Electronic wiring 230V-50/60Hz

Code

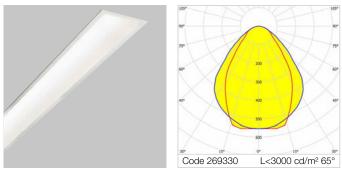
269346

269348

 650°C
 IP40
 Driver/LED
 A++

 SELV
 A++

Luminaire for continuous channel installation (end caps not included).


OP opal methacrylate flat diffuser, anti-glare.

Through-wiring, 5-pole, 2.5 mm² section with irreversible fastconnection plug/socket, with irreversible fast-connection socket for branch, connecting to the socket positioned on the gear-tray unit.

Code	Item	Absorbed	Output	CCT	CRI	Dimensions	
		power (W)	flux (lm)	(K)		LxAxH	
Electronic	c wiring 230V-50/60Hz						
269354	Barraluce L 1x30W LED OP 5P L1466	35	3726	4000	>80	1466x140x100	
269356	Barraluce L 1+1x30W LED OP 5P L2932	70	7451	4000	>80	2932x140x100	

Barraluce L LED SP - Single

Flat diffuser, prismatic in methacrylate

Average luminance $<\!3000~{\rm cd/m^2}$ for radial angles $>\!65^\circ$. Luminaire for standalone installation with aluminium end caps (included).

SP flat diffuser in PMMA transparent prismatic methacrylate, anti-glare.

CCT

(K)

CRI

Dimensions

LxAxH

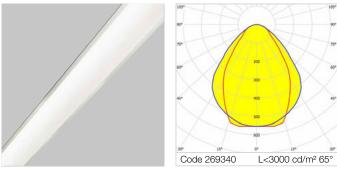
Electronic wiring 230V-50/60Hz

Item

Code

	3 • • • • • •						
269330	Barraluce L 1x30W LED SP L1496	35	4027	4000	>80	1496x140x100	
269332	Barraluce L 1+1x30W LED SP L2962	70	8053	4000	>80	2962x140x100	

Absorbed


power (W)

Output

flux (Im)

Barraluce L LED SP - Channel

Flat diffuser, prismatic in methacrylate

Average luminance $<3000 \text{ cd/m}^2$ for radial angles $>65^\circ$. Luminaire for continuous channel installation (end caps not included).

SP flat diffuser in PMMA transparent prismatic methacrylate, anti-glare.

Through-wiring, 5-pole, 2.5 mm² section with irreversible fastconnection plug/socket, with irreversible fast-connection socket for branch, connecting to the socket positioned on the gear-tray unit.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H

Electronic wiring 230V-50/60Hz

269338	Barraluce L 1x30W LED SP 5P L1466	35	4027	4000 >80 1466x140x100	
269340	Barraluce L 1+1x30W LED SP 5P L2932	70	8053	4000 >80 2932x140x100	

Barraluce L Accessories

	Free-posit	ion sliding bracket in stainless steel.	
	Code	Item	
	1	A0483	Sliding bracket Barraluce L
		To be use	d with inspectable false-ceilings.

Hot-dip galv	anised steel required to install the fixture on plasterboard.
Code	Item
A01420	Couple brackets for Barraluce L

Linear connecting elements in hot-galvanized steel with grub screws for fast and rigid installation.

Code	Item
A01423	Linear connecting elements Barraluce

These accessories are not suitable for single-unit installation.

Pair of end caps for channels in white painted aluminium, with screws for fixing to housing, always required for the channel version. Thickness: 15 mm each cap.

Code	Item
A01417	Pair end caps Barraluce L channel diffuser

These accessories are not suitable for single-unit installation.

Terminal block (plug/socket) with irreversible snap-in double clamp, for power-supply connection at beginning and end of the channel, 5 poles.

A02484	5P socket/plug terminal block Beginning/End Channel
Code	Item

These accessories are not suitable for single-unit installation.

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L90/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted steel. Passive heat dissipator in anodised aluminium, oversized, for optimum thermal management of the LED module. Flow recuperator in specular aluminium with superficial titanium-magnesium treatment, non-iridescent. Lock-in mounting of the glass/PMMA in the lateral seats in specular aluminium. Fixing brackets in galvanized steel, supplied.

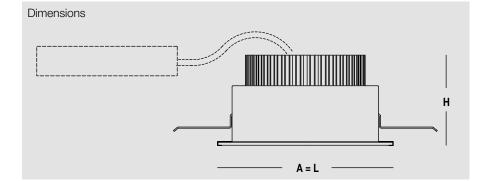
Electrical characteristics

In compliance with EN 60598-1. Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant. Wiring on a separate unit. Class II.

Source characteristics

- Compact LED module.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request


- asymmetric louvre
- different power levels, colour rendering indices and colour temperatures
- wiring: dimmable, CLO (more information on page 542)
- on/off ballast, compliant with EN 60598-2-22 (high-risk areas excluded)
- IP54 version
- ceiling version

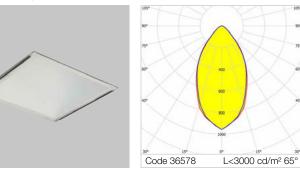
Applications

Environments: commercial, exhibition areas, transit areas, halls, shops, great halls, display windows.

Installation

Pull-up installation.

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com


296

IK08

5J

Lucequadro LED VS

Moulded glass

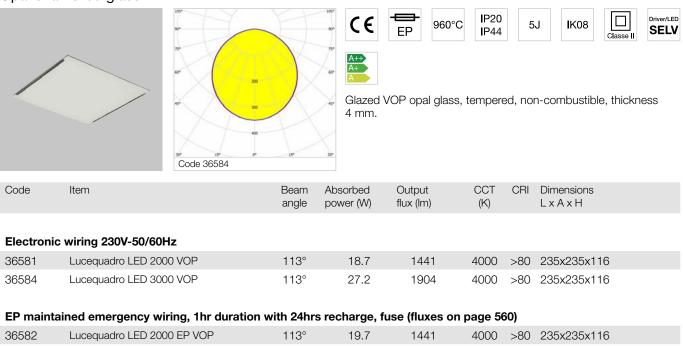
Average luminance <3000 cd/m² for radial angles >65°. VS moulded glass, anti-glare, tempered, non-combustible, thickness 4 mm.

IP20

IP44

Code	Item	Beam angle	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz						
36575	Lucequadro LED 2000 VS	58°	18.7	2297	4000	>80	235x235x116
36578	Lucequadro LED 3000 VS	58°	27.2	3036	4000	>80	235x235x116

36578	Lucequadro LED 3000 VS	58°	27.2	3036	4000	>80	235x235


EP mainta	ained emergency wiring, 1hr duration	with 24hrs ı	recharge, fu	se (fluxes o	n page 56	60)	
36576	Lucequadro LED 2000 EP VS	58°	19.7	2297	4000	>80	235x235x116
36579	Lucequadro LED 3000 EP VS	58°	28.2	3036	4000	>80	235x235x116

Lucequadro LED VOP

Opal enamelled glass

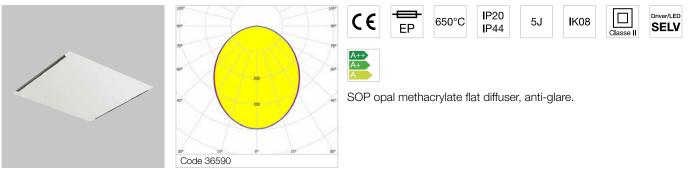
36585

Lucequadro LED 3000 EP VOP

28.2

113°

1904


4000

>80

235x235x116

Lucequadro LED SOP

Opal PMMA flat diffuser

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz						

36587	Lucequadro LED 2000 SOP	101°	18.7	2243	4000 >80	235x235x116
36590	Lucequadro LED 3000 SOP	101°	27.2	2965	4000 >80	235x235x116

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

36588	Lucequadro LED 2000 EP SOP	101°	19.7	2243	4000	>80	235x235x116
36591	Lucequadro LED 3000 EP SOP	101°	28.2	2965	4000	>80	235x235x116

Accessories

Pair of reinforcing brackets for mineral fibre, metal and plasterboard panels, height 20 mm.

Code Item A0189 Rein

Reinforcing bracket Lucequadro for pan./plast.

Construction characteristics

Illuminotechnical characteristics

Direct symmetric distribution. Lifetime (L85/B10): 30000 h. (tq+25°C) Lifetime (L80/B10): 50000 h. (tq+25°C) Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing and fixing brackets in galvanized steel.

Passive heat dissipator in anodised aluminium, oversized, for optimum thermal management of the LED module. Parabolic louvre in polished anodised aluminium, anti-glare, non-iridescent.

Electrical characteristics

In compliance with EN 60598-1. Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant. Wiring on a separate unit. Class II.

Source characteristics

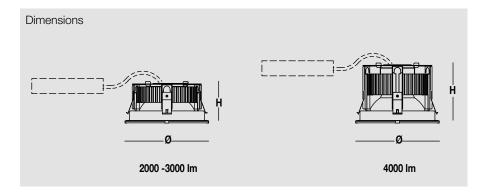
- Compact LED module.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request

excluded)

- different power levels, colour rendering indices and colour temperatures
- wiring: CLO (more information on page
- 542)
 on/off ballast, compliant with EN 60598-2-22 (high-risk areas

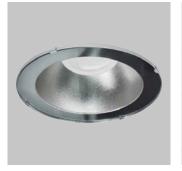
Applications

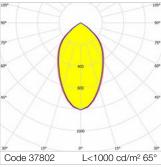

Environments: architectural, commercial, exhibition areas, transit areas, corridors, shops, display windows. In false ceilings with narrow voids.

Installation

Pull-up installation.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).



300

Galassia 220 VT

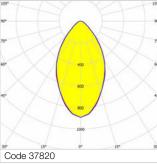
Transparent glass

Average luminance <1000 cd/m² for radial angles >65°. Parabolic louvre in polished anodised aluminium, anti-glare, non-iridescent.

Circular anti-glare LED shielding lens in opal PMMA for good visual comfort.

 $\ensuremath{\mathsf{VT}}$ transparent glass, tempered, not flammable, locked and in line with the trim.

It does not allow the access of the insects into the luminous compartment, avoiding unpleasant visual effects and extraordinary maintenance.


Code	Item	Beam angle	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions ø x H
Electronic	s wiring 230V-50/60Hz						
37759	Galassia 220 LED 2000 VT	63°	18.7	2127	4000	>80	221x103
37802	Galassia 220 LED 3000 VT	63°	27.2	2811	4000	>80	221x103
37834	Galassia 220 LED 4000 VT	63°	34.2	3701	4000	>80	221x151
DALI elec	tronic wiring 230V-50/60Hz						
37760	Galassia 220 LED 2000 DALI VT	63°	18.7	2127	4000	>80	221x103
37803	Galassia 220 LED 3000 DALI VT	63°	27.2	2811	4000	>80	221x103
37836	Galassia 220 LED 4000 DALI VT	63°	34.2	3701	4000	>80	221x151

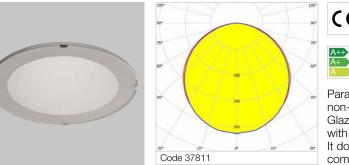
37761	Galassia 220 LED 2000 EP VT	63°	19.7	2127	4000	>80 22	1x103
37804	Galassia 220 LED 3000 EP VT	63°	28.2	2811	4000	>80 22	1x103

Galassia 220 VS

Moulded glass

2000 - Average luminance <3000 cd/m² for radial angles >65°. Parabolic louvre in polished anodised aluminium, anti-glare, non-iridescent.

Anti-glare microprismatic VS moulded glass, tempered, not flammable, locked and in line with the trim.


It does not allow the access of the insects into the luminous compartment, avoiding unpleasant visual effects and extraordinary maintenance.

Code	Item	Beam angle	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions ø x H			
Electronic	wiring 230V-50/60Hz									
37777	Galassia 220 LED 2000 VS	60°	18.7	2382	4000	>80	221x103			
37820	Galassia 220 LED 3000 VS	60°	27.2	3148	4000	>80	221x103			
37838	Galassia 220 LED 4000 VS	60°	34.2	4145	4000	>80	221x151			
DALI elec	DALI electronic wiring 230V-50/60Hz									
37778	Galassia 220 LED 2000 DALI VS	60°	18.7	2382	4000	>80	221x103			
37821	Galassia 220 LED 3000 DALI VS	60°	27.2	3148	4000	>80	221x103			
37840	Galassia 220 LED 4000 DALI VS	60°	34.2	4145	4000	>80	221x151			

			• •	•		
37779	Galassia 220 LED 2000 EP VS	60°	19.7	2382	4000	>80 221x103
37822	Galassia 220 LED 3000 EP VS	60°	28.2	3148	4000	>80 221x103

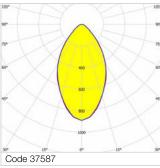
Galassia 220 VOP

Opal enamelled glass

Parabolic louvre in polished anodised aluminium, anti-glare, non-iridescent.

Glazed OP opal glass, tempered, non-combustible, locked in line with the trim.

It does not allow the access of the insects into the luminous compartment, avoiding unpleasant visual effects and extraordinary maintenance.

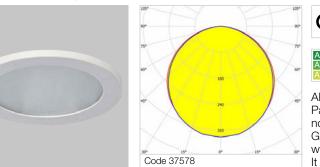

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
Electronic	wiring 230V-50/60Hz						
37768	Galassia 220 LED 2000 VOP	114°	18.7	1466	4000	>80	221x103
37811	Galassia 220 LED 3000 VOP	114°	27.2	1938	4000	>80	221x103
37842	Galassia 220 LED 4000 VOP	114°	34.2	2551	4000	>80	221x151
DALI elec	tronic wiring 230V-50/60Hz						
37769	Galassia 220 LED 2000 DALI VOP	114°	18.7	1466	4000	>80	221x103
37812	Galassia 220 LED 3000 DALI VOP	114°	27.2	1938	4000	>80	221x103
37844	Galassia 220 LED 4000 DALI VOP	114°	34.2	2551	4000	>80	221x151

37770	Galassia 220 LED 2000 EP VOP	114°	19.7	1466	4000	>80 221x103
37813	Galassia 220 LED 3000 EP VOP	114°	28.2	1938	4000	>80 221x103

Galassia 220 AB VS

Moulded glass

2000 - Average luminance <3000 cd/m² for radial angles >65°.
AB trim in white moulded Bayblend.
Parabolic louvre in polished anodised aluminium, anti-glare, non-iridescent.
Anti-glare microprismatic VS moulded glass, tempered, not flammable, locked and in line with the trim.


It does not allow the access of the insects into the luminous compartment, avoiding unpleasant visual effects and extraordinary maintenance.

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
Electronic	c wiring 230V-50/60Hz						
37551	Galassia 220 LED AB 2000 VS	60°	18.7	2382	4000	>80	226x103
37587	Galassia 220 LED AB 3000 VS	60°	27.2	3148	4000	>80	226x103
37604	Galassia 220 LED AB 4000 VS	60°	34.2	4145	4000	>80	226x151
DALI elec	tronic wiring 230V-50/60Hz						
37552	Galassia 220 LED AB 2000 DALI VS	60°	18.7	2382	4000	>80	226x103
37588	Galassia 220 LED AB 3000 DALI VS	60°	27.2	3148	4000	>80	226x103
37606	Galassia 220 LED AB 4000 DALI VS	60°	34.2	4145	4000	>80	226x151

37553	Galassia 220 LED AB 2000 EP VS	60°	19.7	2382	4000	>80 226x103	
37589	Galassia 220 LED AB 3000 EP VS	60°	28.2	3148	4000	>80 226x103	

Galassia 220 AB VOP

Opal enamelled glass

AB trim in white moulded Bayblend.

Parabolic louvre in polished anodised aluminium, anti-glare, non-iridescent.

Glazed OP opal glass, tempered, non-combustible, locked in line with the trim.

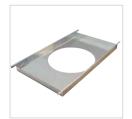
It does not allow the access of the insects into the luminous compartment, avoiding unpleasant visual effects and extraordinary maintenance.

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x H
Electronic	s wiring 230V-50/60Hz						
37542	Galassia 220 LED AB 2000 VOP	114°	18.7	1466	4000	>80	226x103
37578	Galassia 220 LED AB 3000 VOP	114°	27.2	1938	4000	>80	226x103
37608	Galassia 220 LED AB 4000 VOP	114°	34.2	2551	4000	>80	226x151
DALI elec	tronic wiring 230V-50/60Hz						
37543	Galassia 220 LED AB 2000 DALI VOP	114°	18.7	1466	4000	>80	226x103
37579	Galassia 220 LED AB 3000 DALI VOP	114°	27.2	1938	4000	>80	226x103
37610	Galassia 220 LED AB 4000 DALI VOP	114°	34.2	2551	4000	>80	226x151

37544	Galassia 220 LED AB 2000 EP VOP	114°	19.7	1466	4000 >80 226x103
37580	Galassia 220 LED AB 3000 EP VOP	114°	28.2	1938	4000 >80 226x103

Galassia Accessories

Reinforcing bracket for panels 600x600, 600x1200 with exposed structure, in hot-galvanized steel.


Code	Item
A0202	False ceiling bracket - for luminaire D.220

Anti-rotation adapter for grilled ceiling with closing mats (always suggested to avoid stray light). Adapter made in steel - white color, RAL 9010.

Code	item
A0204	Grid bracket h40mm - for luminaire D.220
A01523	Grid bracket h50mm - for luminaire D.220

On request: RAL colour. Bracket size 289x289 mm for 50x50, 75x75, 100x100 mesh, slat 10 mm thick.

Reinforcing bracket for metal panels 600x600 with concealed structure, in hot-galvanized steel.

Code	Item
A0214	Metal pan. reinforcing bracket D.220

Recessed luminaires

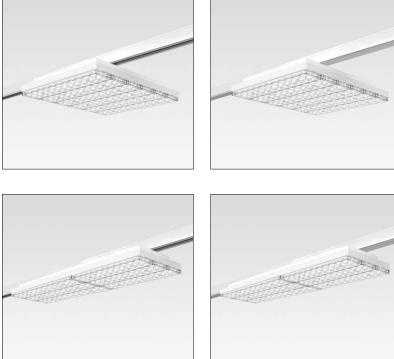
3F Zeta Track

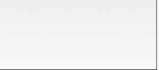
Binario 3F

3F Emilio

Systems and track-mounted products

Page	Product	Screen	Optic	Lens
310	3F Six			
312	3F Six Track			•
316	3F Six Blindo			•
320	3F Linux			
330	3F Linux S IP40			
332	3F Linux S IP54			
334	3F Linux L Light modules			٠
344	3F Linux D Light modules	•		
346	3F Linux DR Light modules	•	•	
350	3F Linux Track			
358	3F Emilio			
364	3F Emilio Track			•
370	3F Emilio Track DALI			•
372	3F Emilio Track Bluetooth			•
374	3F Zeta Track			
374	3F Zeta Track L			•
376	Binario 3F			
378	Binario 3F			


3F Six

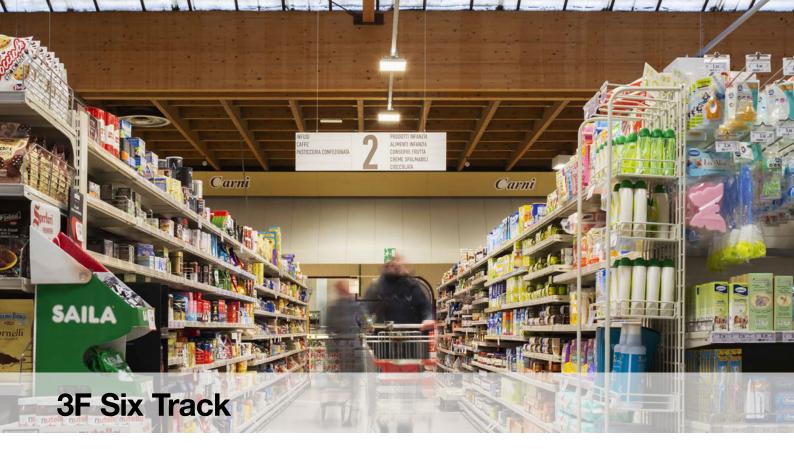

Compact efficiency

3F Six Track 307x378

3F Six Blindo 307x378

3F Six Track 190x602

3F Six Blindo 190x602


3F Six is the new compact fixture designed by 3F Filippi that thanks to its compact height and flat shape with a visible edge of only 3 cm, is particularly suitable for shopping centres, exhibition areas and warehouses.

The fixture (available in both a square and rectangular version), can be installed in a flexible way on busways or electrified tracks.

Thanks to the use of six methacrylate optical lenses installed on the fixture is it possible to obtain customised luminous distribution by choosing from the eight types of optics available: wide, double asymmetric, wide double asymmetric, asymmetric, medium, concentrated, hyper concentrated and UGR.

The latter configuration, designed to be used in environments with more stringent vision requirements or where there are VDTs, uses lenses with controlled luminance and a UGR<19 glare index.

3F Six is available in a version with ON/OFF wiring or DALI control to manage the fixture and the energy consumption of the entire lighting system.

Construction characteristics

Illuminotechnical characteristics Direct distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted steel. Height only 52 mm. PMMA lenses with external flat surface. The fixture can be rotated horizontally from 0° to 330°.

Electrical characteristics

Truck adapter, 4/6-way.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

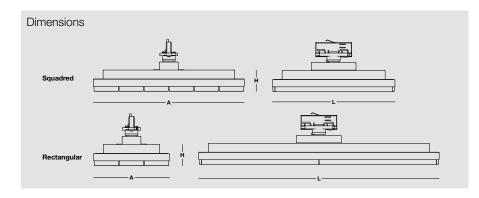
- different light distributions
- different powers
- LED sources with different colour temperatures
- housing in different RAL colours
- wiring: CLO (more information on page 542)
- fixture rotation lock bracket

Applications

Environments: industrial, commercial, exhibition areas, transit areas, lobbies or waiting rooms, shops.

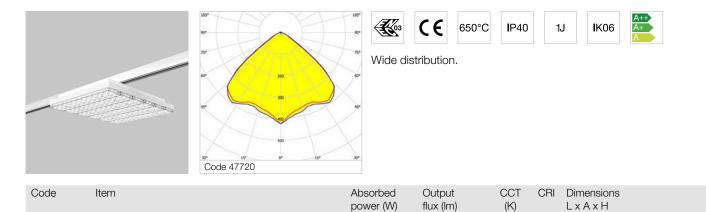
Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

UGR version


Environments that need luminance control.

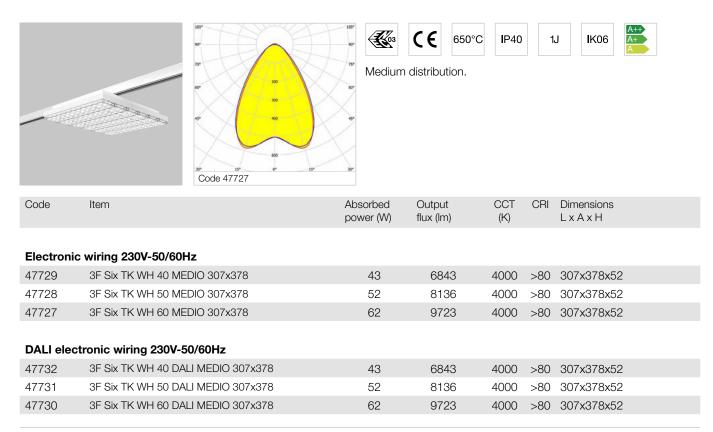
Installation

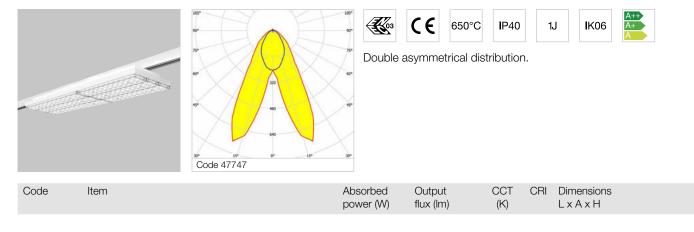
This product is suitable for installation on a 3-phase electrified busbar "Binario 3F" (on page 376).


Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

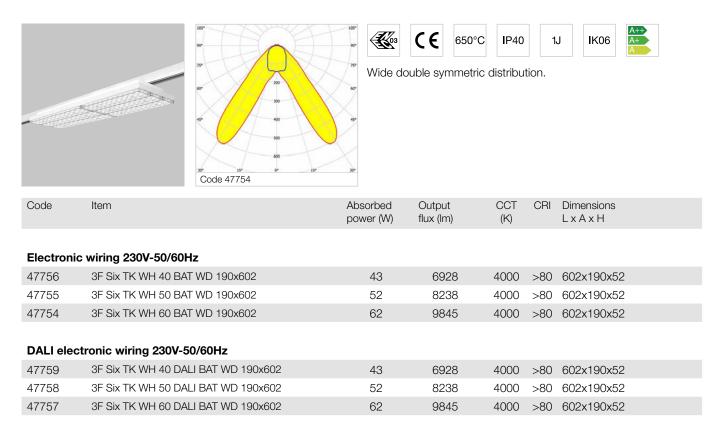
312 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

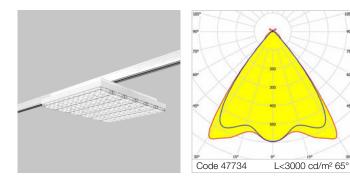

3F Six Track Wide


Electronic wiring 230V-50/60Hz

	47722	3F Six TK WH 40 AMPIO 307x378	43	6936	4000	>80	307x378x52		
	47742	3F Six TK WH 40 AMPIO 190x602	43	6936	4000	>80	602x190x52		
	47721	3F Six TK WH 50 AMPIO 307x378	52	8247	4000	>80	307x378x52		
	47741	3F Six TK WH 50 AMPIO 190x602	52	8247	4000	>80	602x190x52		
	47720	3F Six TK WH 60 AMPIO 307x378	62	9855	4000	>80	307x378x52		
	47740	3F Six TK WH 60 AMPIO 190x602	62	9855	4000	>80	602x190x52		
DALI electronic wiring 230V-50/60Hz									
	47725	3F Six TK WH 40 DALI AMPIO 307x378	43	6936	4000	>80	307x378x52		
	47745	3F Six TK WH 40 DALI AMPIO 190x602	43	6936	4000	>80	602x190x52		
	47724	3F Six TK WH 50 DALI AMPIO 307x378	52	8247	4000	>80	307x378x52		
	47744	3F Six TK WH 50 DALI AMPIO 190x602	52	8247	4000	>80	602x190x52		
	47723	3F Six TK WH 60 DALI AMPIO 307x378	62	9855	4000	>80	307x378x52		
	47743	3F Six TK WH 60 DALI AMPIO 190x602	62	9855	4000	>80	602x190x52		

3F Six Track Medium


3F Six Track BAT


Electronic wiring 230V-50/60Hz

602x190x52 602x190x52
302x190x52
602x190x52
602x190x52
602x190x52 602x190x52
302x190x52

3F Six Track BAT WD

3F Six Track UGR

X

Controlled symmetric distribution. Average luminance <3000 cd/m² for radial angles >65°.

Code	ltem	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
Electron	ic wiring 230V-50/60Hz						
47761	3F Six TK WH 40 UGR 190x602	43	6921	4000	>80	602x190x52	
47734	3F Six TK WH 40 UGR 307x378	43	6921	4000	>80	307x378x52	
DALI ele	ctronic wiring 230V-50/60Hz						
47762	3F Six TK WH 40 DALI UGR 190x602	43	6921	4000	>80	602x190x52	
47735	3F Six TK WH 40 DALI UGR 307x378	43	6921	4000	>80	307x378x52	

90* 75*

60*

Construction characteristics

Illuminotechnical characteristics Direct distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in white painted steel. Height only 52 mm. PMMA lenses with external flat surface. Can be positioned transversally or longitudinally to the busway.

Electrical characteristics

Power cable type H05Z1Z1-F 3-5x1,5 mm² that protrudes by 1 m with sheared ends.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

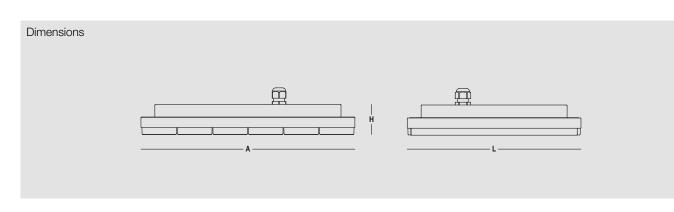
- different light distributions
- different powers
- LED sources with different colour temperatures
- housing in different RAL colours
- wiring: CLO (more information on page 542)
- versions with rectangular shape

Applications

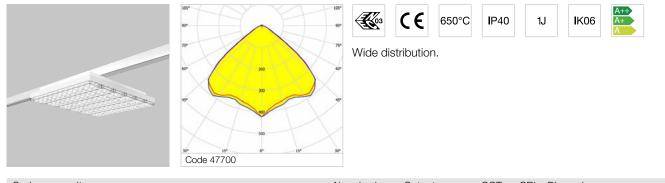
Environments: industrial, commercial, exhibition areas, transit areas, lobbies or waiting rooms, shops. Luminaires suitable, from a hygienic point

food industry (HACCP / IFS / BRC-Standard).

UGR version


Environments that need luminance control.

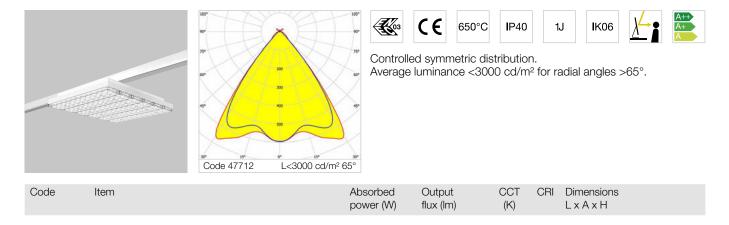
Installation


This product is suitable for installation on a busway (hooking brackets not included).

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

3F Six Blindo Wide



Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
Electroni	c wiring 230V-50/60Hz						
47700	3F Six WH 60 AMPIO 307x378	62	9855	4000	>80	307x378x52	
47699	3F Six WH 70 AMPIO 307x378	72	11427	4000	>80	307x378x52	
47698	3F Six WH 85 AMPIO 307x378	94	14086	4000	>80	307x378x52	
DALI electronic wiring 230V-50/60Hz							
47703	3F Six WH 60 DALI AMPIO 307x378	62	9855	4000	>80	307x378x52	
47702	3F Six WH 70 DALI AMPIO 307x378	72	11427	4000	>80	307x378x52	
47701	3F Six WH 85 DALI AMPIO 307x378	94	14086	4000	>80	307x378x52	

3F Six Blindo Medium

	Code 47707	Medium	CE 650°C	C IP40	1.	J IKO6		
Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H		
Electronic wiring 230V-50/60Hz								
47707	3F Six WH 60 MEDIO 307x378	62	9723	4000	>80	307x378x52		
47706	3F Six WH 70 MEDIO 307x378	72	11273	4000	>80	307x378x52		
47705	3F Six WH 85 MEDIO 307x378	94	13898	4000	>80	307x378x52		
DALI elect	ronic wiring 230V-50/60Hz							
47710	3F Six WH 60 DALI MEDIO 307x378	62	9723	4000	>80	307x378x52		
47709	3F Six WH 70 DALI MEDIO 307x378	72	11273	4000	>80	307x378x52		
47708	3F Six WH 85 DALI MEDIO 307x378	94	13898	4000	<u> 80</u>	307x378x52		

3F Six Blindo UGR

Electronic wiring 230V-50/60Hz

47712	3F Six WH 40 UGR 307x378	43	6921	4000 >80 307x378x52					
DALI electronic wiring 230V-50/60Hz									
47713	3F Six WH 40 DALI UGR 307x378	43	6921	4000 >80 307x378x52					

3F Linux

1

Simply modular

3F Linux L | IP40

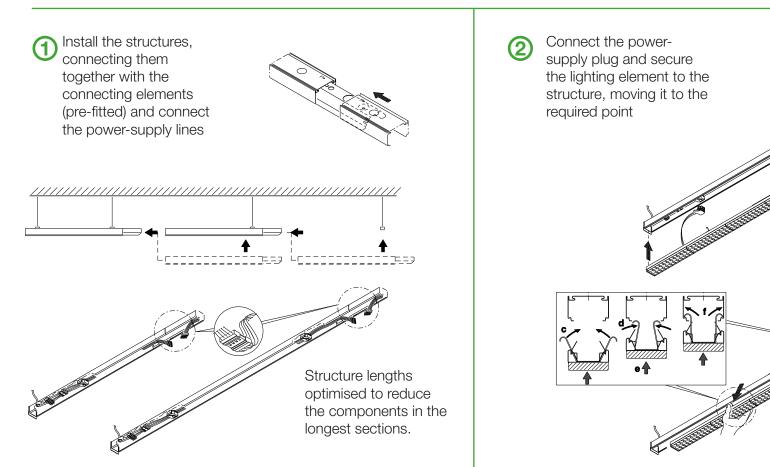
3F Linux L | IP54

3F Linux DR | IP40

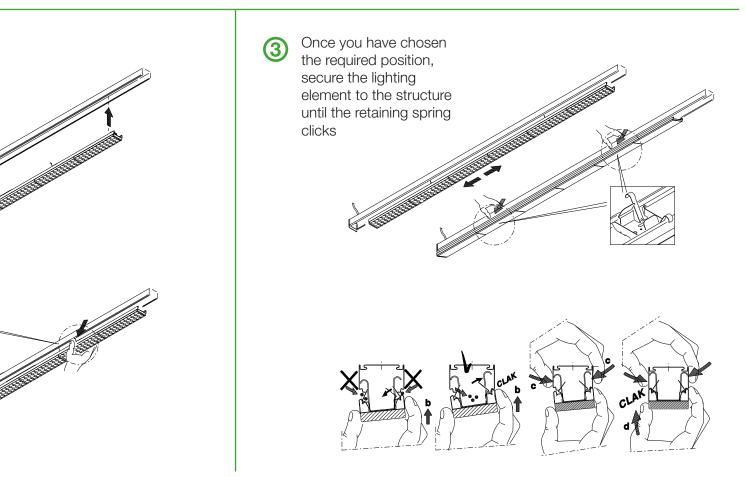
3F Linux D | IP40

3F Linux is a modular system designed to allow you to compose channels as simply and efficiently as possible.

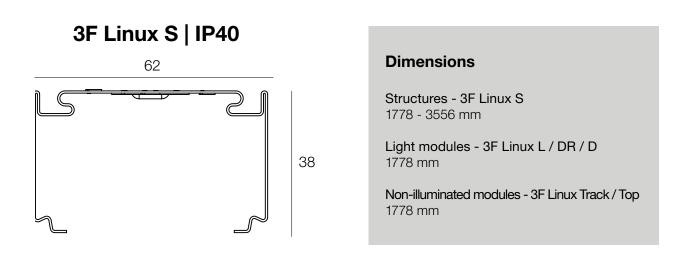
Like all products in the 3F Filippi range, it is fitted with high-efficiency LED sources and features a compact body, modular components and accessories which give unrivalled freedom in terms of planning the installations.



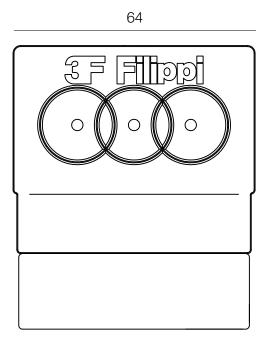
Simply modular

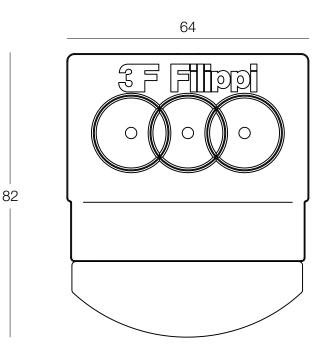

法事实现不可能

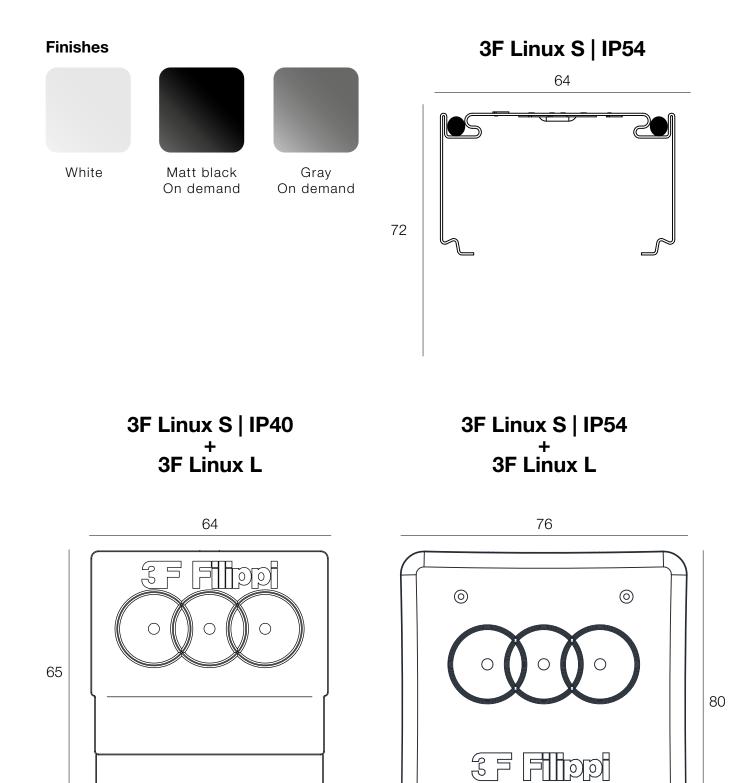
The FastWiring system reduces the time necessary to create a lighting channel:


- System for the creation and composition of channels which combines the various electrical requirements with the specific lighting design requirements.
- Clean, minimalist lines.
- •An IP54 version for more severe applications
- Its flexibility lends it to installation in commercial environments requiring high levels of lighting, and in circulation areas where it can be installed invisibly even in corners.
- Quick and easy installation.
- different luminous distributions for multiple applications.
- Lengths of the structures and lighting units optimised in order to reduce installation times and investment (-20 % accessories to be purchased and installed with respect to standard lengths).
- •All mechanical and electrical installation phases are tool free.
- Easy maintenance.
- Hidden sliding bracket on the structure.
- Quick adjuster for fast levelling.
- Connecting element already fitted.
- •Through line up to 11 poles with power-supply pedestal and through plug/socket.
- Dual hidden springs for support and to prevent the lamp from falling, for maximum protection against accidental falls.
- Possibility of lighting units with different louvres, translucent polycarbonate diffusers and closing covers.
- Lighting units with different power ratings and cable types, integrated sensors also possible.

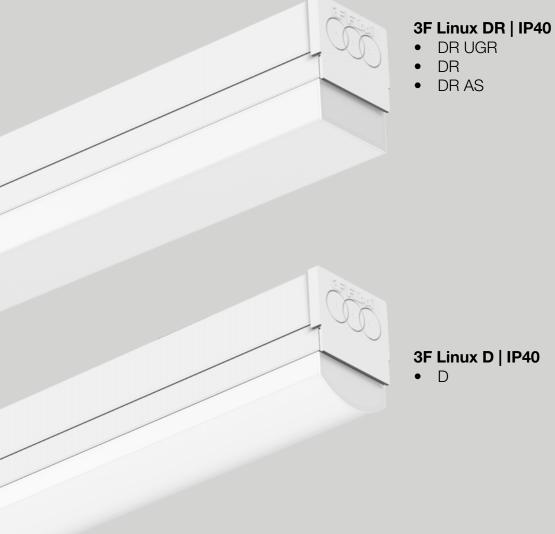
Installation requires just 3 steps, with limited tools required.


3F Linux


Dimensions and finishes

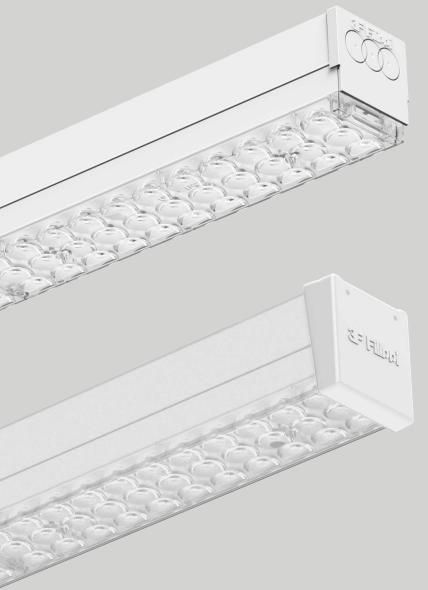


3F Linux S | IP40 + 3F Linux DR



Systems and track-mounted products

3F Linux Product range


Range		3F Linux D		
Template	DR	DR UGR	DR AS	D
Power level	2x22 2x30	1x30 2x22	2x30	2x22 2x30
Photometric distribution				

Available facilities	3F Linux S IP40	3F Linux S IP54	
Matching modules	3F Linux L 3F Linux DR 3F Linux D 3F Linux Track* IP40 closing top*	3F Linux L IP54 closing top*	*Non-illuminated modules

3F Linux L

WIDE	MEDIUM	UGR	AS	BAT	BAT WD	CONCENTRATED	IPERCONCENTRATED
40 50 60 85	40 50 60 85	50	40 50 60 85	40 50 60	40 50 60	60 85	60 85

3F Linux L | IP40

- Wide
- Medium
- UGR
- AS

- BAT
- BAT WD
- Concentrated
 - Iperconcentrated

3F Linux L | IP54

- Wide
- Medium
- UGR
- AS
- BAT
 - BAT WD
 - Concentrated
 - Iperconcentrated

Lighting channels composition guide IP40

							Str	ucture	length	n (metr	es)							
Item	3.56	5.33	7.11	8.89	10.67	12.45	14.22	16.00	17.78	19.56	21.34	23.11	24.89	26.67	28.45	30.23	35.56	40.89
3F Linux S 5P/7P L3556	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	10	11
3F Linux S 5P/7P L1778	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
3F Linux L-D-DR L1778 lighting unit	s 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	20	23
Pair of 3F Linux closing end caps									1	I								
Sliding bracket 0483	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	13
3F Linux S 5P/7P plug-socket termir block	nal								1	I								
Suspensions for 3F Linux without regulator	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	13
Earth	0	0	0	1	1	1	2	2	2	2	2	2	2	2	2	3	3	3

The number of sliding brackets and suspensions has been calculated on the basis of 2 for the first bar and 1 for the following ones making up the channel. The installer must check whether existing structural limitations require the number to be increased.

Optional components: replace (in the same number) the standard components which perform the same functions.

		Structure length (metres)																
Item	3.56	5.33	7.11	8.89	10.67	12.45	14.22	16.00	17.78	19.56	21.34	23.11	24.89	26.67	28.45	30.23	35.56	40.89
Closing top L1778 for 3F Linux L-D									(C								
Plug-socket terminal block 5P/7P for power supply from centre of channel										1								
Loose contact for plug										1								
Hook for chain, stainless steel	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	13
S hook for chain with 3F Linux sliding bracket	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	13

Note: the closing top has a value of zero because it is the same length as the lighting units (and so can be substituted for them in the same measure).

Lighting channels composition guide IP54

								Str	ucture	length	n (metr	es)							
Item		3.56	5.33	7.11	8.89	10.67	12.45	14.22	16.00	17.78	19.56	21.34	23.11	24.89	26.67	28.45	30.23	35.56	40.89
3F Linux S 5P/7P IP54 L35	56	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	10	11
3F Linux S 5P/7P IP54 L17	78	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
3F Linux L L1778 lighting u	nits	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	20	23
IP54 3F Linux end terminal										2	2								
Sliding bracket	0483	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	13
3F Linux S 5P/7P plug-sock block	ket terminal									1									
Suspensions for 3F Linux w regulator	ithout	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	13
Earth		0	0	0	1	1	1	2	2	2	2	2	2	2	2	2	3	3	3

The number of sliding brackets and suspensions has been calculated on the basis of 2 for the first bar and 1 for the following ones making up the channel. The installer must check whether existing structural limitations require the number to be increased. Each product code "3F Linux S | IP54" includes the supporting structure and the cover element. Every product code includes the supporting structure and the cover element. In L3556 versions there is also an IP54 seal element that is used to protect the junction areas between the covers.

Optional components: replace (in the same number) the standard components which perform the same functions.

							Str	ructure	lengt	n (meti	res)							
Item	3.56	5.33	7.11	8.89	10.67	12.45	14.22	16.00	17.78	19.56	21.34	23.11	24.89	26.67	28.45	30.23	35.56	40.89
Closing top L1778 for 3F Linux L									(C								
Plug-socket terminal block 5P/7P for power supply from centre of channel										1								
Loose contact for plug										1								
Hook for chain, stainless steel	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	13
S hook for chain with 3F Linux sliding bracket	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	13

Note: the closing top has a value of zero because it is the same length as the lighting units (and so can be substituted for them in the same measure).

This fixture makes it possible to create light channels with IP40 protection. Modular and flexible structural system with

small dimensions to create continuous channels and compositions, transport electrical lines and fixing of various types of products.

Quick and easy ceiling or pendant installation.

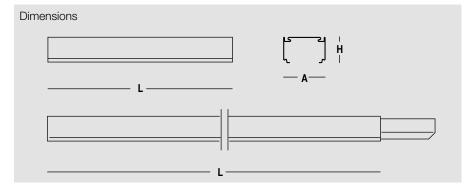
Construction characteristics

Mechanical characteristics

Hot-galvanized wired structure, painted in polyester base white, obtained through rolling process. Linear connecting element in hot galvanized steel for the formation of continuous channels. Standard on L3556 versions (optional for other lengths).

For the completion accessories see accessories on page 352.

On request


- structure and accessories in different RAL colors
- through-wiring up to 11 poles

Applications

Environments: commercial, exhibition areas, transit areas, lobbies or waiting rooms, shops, schools. Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Installation

Ceiling, suspension or wall installation. For more information, refer to the IP40 light channel composition guide (on page 328).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

330

3F Linux S | IP40

	 2	

Коз СЕ ІР40 нас

Supporting structure with 5 or 7-pole through power supply lines with H07Z-U Halogen Free cables (2.5 mm² HT90 cross-section), equipped with quick connection start/end channel terminal blocks, non-reversible with intermediate power sockets.

2 sockets for 3556 mm structures, 1 socket for 1778 mm structures (5P=N/T/1/2/3, 7P=N/T/1/2/3/+/-).

Feeding input on top (at the beginning or in the middle of the structure).

Code	Item	Dimensions L x A x H
A20019	3F Linux S 5P L1778	1778x62x38
A20026	3F Linux S 7P L1778	1778x62x38
A20017	3F Linux S 5P L3556	3556x62x38
A20024	3F Linux S 7P L3556	3556x62x38

3F Linux S-NL | IP40

I P40	

Supporting structure WITHOUT power supply line. Polycarbonate reinforced cable supports (for use every 500 mm approx.). Feeding input on top (at the beginning or in the middle of the structure).

Code	Item	Dimensions L x A x H
A20012	3F Linux S NL L1778	1778x62x38
A20011	3F Linux S NL L3556	3556x62x38

This fixture makes it possible to create light channels with IP54 protection.

Construction characteristics

Mechanical characteristics

Hot-galvanized wired structure, painted in polyester base white, obtained through rolling process, with expanded EPDM rubber profiles.

Linear connecting element in hot galvanized steel with gasket for the formation of continuous channels, standard on L3556 versions (optional for other lengths).

Transparent polycarbonate IP54 cover element with methacrylate flexible parts. The L3556 versions have a locking collar for joining the covers.

For the completion accessories see accessories on page 352.

Electrical characteristics

Supporting structure with 5 or 7-pole through power supply lines with H07Z-U Halogen Free cables (2.5 mm² HT90 cross-section), equipped with quick connection start/end channel terminal blocks, non-reversible with intermediate power sockets.

2 sockets for 3556 mm structures, 1 socket for 1778 mm structures (5P=N/T/1/2/3, 7P=N/T/1/2/3/+/-). Feeding input on top at the beginning of the structure or at end cap.

On request

- structure and accessories in different RAL colors
- through-wiring up to 11 poles

Applications

Dry, dusty indoor environments, subject to occasional water splashes.

Virtually in all environments compatibly with the use of any chemicals which could compromise the use of plastic materials. Not suitable in environments where chlorine fumes, ligroin, hydrocarbon mixtures, mineral oil vapours or fumes of lubricating emulsions to cool down machine tools are present. Not suitable for installation on surfaces subject to important vibrations, exposed to weather conditions, on ropes or poles. For specific applications please contact our technical offices.

Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Installation

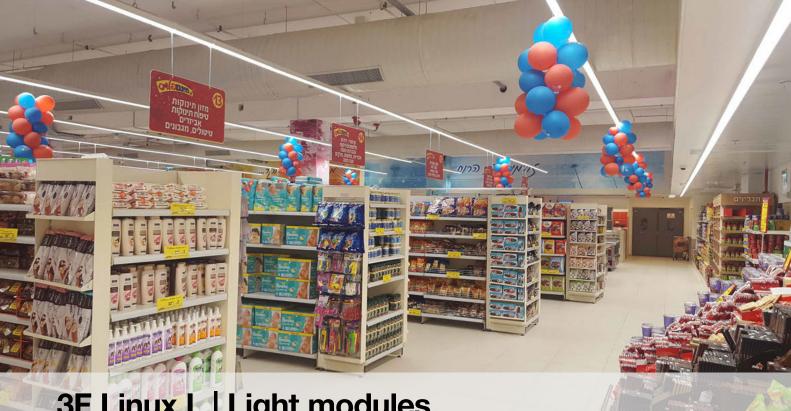
Ceiling mounted or suspension installation. Attention: to obtain a light system with IP54 protection rating, it is necessary to use 3F Linux L light modules (or alternatively IP54 closing top) + closing terminals.

For more information, refer to the IP54 light channel composition guide (on page 329).

Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

332


3F Linux S | IP54

CE 650°C	I P54	HACCP
-----------------	--------------	-------

All product codes include the support structure and cover element. In the L3556 versions there is also an IP54 element that is used to protect the joins between the covers.

Code	Item	Dimensions L x A x H
A20726	3F Linux system 5P IP54 L1778	1778x64x72
A20724	3F Linux system 7P IP54 L1778	1778x64x72
A20725	3F Linux system 5P IP54 L3556	3556x64x72
A20723	3F Linux system 7P IP54 L3556	3556x64x72

3F Linux L | Light modules

Construction characteristics

Illuminotechnical characteristics Direct distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tg+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Light unit in hot-galvanized steel, painted in white polyester base with fixing springs and retractable safety hooks in stainless steel

PMMA lenses with external flat surface (superimposed to obtain full protection of LED modules).

Electrical characteristics

Connection to the structure with mobile plug with phase selection (H05Z-U Halogen Free cable section 0,5 mm² HT90).

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different powers
- LED sources with different colour temperatures
- mantained emergency
- integrated light sensor
- HACCP versions for use in the food industry
- housing in different RAL colours
- wiring: CLO (more information on page 542)

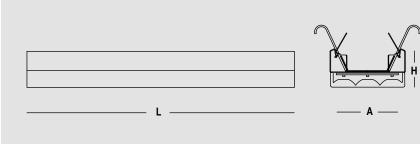
Applications

Environments: industrial, commercial, exhibition areas, transit areas, lobbies or waiting rooms, shops. Luminaires suitable, from a hygienic point of view, for use in production plants in the

food industry (HACCP / IFS / BRC-Standard).

UGR version

Environments: staterooms, with VDTs, offices.

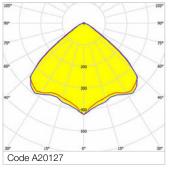

Installation

This lighting unit can be installed on profile 3F Linux S | IP40 and 3F Linux S | IP54 (see dedicated product pages).

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions

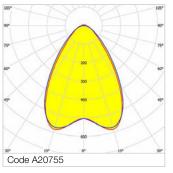


IK06

3F Linux L Wide

K03 CE

IP40 1J

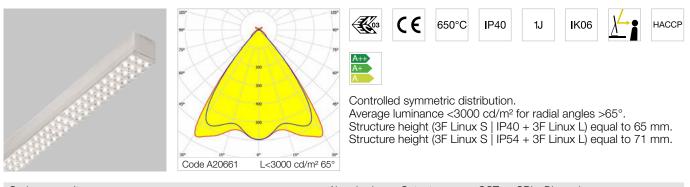


Wide distribution. Structure height (3F Linux S | IP40 + 3F Linux L) equal to 65 mm. Structure height (3F Linux S | IP54 + 3F Linux L) equal to 71 mm.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Flectronic	wiring 230V-50/60Hz					
A20127	3F Linux L 40 LED AMPIO L1778	43	6936 IP40 6607 IP54	4000	>80	1778x62x32
A20126	3F Linux L 50 LED AMPIO L1778	52	8247 IP40 7856 IP54	4000	>80	1778x62x32
A20125	3F Linux L 60 LED AMPIO L1778	62	9855 IP40 9388 IP54	4000	>80	1778x62x32
A20124	3F Linux L 85 LED AMPIO L1778	94	14086 IP40 13418 IP54	4000	>80	1778x62x32
DALI electi	onic wiring 230V-50/60Hz					
A20141	3F Linux L 40 LED DALI AMPIO L1778	43	6936 IP40 6607 IP54	4000	>80	1778x62x32
A20140	3F Linux L 50 LED DALI AMPIO L1778	52	8247 IP40 7856 IP54	4000	>80	1778x62x32
A20139	3F Linux L 60 LED DALI AMPIO L1778	62	9855 IP40 9388 IP54	4000	>80	1778x62x32
A20138	3F Linux L 85 LED DALI AMPIO L1778	94	14086 IP40 13418 IP54	4000	>80	1778x62x32

3F Linux L Medium

K CE

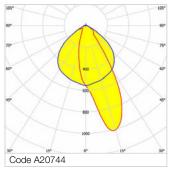


Medium distribution.

Structure height (3F Linux S | IP40 + 3F Linux L) equal to 65 mm. Structure height (3F Linux S | IP54 + 3F Linux L) equal to 71 mm.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	s wiring 230V-50/60Hz					
A20757	3F Linux L 40 LED MEDIO L1778	43	6843 IP40 6499 IP54	4000	>80	1778x62x32
A20756	3F Linux L 50 LED MEDIO L1778	52	8136 IP40 7728 IP54	4000	>80	1778x62x32
A20755	3F Linux L 60 LED MEDIO L1778	62	9723 IP40 9235 IP54	4000	>80	1778x62x32
A20754	3F Linux L 85 LED MEDIO L1778	94	13898 IP40 13200 IP54	4000	>80	1778x62x32
DALI elec	tronic wiring 230V-50/60Hz					
A20762	3F Linux L 40 LED DALI MEDIO L1778	43	6843 IP40 6499 IP54	4000	>80	1778x62x32
A20761	3F Linux L 50 LED DALI MEDIO L1778	52	8136 IP40 7728 IP54	4000	>80	1778x62x32
A20760	3F Linux L 60 LED DALI MEDIO L1778	62	9723 IP40 9235 IP54	4000	>80	1778x62x32
A20759	3F Linux L 85 LED DALI MEDIO L1778	94	13898 IP40 13200 IP54	4000	>80	1778x62x32

3F Linux L UGR

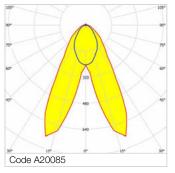


Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
A20661	3F Linux L 50 LED UGR L1778	52	8230 IP40 7932 IP54	4000	>80	1778x62x32
DALI elec	tronic wiring 230V-50/60Hz					
A20667	3F Linux L 50 LED DALI UGR L1778	52	8230 IP40 7932 IP54	4000	>80	1778x62x32

336 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Linux L AS

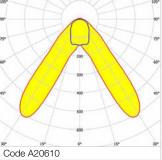
K03 CE



Asymmetric distribution. Structure height (3F Linux S | IP40 + 3F Linux L) equal to 65 mm. Structure height (3F Linux S | IP54 + 3F Linux L) equal to 71 mm.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Flectronic	wiring 230V-50/60Hz					
LIECTIONIC	wining 250V-50/00112					
A20747	3F Linux L 40 LED AS L1778	43	6957 IP40 6664 IP54	4000	>80	1778x62x32
A20746	3F Linux L 50 LED AS L1778	52	8272 IP40 7924 IP54	4000	>80	1778x62x32
A20745	3F Linux L 60 LED AS L1778	62	9886 IP40 9469 IP54	4000	>80	1778x62x32
A20744	3F Linux L 85 LED AS L1778	94	14130 IP40 13535 IP54	4000	>80	1778x62x32
DALI electi	ronic wiring 230V-50/60Hz					
A20752	3F Linux L 40 LED DALI AS L1778	43	6957 IP40 6664 IP54	4000	>80	1778x62x32
A20751	3F Linux L 50 LED DALI AS L1778	52	8272 IP40 7924 IP54	4000	>80	1778x62x32
A20750	3F Linux L 60 LED DALI AS L1778	62	9886 IP40 9469 IP54	4000	>80	1778x62x32
A20749	3F Linux L 85 LED DALI AS L1778	94	14130 IP40 13535 IP54	4000	>80	1778x62x32

3F Linux L BAT


Double asymmetrical distribution. Structure height (3F Linux S | IP40 + 3F Linux L) equal to 65 mm. Structure height (3F Linux S | IP54 + 3F Linux L) equal to 71 mm.

IP40

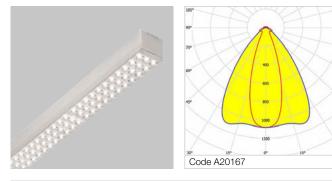
Electronic wiring 230V-50/60Hz	
A20085 3F Linux L 40 LED BAT L1778 43 6950 IP40 6599 IP54 4000 >80 1778x62x32	
A20084 3F Linux L 50 LED BAT L1778 52 8264 IP40 4000 >80 1778x62x32 7847 IP54	
A20083 3F Linux L 60 LED BAT L1778 62 9876 IP40 9378 IP54 4000 >80 1778x62x32 9378 IP54	
DALI electronic wiring 230V-50/60Hz	
A20099 3F Linux L 40 LED DALI BAT L1778 43 6950 IP40 4000 >80 1778x62x32	
6599 IP54 A20098 3F Linux L 50 LED DALI BAT L1778 52 8264 IP40 4000 >80 1778x62x32 7847 IP54	
A20097 3F Linux L 60 LED DALI BAT L1778 62 9876 IP40 4000 >80 1778x62x32 9378 IP54	

3F Linux L BAT WD

H03 CE

650°C **I**P40

IK06 1J



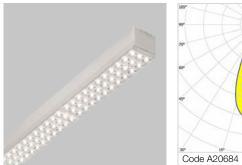
Wide double symmetric distribution.

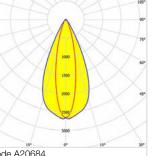
Structure height (3F Linux S | IP40 + 3F Linux L) equal to 65 mm. Structure height (3F Linux S | IP54 + 3F Linux L) equal to 71 mm.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Flootropio	wiring 230V-50/60Hz					
LIECTIONIC	wining 250 v-50/00112					
A20610	3F Linux L 40 LED BAT WD L1778	43	6928 IP40 6528 IP54	4000	>80	1778x62x32
A20609	3F Linux L 50 LED BAT WD L1778	52	8238 IP40 7762 IP54	4000	>80	1778x62x32
A20608	3F Linux L 60 LED BAT WD L1778	62	9845 IP40 9276 IP54	4000	>80	1778x62x32
DALI elect	ronic wiring 230V-50/60Hz					
A20624	3F Linux L 40 LED DALI BAT WD L1778	43	6928 IP40 6528 IP54	4000	>80	1778x62x32
A20623	3F Linux L 50 LED DALI BAT WD L1778	52	8238 IP40 7762 IP54	4000	>80	1778x62x32
A20622	3F Linux L 60 LED DALI BAT WD L1778	62	9845 IP40 9276 IP54	4000	>80	1778x62x32

3F Linux L Concentrated

K03 CE 650°C **I**P40 1J **I**K06 HACCP A+


Concentrated elliptical distribution.


Structure height (3F Linux S | IP40 + 3F Linux L) equal to 65 mm. Structure height (3F Linux S | IP54 + 3F Linux L) equal to 71 mm. Recommended minimum installation height: 5 meters from the ground.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
A20167	3F Linux L 60 LED CONC L1778	62	9662 IP40 9154 IP54	4000	>80	1778x62x32
A20166	3F Linux L 85 LED CONC L1778	94	13810 IP40 13084 IP54	4000	>80	1778x62x32
DALI elec	tronic wiring 230V-50/60Hz					
A20181	3F Linux L 60 LED DALI CONC L1778	62	9662 IP40 9154 IP54	4000	>80	1778x62x32
A20180	3F Linux L 85 LED DALI CONC L1778	94	13810 IP40 13084 IP54	4000	>80	1778x62x32

60*

3F Linux L Iperconcentrated

Output

flux (Im)

IK06

Dimensions

LxAxH

Symmetrical elliptical hyperconcentrated distribution. Structure height (3F Linux S | IP40 + 3F Linux L) equal to 65 mm. Structure height (3F Linux S | IP54 + 3F Linux L) equal to 71 mm. Recommended minimum installation height: 5 meters from the ground.

CRI

CCT

(K)

Electronic wiring 230V-50/60Hz	

Item

Code

	3					
A20685	3F Linux L 60 LED IPERCONC L1778	62	9418 IP40 8910 IP54	4000	>80	1778x62x32
A20684 DALI elect	3F Linux L 85 LED IPERCONC L1778 tronic wiring 230V-50/60Hz	94	13462 IP40 12736 IP54	4000	>80	1778x62x32
A20699	3F Linux L 60 LED DALI IPERCONC L1778	62	9418 IP40 8910 IP54	4000	>80	1778x62x32
A20698	3F Linux L 85 LED DALI IPERCONC L1778	94	13462 IP40 12736 IP54	4000	>80	1778x62x32


Absorbed

power (W)

3F Linux L

Design reference tables - Installation ACROSS aisles

Luminaire: 3F Linux L 85 AMPIO

Installation	Calculation	In	es)			
pitch (metres)	surface	3	3.5	4	4.5	5
3	Horizontal aisle Vertical shelf	1601 813	1598 802	1571 800	1561 792	1569 798
3.5	Horizontal aisle Vertical shelf		1353 684	1348 687	1336 679	1341 686
4	Horizontal aisle Vertical shelf		1181 599	1177 600	1167 594	1172 598
4.5	Horizontal aisle Vertical shelf			1050 540	1042 529	1043 532
5	Horizontal aisle Vertical shelf				939 481	937 478
5.5	Horizontal aisle Vertical shelf					859 439

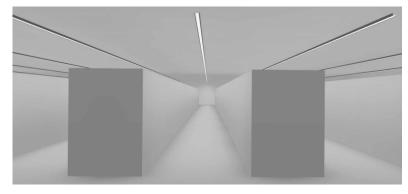
Luminaire: 3F Linux L 50 AMPIO

Installation pitch	Surface	Installation height (metres)					
(metres)	surface	3	3.5	4	4.5	5	
3	Horizontal aisle Vertical shelf	1014 515	1012 508	995 507	989 501	993 506	
3.5	Horizontal aisle Vertical shelf		856 434	854 435	846 430	849 435	
4	Horizontal aisle Vertical shelf		748 379	745 381	739 376	743 378	
4.5	Horizontal aisle Vertical shelf			666 341	660 335	660 337	
5	Horizontal aisle Vertical shelf				595 305	594 303	
5.5	Horizontal aisle Vertical shelf					544 278	

Design data:

Maintenance factor	K = 0.90
Reflection	ceiling 50% walls 50% floor 40%
Shelves	height 2.20 metres reflection 40%
Work surface height	0.85 metres
Aisle width	2 metres

Luminaire: 3F Linux L 60 AMPIO


Installation	Calculation	Installation height (metres)					
pitch (metres)	surface	3	3.5	4	4.5	5	
3	Horizontal aisle Vertical shelf	1196 607	1194 599	1173 598	1166 591	1171 596	
3.5	Horizontal aisle Vertical shelf		1010 511	1007 513	997 508	1002 512	
4	Horizontal aisle Vertical shelf		882 447	879 448	871 443	876 446	
4.5	Horizontal aisle Vertical shelf			784 403	778 395	779 398	
5	Horizontal aisle Vertical shelf				702 359	700 357	
5.5	Horizontal aisle Vertical shelf					641 328	

Luminaire: 3F Linux L 40 AMPIO

Installation	Surface	Installation height (metres)					
pitch (metres)	surface	3	3.5	4	4.5	5	
З	Horizontal aisle Vertical shelf	854 434	852 428	838 427	833 423	836 425	
3.5	Horizontal aisle Vertical shelf		722 365	719 367	712 363	716 366	
4	Horizontal aisle Vertical shelf		630 319	628 320	622 317	625 319	
4.5	Horizontal aisle Vertical shelf			561 287	555 282	557 284	
5	Horizontal aisle Vertical shelf				501 257	499 255	
5.5	Horizontal aisle Vertical shelf					458 234	

Design reference tables - Installation **ALONG** aisles Up to 5 metres height

Luminaire: 3F Linux L AMPIO

Luminaire	Calculation	In	stallatio	on heigh	t (metre	es)
power	surface	3	3.25	3.5	3.75	4
85 AMPIO	Horizontal aisle	1946	1728	1604	1483	1416
	Vertical shelf	1161	1064	947	855	782
60 AMPIO	Horizontal aisle	1453	1290	1198	1108	1058
	Vertical shelf	867	795	707	639	584
50 AMPIO	Horizontal aisle	1233	1094	1015	939	897
	Vertical shelf	736	674	600	542	495
40 AMPIO	Horizontal aisle	1038	921	855	791	756
	Vertical shelf	619	568	505	457	418

Luminaire: 3F Linux L BAT

Luminaire	Calculation	Installation height (metres)					
power	surface	3	3.25	3.5	3.75	4	
60 BAT	Horizontal aisle	1408	1251	1116	995	923	
	Vertical shelf	890	863	825	792	740	
50 BAT	Horizontal aisle	1194	1061	947	844	783	
	Vertical shelf	755	731	700	672	628	
40 BAT	Horizontal aisle	1005	894	797	711	659	
	Vertical shelf	636	616	589	566	529	

40 MEDIO						
40 MEDIO	Vertical shelf	561	566	551	527	498
Luminaire: 3F	Linux BAT WD)				
Luminaire	Calculation	In	stallatio	n heigh	t (metre	s)
Luminaire: 3F	surface	3	3.25	3.5	3.75	4
	Horizontal aisle	1073	915	803	699	616
OU BAT WD	Vertical shelf	1028	969	869	763	655
50 BAT WD	Horizontal aisle	909	776	682	593	523
OU DAI WD	Vertical shelf	872	822	737	648	555

Notes: The values in the tables are given in lux (lx).

Design reference tables - Installation **ALONG** aisles Over 5 metres height

Design data:

Reflection		Shelves		Work surface height	0.85 metres
ceiling	50%	height	4.5 / 5.5 / 6.5 / 7.5 metres		
walls	50%	reflection	40%	Aisle width	2 metres
floor	40%				

Luminaire: 3F Linux L CONC

Luminaire power	Calculation	Installation height (metres)			
	surface	5	6	7	8
85 CONC	Horizontal aisle	2106	1830	1595	1403
	Vertical shelf	541	506	473	439
60 CONC	Horizontal aisle	1573	1366	1191	1048
	Vertical shelf	404	377	353	328

Design data:

Maintenance factor	K = 0.90
Reflection	ceiling 50% walls 50% floor 40%
Shelves	height 2.20 metres reflection 40%
Work surface height	0.85 metres
Aisle width	2 metres

3

2513

1050

1877

784

1592

666

1341

3,25

2331

1060

1741

792

1477

672

1243

Installation height (metres)

3,5

2170

1034

1621

772

1375

654

1158

3,75

2032

988

1518

738

1287

625

1084

499

545

4

1918

934

1432

697

1215

591

1023

440

467

Luminaire: 3F Linux L MEDIUM

Calculation

surface

Horizontal aisle

Vertical shelf

Horizontal aisle

Vertical shelf

Horizontal aisle

Vertical shelf

Horizontal aisle

Luminaire

power

85 MEDIO

60 MEDIO

50 MEDIO

40 MEDIO

	Luminaire: 3F Linux BAT WD										
4		Luminaire power	Calculation surface	In 3	stallatio 3.25	n heigl 3.5					
923 740		60 BAT WD	Horizontal aisle Vertical shelf	1073 1028	915 969	803 869					
783 628		50 BAT WD	Horizontal aisle Vertical shelf	909 872	776 822	682 737					
659 529	59	40 BAT WD	Horizontal aisle Vertical shelf	766 735	653 692	573 621					

Construction characteristics

Illuminotechnical characteristics

Diffused symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Light unit in hot-galvanized steel, painted in white polyester base with fixing springs and retractable safety hooks in stainless steel.

Curved screen in self-extinguishing polycarbonate, UV stabilized, opal, with smooth outer surface.

Electrical characteristics

Connection to the structure with mobile plug with phase selection (H05Z-U Halogen Free cable section 0,5 mm² HT90).

Source characteristics

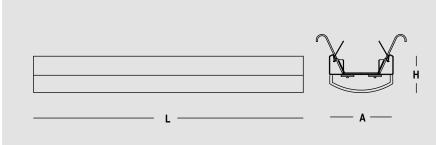
- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- asymmetric lighting distribution
- different powers
- LED sources with different colour temperatures
- mantained emergency
- housing in different RAL colours
- wiring: CLO (more information on page 542)

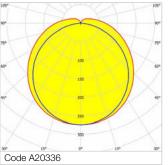
Applications

Environments: commercial, exhibition areas, transit areas, lobbies or waiting rooms, shops, schools.


Installation

This lighting unit can be installed only on profile 3F Linux S | IP40 (see dedicated product pages).

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

Dimensions

3F Linux D

CE 850°C

K03

Diffuse distribution. Structure height (3F Linux S + 3F Linux D) equal to 81 mm.

IP40

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
Electronic	wiring 230V-50/60Hz						
A20336	3F Linux D 2x22 LED L1778	49	6236	4000	>80	1778x62x47	
A20335	3F Linux D 2x30 LED L1778	70	7835	4000	>80	1778x62x47	
DALI elec	tronic wiring 230V-50/60Hz						
A20350	3F Linux D 2x22 LED DALI L1778	49	6236	4000	>80	1778x62x47	
A20349	3F Linux D 2x30 LED DALI L1778	70	7835	4000	>80	1778x62x47	

Construction characteristics

Illuminotechnical characteristics Direct distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Light unit in hot-galvanized steel, painted in white polyester base with fixing springs and retractable safety hooks in stainless steel.

Rectangular screen in self-extinguishing polycarbonate, UV stabilized, with smooth outer surface.

Electrical characteristics

Connection to the structure with mobile plug with phase selection (H05Z-U Halogen Free cable section 0,5 mm² HT90).

Source characteristics

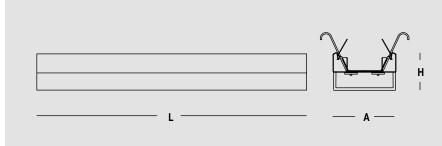
- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different powers
- LED sources with different colour temperatures
- mantained emergency
- housing in different RAL colours
- wiring: CLO (more information on page 542)

Applications

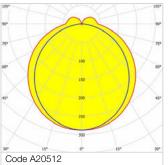
Environments: commercial, exhibition areas, transit areas, lobbies or waiting rooms, shops, schools.


Installation

This lighting unit can be installed only on profile 3F Linux S | IP40 (see dedicated product pages).

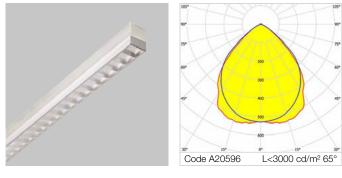
Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions

346 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Linux DR



Diffused symmetric distribution. Rectangular opal polycarbonate diffuser.

Structure height (3F Linux S + 3F Linux DR) equal to 81 mm.

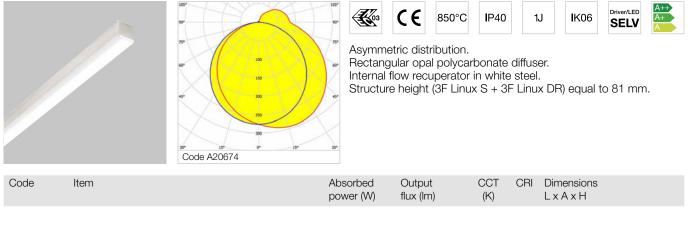
Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
A20512	3F Linux DR 2x22 LED L1778	49	6253	4000	>80	1778x62x47
A20511	3F Linux DR 2x30 LED L1778	70	7856	4000	>80	1778x62x47
DALI electronic wiring 230V-50/60Hz						
A20526	3F Linux DR 2x22 LED DALI L1778	49	6253	4000	>80	1778x62x47
A20525	3F Linux DR 2x30 LED DALI L1778	70	7856	4000	>80	1778x62x47

3F Linux DR UGR

Controlled symmetric distribution.

1x30 - Average luminance <1500 cd/m² for radial angles >65°. 2x22 - Average luminance <3000 cd/m² for radial angles >65°.

Rectangular transparent polycarbonate diffuser.


Semi-specular aluminium internal louvre with prismatic

methacrylate filter above the louvre blades for complete shielding of the louvre compartment.

Structure height (3F Linux S + 3F Linux DR) equal to 81 mm.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
Licouonic						
A20595	3F Linux DR 1x30 LED UGR L1778	35	3487	4000	>80	1778x62x47
A20596	3F Linux DR 2x22 LED UGR L1778	49	5361	4000	>80	1778x62x47
	tronic wiring 230V-50/60Hz					
DALI EIEC						
A20599	3F Linux DR 1x30 LED DALI UGR L1778	35	3487	4000	>80	1778x62x47
A20600	3F Linux DR 2x22 LED DALI UGR L1778	49	5361	4000	>80	1778x62x47

3F Linux DR AS

Electronic wiring 230V-50/60Hz

	•				
A20674	3F Linux DR 2x30 LED AS L1778	70	6403	4000 >80 1778x62x47	
DALI electronic wiring 230V-50/60Hz					
A20679	3F Linux DR 2x30 LED DALI AS L1778	70	6403	4000 >80 1778x62x47	

3F Linux Track

Construction characteristics

Mechanical characteristics

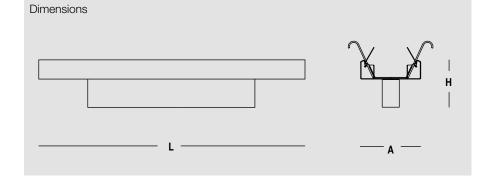
Light unit in hot-galvanized steel with white polyester powder coating, with retractable fastening clips and stainless steel safety hooks.

Electrified busbar made from extruded white aluminium, Eurostandard Plus compliant.

The wires are enclosed in rigid extruded profiles made of PVC insulating material with high dielectric strength.

Length of the electrified busbar: 1500 mm.

Electrical characteristics


Connection to the structure with mobile 7-pin plug with phase selection (H05Z-U Halogen Free cable section 0.5 mm² HT90). (L1/L2/L3/N/GRD/DA/DA) 16A/440V 2x1A/50V FELV AC (DALI). Copper conductors.

On request

• black electrified busbar

Installation

This unit can be installed only on profile 3F Linux S (see dedicated product pages).

350 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

3F Linux Track

CE	960°C	IP20	
Fureete	ndard Dl		aduatar

Eurostandard Plus 6-conductor (plus earth) busbar (L1/L2/L3/N/GRD/DA/DA) 16A/440V with power supply cap and closing cap.

Code	Item	Dimensions L x A x H
A20424	3F Linux TK L1778	1778x62x57

3F Linux Accessories

3+8	Accessor	ry compatible with 3F Linux S IP40, 3F Linux S IP54.
	Code	ltem
	A20450	Sliding bracket with regulator for suspension installation
		ension cable must be made of galvanized steel with 49 elementary wires of minimum 1.5 mm for a weight of 15 kg) and 2 mm (for a weight of 25 kg).

Free-position sliding bracket in stainless steel.

Code	Item
A20451	Sliding bracket for ceiling installation

 Free-position sliding bracket in stainless steel.

 Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

 Code
 Item

 A20453
 S-shaped chain hook with sliding bracket 3F Linux

 Supplied with S-hook for galvanized steel chain.

Salety sciew for locking the sinding bracket, made of hot gaivanized steel.	Safety screw for locking the sliding bracket, made of hot galvaniz	ed steel.
---	--	-----------

Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

 Code
 Item

 A20474
 Safety screw for locking the sliding bracket

These accessories must ALWAYS be used with one of the following codes: A20450 - A20451 - A20453.

Hook to suspended luminaires to a chain. Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

Code	Item
A20452	Stainless steel hook for chain

These accessories must ALWAYS be used with one of the following codes: A20451.

Suspension without controller, galvanized steel cable 1.5 mm diameter, load 15 kg.

Accessory compatible with 3F Linux S IP40, 3F Linux S IP54.		
ACCE3301		
Code	ltem	
A20485	Susp. without adjustment for Linux/HD - 0,5 m	
A20486	Susp. without adjustment for Linux/HD - 1 m	
A20487	Susp. without adjustment for Linux/HD - 2 m	
A20488	Susp. without adjustment for Linux/HD - 3 m	
A20489	Susp. without adjustment for Linux/HD - 4 m	
A20490	Susp. without adjustment for Linux/HD - 5 m	
A20491	Susp. without adjustment for Linux/HD - 6 m	

In the case of purchase of only one sliding bracket with controller (code A20450), the suspension cable must be made of galvanized steel with 49 elementary wires of minimum 1.5 mm diameter (for a weight of 15 kg).

Caddy hook to create a point from which to suspend the system or the loads to false ceilings with visible profiles.

Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

Code

Item

A02562 Caddy for exposed profiles of 24 mm

To be installed on exposed profiles (width 24 mm) of false ceilings. We recommend reinforcing the falseceiling fixing at the point where the Caddy is to be installed. Supplied complete with nut and washer. The suspension must be purchased separately.

These accessories must ALWAYS be used with one of the following codes: A20485 - A20486 - A20487 -A20488 - A20489 - A20490 - A20491.

Galvanized steel cable, diameter 1.5 mm, composed of 49 wires. 15 kg capacity (ratio 5:1).

Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

Code	Item
A0716	Coil galvanized cable diam. 1.5mm - 100m The pack contains 100 metres.
A0717	Coil galvanized cable diam. 1.5mm - 500m The pack contains 500 metres.
A0718	Coil galvanized cable diam. 1.5mm - 1000m

The pack contains 1000 metres.

These accessories must ALWAYS be used with one of the following codes: A20450, (A20452+A0714) o (A20451+A0659).

Clamp in nickel-plated brass suitable for fixing and adjustment of galvanized steel wire (diameter 1,25 mm -1,5 mm - 2 mm), complete with locking screws. The 2 hole clamp allows to block and adjust the cable on a bearing element (part of the building) or on rounded eye bolt.

Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

(Code	Item
/	A0714	Clamp 2 holes - 100 pcs The pack contains 100 pieces.

Clamp suitable for fixing and adjustment of galvanized steel wire (diameter 1.5 mm), with quick adjustment through unlock buttons. The clamp with 2 holes allow to fix and adjust the cable on the carrier structural element (belonging to the building) or with eye screw fixing.

Code Item A0659 Adjustable clamp 2 holes - 10 pcs The pack contains 10 pieces.

This accessory can be used with one of the following codes: A20451 - A0716 - A0717 - A0718.

Element to connect in hot-galvanized steel. Accessory compatible with 3F Linux S | IP40.

Code Item

A20433 Linear connecting element for 3F Linux

T-shaped connecting element in hot-galvanized steel.

Accessory compatible with 3F Linux S | IP40.

Code	Item
A20434	T-Connecting element for 3F Linux

 L-shaped connecting element in hot-galvanized steel.

 Accessory compatible with 3F Linux S | IP40.

 Code
 Item

 A20436
 L-Connecting element 3F L Linux

A20448

 Pair of closing end 3F Linux S, made of white polycarbonate.

 Accessory compatible with 3F Linux S | IP40.

 Code
 Item

Pair of closing end 3F Linux

Safety bracket in white painted steel to secure lighting elements if installed vertically.

Accessory compatible with 3F Linux S | IP40.

Code	Item	
A20478	Anti-slip terminal for inclined 3F Linux installation	

This accessory must always be used in combination with end terminals.

High closing top, with a length of 1778 mm that can be cut to 889 mm, made of impact-resistant white PVC.

Accessory compatible with 3F Linux S | IP40.

Code Item A20442 Closing Top HIGH - L1778

650°C

IP54 high closing top, with a length of 1778 mm that can be cut to 889 mm, made of impact-resistant white PVC.

Accessory compatible with 3F Linux S | IP54.

Closing Top IP54 - L1778

650°C

Cuttable low closing top, with a length of 1778 mm that can be cut, made of impact-resistant white PVC.

Accessory compatible ONLY with 3F Linux S-NL | IP40.

Code Item A20428 Closing Top LOW - L1778

650°C

Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54. Code Item A20475 3F Linux Cable Support (10 pcs) The pack contains 10 pieces.

Electric cable support. One every 50 cm is recommended. Made of polycarbonate.

Brackets for the installation of luminaries on 3F Linux S and S-NL bars (check the compatibility with our technical departments). Made of hot galvanized steel.

Accessory compatible with 3F Linux S IP40.		
	Code	Item
	A20470	Pair of mounting brackets 3F devices on Linux S

Brackets for installation of 3F Linda luminaries on 3F Linux S structures. Made from hot-galvanized steel.

Accessory compatible with 3F Linux S | IP40. Code l+ a ma

Ooue	ILGI	11
A2049	8 Cc	uple of brackets for 3F Linda installation - 3F Linux S

Code

A20740

Accessory compatible with 3F Linux S | IP54.

IP54 3F Linux end terminal

Item

IP54 end terminal with a power-supply line entry hole.		
Accessor	y compatib	le with 3F Linux S IP54.
Code	Item	

A20741 IP54 3F Linux end terminal with 1 hole

IP54 end terminal with two power-supply line entry holes.

Accessory compatible with 3F Linux S | IP54.

Code	Item
A20742	IP54 3F Linux end terminal with 2 holes

Electric branch with plug-socket to realize L-shaped connections.

Accessory compatible with 3F Linux S \mid IP40.

Code	Item
A20459	5-poles socket-pin branch (L-shaped) 3F Linux S
A20460	7-poles socket-pin branch (L-shaped) 3F Linux S

These accessories must always be used in conjunction with L connecting elements. Accessories not compatible with 3F Linux S-NL (cod.: A20011, A20012).

Electric branch with plug-socket to realize T-shaped connections.

Accessory compatible with 3F Linux S IP40.	
Code	Item
A20464	5-poles socket-pin branch (T-shaped) 3F Linux S
A20465	7-poles socket-pin branch (T-shaped) 3F Linux S

These accessories must always be used in conjunction with T connecting elements. Accessories not compatible with 3F Linux S-NL (cod.: A20011, A20012).

Quick connection non-reversible plug-socket terminal block, for connection to the power line at the start or end of the channel.

Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

Code	Item
A20454	5-poles socket-pin terminal block 3F Linux S
A20455	7-poles socket-pin terminal block 3F Linux S

Accessories not compatible with 3F Linux S-NL (cod.: A20011, A20012).

Quick connection non-reversible plug-socket terminal block, for connection to the power line at the centre of the channel.

Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

Code	Item
A20500	Central feeding 5-poles socket-pin terminal block 3F Linux S
A20501	Central feeding 7-poles socket-pin terminal block 3F Linux S

Accessories not compatible with 3F Linux S-NL (cod.: A20011, A20012).

Connection to the earth, by means of galvanized M5 screw and nut, for \emptyset 6 mm hole at the end of every structure.

Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

Connection to the earth

Item

Power cable for luminaires not part of the 3F Linux system.

Accessory compatible with 3F Linux S | IP40.

Code	Item
A20479	Power cable for luminaires, 3-pole
A20480	Power cable for luminaires, 5-pole

Accessories not compatible with 3F Linux S-NL (cod.: A20011, A20012).

Extension cord to connect some light modules interspersed with blind covers with a length of 889 mm (contact our technical department). Accessory compatible with 3F Linux S | IP40, 3F Linux S | IP54.

Code	Item
A0801	Electric extension with 3F Linux plug DALI-EP
A0802	Electric extension with 3F Linux plug

Attention: the code A0801 is supplied with a 5-pole electric line, while the code A0802 is supplied with a 3-pole electric line.

Additional contact for light unit plug.

Accessory compatible with 3F Linux S | IP40, 3F Linux L | Light modules, 3F Linux D | Light modules, 3F Linux DR | Light modules, 3F Linux Track.

Code	Item
A20476	Single contact pin The pack contains 50 pieces.

Accessory not compatible with 3F Linux S-NL (cod.: A20011, A20012).

Accent lighting at its best

CIIIIID

3F Emilio is the new high-end LED spotlight designed by Belgian designers Serge and Robert Cornelissen.

The new lighting body has been designed to obtain the best energy and lighting performance in various contexts.

In order to obtain excellent thermal efficiency with a high size to luminous flux ratio, the body of the spotlight has inner fins, while the outside is smooth to facilitate cleaning.

The 3F Filippi technology used in this system also allows effective control of luminance, without affecting the optical performance and visual comfort.

Its simple and refined lines, which alongside its reduced size represent an additional advantage, makes 3F Emilio the most suitable solution for numerous environments, from retail to contract.

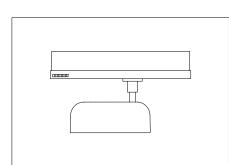
3F Emilio Product range

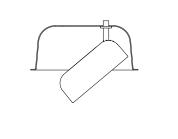
3F Emilio is available in the following versions:

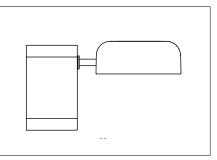
3F Emilio Track

For "Binario 3F" three-phase busbars

3F Emilio R for recessed installation

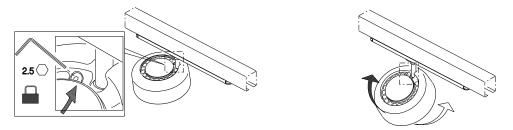

This product is available in the "Surface luminaires and suspensions" section.


3F Emilio Wall

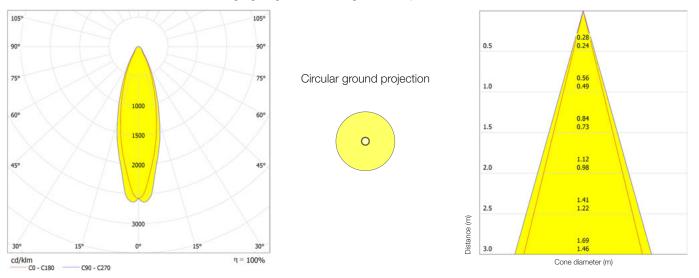

For ceiling or wall installation

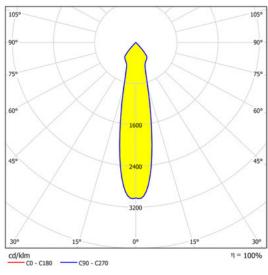
This product is available in the "Surface

luminaires and suspensions" section.

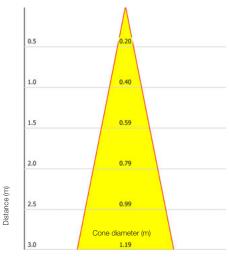


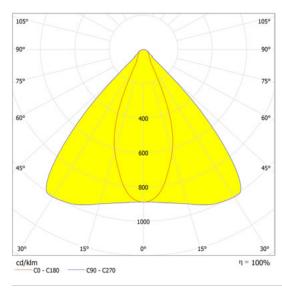
Thanks to the FastFix system, the time necessary to create a lighting channel is reduced:

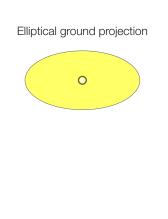

Just release the screw on the rear of the housing, point 3F Emilio in the desired direction, and tighten the screw again.

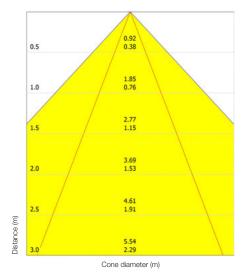

The body can rotate by 360° for 3F Emilio Track, while for other applications it can rotate by 290° on the arm axis and 90° with respect to the horizontal plane.

Photometric distributions


SPOT DISTRIBUTION Recommended for highlighting and enhancing individual products


HYPER CONCENTRATED DISTRIBUTION Recommended to accentuate the spot effect or in the event of the fixture being positioned at a distance.





3F Emilio

Different accents to create your light

3F Emilio is the new LED spotlight with a simple and refined design which, thanks to its high efficiency, represents the ideal solution for emphasising products in points of sale, even those of significant size.

1

The following versions of LED sources are available: • Warm white (2700K).

- White (3000K).
- Neutral white (4000K).
- Meat (specific version for lighting meat).
- Crisp (specific version for clothing and perfumes).
- Bread (specific version for lighting bread).
- High colour rendering index (CRI) on request.

Here is a brief guide for choosing the correct colour temperature version:

	/840	/830	/827	/940	/930	/MEAT	/BREAD	/CRISP
General	•							
Fish/seafood	•			•				
Wine		•	•		•			
Fruit/veg		•			•			
Cheese/dairy		•	•		•			
Meat						•		
Deli		•			•	•		
Bread/baked goods			•				•	
Clothing				•	•			•
Chicken/rotisserie		•			•	•		
Pastries			•				•	
Perfumes	•			•				•
Flowers/plants		•		•	•			

These are just provided as design tips and are not intended to replace personal taste or the choices of individual lighting designers, rather they are meant only as a quick consultation tool.

3F Emilio Track

Construction characteristics

Illuminotechnical characteristics

Symmetrical (TK), elliptical (TK ELL) and hyperconcentrated (TK IPER) spot distribution.

Lifetime (L90/B20): 30000 h. (tq+25°C) Lifetime (L80/B20): 50000 h. (tq+25°C) Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Wired unit in polycarbonate with busbar adaptor.

Single-piece in die-cast aluminium with passive dissipation with perimeter cooling slots on upper edge, giving a crown of light effect to the fitting.

Invisible lock for positioning the luminous flux.

Lens made from transparent PMMA methacrylate with glossy surface and differentiated photo-etched. Positioning arm in galvanized brass with sphere to allow for vertical positioning at

angles from 0° to 90° and horizontal positioning from 0° to 360°.

Electrical characteristics

Wiring unit separate from the body, invisible and integrated into the busbar. Class II.

Source characteristics

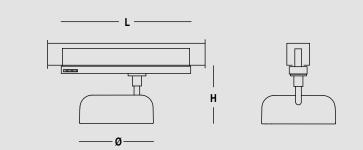
• Compact LED module.

Piante e fin

- Compact LED modules, /MEAT (version for meats), /BREAD (version for bakery) / CRISP (version for wardrobe with white enhancement).
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

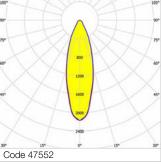
On request

- different power levels, colour rendering indices and colour temperatures
- housing in different RAL colours


Applications

Environments: commercial, museums, shops.

Installation


This product is suitable for installation on a 3-phase electrified busbar "Binario 3F" (on page 376).

3F Emilio Track Spot

Beam

angle

3

Output

flux (Im)

650°C

Spot lens.

Absorbed power (W)

Body and wired unit in polycarbonate with busbar adaptor.

CCT

(K)

CRI

Dimensions

ØxLxH

Electronic wiring 230V-50/60Hz

Item

Code

		19 2001 00/00112						
\bigcirc	47551	3F Emilio TK LED 3000/840	29°	28.7	3067	4000	>80	130x230x105
0	47562	3F Emilio TK LED 2000/930	29°	29.1	2462	3000	>90	130x230x105
\bigcirc	47555	3F Emilio TK LED 3000/830	29°	30.9	3106	3000	>80	130x230x105
0	47559	3F Emilio TK LED 3000/827	29°	33.8	3142	2700	>80	130x230x105
\bigcirc	47552	3F Emilio TK LED 4000/840	31°	34.1	3961	4000	>80	130x230x105
0	47566	3F Emilio TK LED 4000/830	31°	34.1	3807	3000	>80	130x230x105
\bigcirc	47561	3F Emilio TK LED 3000/940	29°	36.1	3137	4000	>90	130x230x105
0	47563	3F Emilio TK LED 3000/930	29°	36.1	2868	3000	>90	130x230x105
lacksquare	47576	3F Emilio TK BK LED 3000/840	29°	28.7	2822	4000	>80	130x230x105
•	47587	3F Emilio TK BK LED 2000/930	29°	29.1	2266	3000	>90	130x230x105
lacksquare	47580	3F Emilio TK BK LED 3000/830	29°	30.9	2858	3000	>80	130x230x105
•	47591	3F Emilio TK BK LED 4000/830	31°	34.1	3502	3000	>80	130x230x105
lacksquare	47584	3F Emilio TK BK LED 3000/827	29°	33.8	2891	2700	>80	130x230x105
•	47577	3F Emilio TK BK LED 4000/840	31°	34.1	3644	4000	>80	130x230x105
lacksquare	47588	3F Emilio TK BK LED 3000/930	29°	36.1	2639	3000	>90	130x230x105
•	47586	3F Emilio TK BK LED 3000/940	29°	36.1	2887	4000	>90	130x230x105

3F Emilio Track Spot - Meat/Bread/Crisp

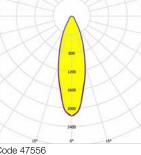


 Image: Second system
 650°C
 IP20
 Image: Second system
 Image: Second system

Spot lens.

Meat - Specific source to light up meat and cold cuts.

Bread - Specific source to light up bread.

Crisp - specific source for illuminating textile products and enhancing white colours.

Body and wired unit in polycarbonate with busbar adaptor.

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x L x H				
Electronic wiring 230V-50/60Hz											
0 47556	3F Emilio TK LED 2000/MEAT	31°	32.2	2147	3000	87	130x230x105				
0 47574	3F Emilio TK LED 2500/CRISP	31°	32.7	2433	3000	92	130x230x105				
0 47572	3F Emilio TK LED 2000/BREAD	39°	35.1	1982	2400	>90	130x230x105				
• 47581	3F Emilio TK BK LED 2000/MEAT	31°	32.2	1975	3000	87	130x230x105				
• 47599	3F Emilio TK BK LED 2500/CRISP	31°	32.7	2238	3000	92	130x230x105				
• 47597	3F Emilio TK BK LED 2000/BREAD	39°	35.1	1823	2400	>90	130x230x105				

60

3F Emilio Track Elliptical

Output

flux (Im)

650°C

Horizontal ELL elliptical lens provides greater installation distances. Body and wired unit in white polycarbonate with busbar adaptor.

CRI

Dimensions

ØxLxH

CCT

(K)

Electronic wiring 230V-50/60Hz

	÷							
0 47607	3F Emilio TK LED 3000/840 ELL	42° - 85°	28.7	3203	4000	>80	130x230x105	
○ 47618	3F Emilio TK LED 2000/930 ELL	42° - 85°	29.1	2571	3000	>90	130x230x105	
0 47611	3F Emilio TK LED 3000/830 ELL	42° - 85°	30.9	3243	3000	>80	130x230x105	
○ 47615	3F Emilio TK LED 3000/827 ELL	42° - 85°	33.8	3281	2700	>80	130x230x105	
0 47608	3F Emilio TK LED 4000/840 ELL	46° - 88°	34.1	4086	4000	>80	130x230x105	
○ 47622	3F Emilio TK LED 4000/830 ELL	46° - 88°	34.1	3927	3000	>80	130x230x105	
0 47617	3F Emilio TK LED 3000/940 ELL	42° - 85°	36.1	3275	4000	>90	130x230x105	
○ 47619	3F Emilio TK LED 3000/930 ELL	42° - 85°	36.1	2994	3000	>90	130x230x105	

90*

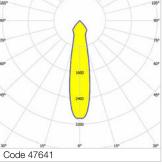
power (W)

angle

3F Emilio Track Elliptical - Meat/Bread/Crisp

Horizontal ELL elliptical lens provides greater installation distances. Meat - Specific source to light up meat and cold cuts.

Bread - Specific source to light up bread.


Crisp - specific source for illuminating textile products and enhancing white colours.

Body and wired unit in white polycarbonate with busbar adaptor.

Code	ltem	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x L x H
Electronic wi	ring 230V-50/60Hz						
0 47612	3F Emilio TK LED 2000/MEAT ELL	46° - 88°	32.2	2215	3000	87	130x230x105
0 47630	3F Emilio TK LED 2500/CRISP ELL	46° - 88°	32.7	2509	3000	92	130x230x105
0 47628	3F Emilio TK LED 2000/BREAD ELL	53° - 88°	35.1	1998	2400	>90	130x230x105

3F Emilio Track Iperconcentrated

Bright anodised parabola in semi-specular, anti-reflective, antiiridescent aluminum.

Body and wired unit in polycarbonate with busbar adaptor.

CCT

(K)

CRI

Dimensions

ØxLxH

Electronic wiring 230V-50/60Hz

Item

Code

0	47640	3F Emilio TK LED 3000/840 IPER	23°	28.7	3137	4000	>80	130x230x105
0	47654	3F Emilio TK LED 2000/930 IPER	23°	29.1	2518	3000	>90	130x230x105
\bigcirc	47644	3F Emilio TK LED 3000/830 IPER	23°	30.9	3176	3000	>80	130x230x105
0	47648	3F Emilio TK LED 3000/827 IPER	23°	33.8	3213	2700	>80	130x230x105
\bigcirc	47645	3F Emilio TK LED 4000/830 IPER	23°	34.1	3794	3000	>80	130x230x105
\bigcirc	47641	3F Emilio TK LED 4000/840 IPER	23°	34.1	3948	4000	>80	130x230x105
\bigcirc	47655	3F Emilio TK LED 3000/930 IPER	23°	36.1	2933	3000	>90	130x230x105
0	47652	3F Emilio TK LED 3000/940 IPER	23°	36.1	3208	4000	>90	130x230x105
\bullet	47668	3F Emilio TK BK LED 3000/840 IPER	23°	28.7	3137	4000	>80	130x230x105
•	47682	3F Emilio TK BK LED 2000/930 IPER	23°	29.1	2518	3000	>90	130x230x105
•	47672	3F Emilio TK BK LED 3000/830 IPER	23°	30.9	3176	3000	>80	130x230x105
•	47676	3F Emilio TK BK LED 3000/827 IPER	23°	33.8	3213	2700	>80	130x230x105
•	47673	3F Emilio TK BK LED 4000/830 IPER	23°	34.1	3794	3000	>80	130x230x105
•	47669	3F Emilio TK BK LED 4000/840 IPER	23°	34.1	3948	4000	>80	130x230x105
\bullet	47683	3F Emilio TK BK LED 3000/930 IPER	23°	36.1	2933	3000	>90	130x230x105
•	47680	3F Emilio TK BK LED 3000/940 IPER	23°	36.1	3208	4000	>90	130x230x105

Absorbed

power (W)

Beam angle Output

flux (Im)

3F Emilio Track Iperconcentrated - Meat/Bread/Crisp

Bright anodised parabola in semi-specular, anti-reflective, antiiridescent aluminum.

Meat - Specific source to light up meat and cold cuts. Bread - Specific source to light up bread.

Crisp - specific source for illuminating textile products and enhancing white colours.

IP20

Body and wired unit in polycarbonate with busbar adaptor.

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x L x H				
Electronic wiring 230V-50/60Hz											
0 47657	3F Emilio TK LED 2000/MEAT IPER	23°	32.2	2140	3000	87	130x230x105				
0 47664	3F Emilio TK LED 2500/CRISP IPER	23°	32.7	2425	3000	92	130x230x105				
0 47660	3F Emilio TK LED 2000/BREAD IPER	23°	35.1	1975	2400	>90	130x230x105				
• 47685	3F Emilio TK BK LED 2000/MEAT IPER	23°	32.2	2140	3000	87	130x230x105				
• 47692	3F Emilio TK BK LED 2500/CRISP IPER	23°	32.7	2425	3000	92	130x230x105				
• 47688	3F Emilio TK BK LED 2000/BREAD IPER	23°	35.1	1975	2400	>90	130x230x105				

90*

EUROBRASIL MOGIAMA GANTOS NY 2 17/18 ARC LOT 16 01773

SF Emilio TK - Round spot - 2500K - CRUSP

10

3F Emilio TK - Round spot - 3000K - CRI +90

3F Emilio Track DALI

Construction characteristics

Illuminotechnical characteristics

Symmetrical (TK) spot distribution. Lifetime (L90/B20): 30000 h. (tq+25°C) Lifetime (L80/B20): 50000 h. (tq+25°C) Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Wired unit in polycarbonate with busbar adaptor.

Single-piece in die-cast aluminium with passive dissipation with perimeter cooling slots on upper edge, giving a crown of light effect to the fitting.

Invisible lock for positioning the luminous flux.

Lens made from transparent PMMA methacrylate with glossy surface and differentiated photo-etched. Positioning arm in galvanized brass with sphere to allow for vertical positioning at angles from 0° to 90° and horizontal positioning from 0° to 360°.

Electrical characteristics

Wiring unit separate from the body, invisible and integrated into the busbar. Class II.

Source characteristics

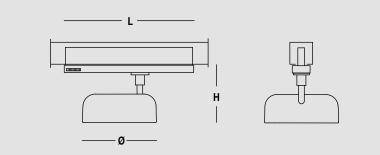
- Compact LED module.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request

- different power levels, colour rendering indices and colour temperatures
- housing in different RAL colours

Applications

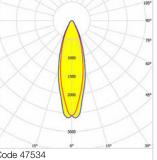
Environments: commercial, museums, shops.


Installation

This product is suitable for installation on a 3-phase electrified busbar "Binario 3F" (on page 376).

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).



370 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F Emilio Track DALI Spot

Spot lens. Body and wired unit in white polycarbonate with busbar adaptor.

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x L x H	
DALI electro	nic wiring 230V-50/60Hz							
0 47536	3F Emilio TK LED 2000/930 DALI	29°	29.1	2462	3000	>90	130x260x105	
○ 47535	3F Emilio TK LED 3000/830 DALI	29°	30.9	3106	3000	>80	130x260x105	
0 47534	3F Emilio TK LED 3000/840 DALI	29°	28.7	3067	4000	>80	130x260x105	

Construction characteristics

Illuminotechnical characteristics

Symmetrical (TK) spot distribution. Lifetime (L90/B20): 30000 h. (tq+25°C) Lifetime (L80/B20): 50000 h. (tq+25°C) Photobiological safety RG1, low risk, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Wired unit in polycarbonate with busbar adaptor.

Single-piece in die-cast aluminium with passive dissipation with perimeter cooling slots on upper edge, giving a crown of light effect to the fitting.

Invisible lock for positioning the luminous flux.

Lens made from transparent PMMA methacrylate with glossy surface and differentiated photo-etched. Positioning arm in galvanized brass with sphere to allow for vertical positioning at angles from 0° to 90° and horizontal positioning from 0° to 360°.

Electrical characteristics

Cabling unit with 3F Sensor Bluetooth technology, separated from the body, invisible and integrated into the track. Class II.

Source characteristics

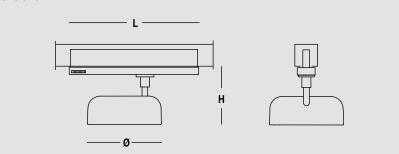
- Compact LED module.
- Compact LED modules.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 3 compliant.

On request

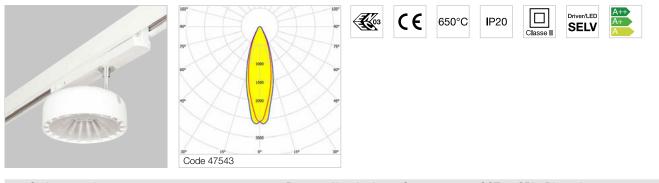
- different power levels, colour rendering indices and colour temperatures
- housing in different RAL colours

Applications

Environments: commercial, museums, shops.


Installation

This product is suitable for installation on a 3-phase electrified busbar "Binario 3F" (on page 376).


Light Management

Products in the BLE range can be controlled manually or automatically with 3F Sensor Bluetooth technology (see the chapter on "Light Management").

3F Emilio Track BLE Spot

Code	Item	Beam angle	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions ø x L x H	
DALI electroni	ic wiring 230V-50/60Hz							
0 47545	3F Emilio TK LED 2000/930 DALI BLE	29°	29.1	2462	3000	>90	130x260x105	
○ 47544	3F Emilio TK LED 3000/830 DALI BLE	29°	30.9	3106	3000	>80	130x260x105	
0 47543	3F Emilio TK LED 3000/840 DALI BLE	29°	28.7	3067	4000	>80	130x260x105	

3F Zeta Track L

Construction characteristics

Illuminotechnical characteristics

Wide direct distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tg+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in hot-galvanized steel, painted in white polyester, obtained through rolling process with adapters to busbar in white polycarbonate.

Light unit in hot-galvanized steel, painted in white polyester base with fixing springs and retractable safety hooks in stainless steel.

PMMA lenses with external flat surface. Supporting mechanical adapter. End caps in white polycarbonate.

Electrical characteristics

Truck adapter, 4/6-way.

Source characteristics

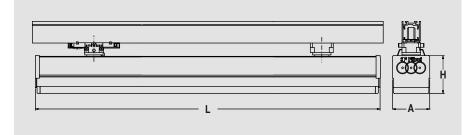
- LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different light distributions
- different power levels, colour rendering indices and colour temperatures
- housing and accessories in different RAL colours
- wiring: emergency, CLO (more information on page 542)

Applications

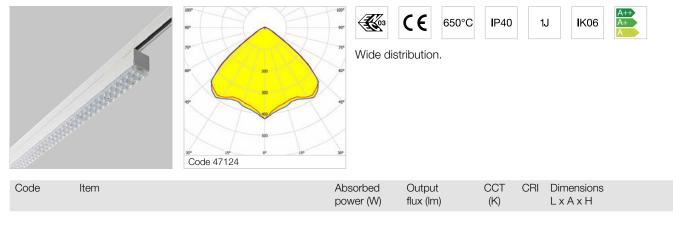
Environments: architectural, commercial, transit areas, cornices, boards.


Installation

This product is suitable for installation on a 3-phase electrified busbar "Binario 3F" (on page 376).

Light Management

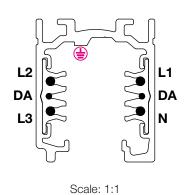
The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

374

3F Zeta Track L Wide

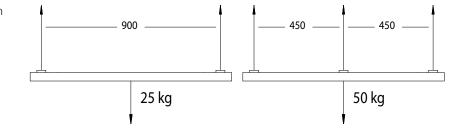


Electronic wiring 230V-50/60Hz

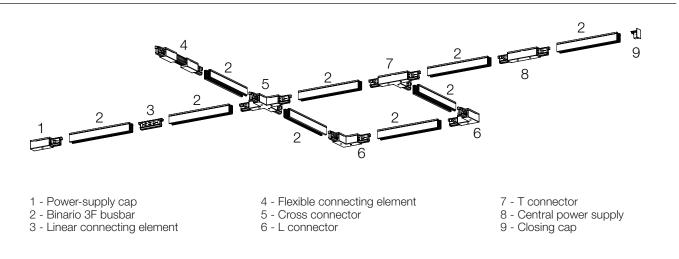
47136	3F Zeta TK L 15 AMPIO L605	16.5	2749	4000	>80	605x62x67
47132	3F Zeta TK L 30 AMPIO L1194	33	5498	4000	>80	1194x62x67
47124	3F Zeta TK L 50 AMPIO L1783	50	8247	4000	>80	1783x62x67
DALI elec	tronic wiring 230V-50/60Hz					
47152	3F Zeta TK L 15 DALI AMPIO L605	16.5	2749	4000	>80	605x62x67
47148	3F Zeta TK L 30 DALI AMPIO L1194	33	5498	4000	>80	1194x62x67
47140	3F Zeta TK L 50 DALI AMPIO L1783	50	8247	4000	>80	1783x62x67

Binario 3F

Busbar



Characteristics


Binario 3F is an extruded aluminium busbar housing 6 conductors (4 for three-phase mode, 2 for DALI mode): the 3 phase conductors (with common neutral) form 3 distinct circuits, allowing 3 separate on commands.

The conductors are enclosed in rigid extruded profiles made from high-rigidity insulating material.

The versatility of this product allows the creation of ceiling-mount or suspended installations (within the maximum suspendable load limit). EN 60570 compliant.

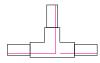
Structural elements

Defining the earth conductor position

Note: the side positioning of the earth contact makes the busbar structure asymmetrical and the connectors must be chosen on the basis of this. In particular, this indication applies only to the following components:

Power-supply cap

In the S (LH) version, the conductor is located on the left when looking at the composition from above.


In the D (RH) version, the conductor is located on the right when looking at the composition from above.

L connector

In the EXT version, the conductor is located on the outside when looking at the composition from above.

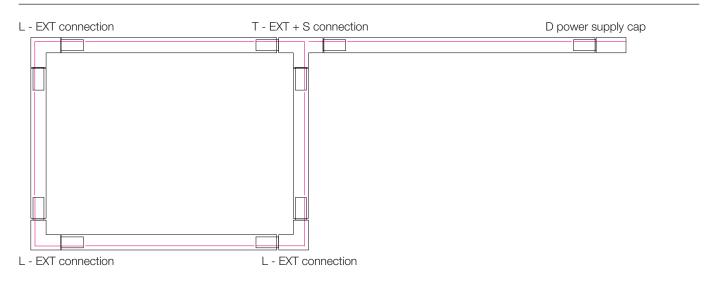
T connector

In the EXT + D (external + RHS) version, the third conductor is located on the right when looking at the composition from above.

In the EXT + S (external + LHS) version, the third conductor is located on the left when looking at the composition from above.

on the right when looking at the composition from above.

In the INT + D (internal + RHS) version, the third conductor is located


In the INT version, the conductor is

composition from above.

located on the inside when looking at the

In the INT + S (internal + LHS) version, the third conductor is located on the left when looking at the composition from above.

Structure composition example - top-down view

Binario 3F

The Binario 3F is a mixed 3-phase system with two extra conductors for the management of any signal (eg DALI). The system is certified according to EN 60570 and its installation must be performed by qualified personnel. Three types of fixing:

- directly on the surface (using the holes already provided in binary)
- surface mounted using the metal clip
- suspended by tension steel cables and various clamps and brackets without exceeding the maximum loads are planned

Construction characteristics

Mechanical characteristics

Electrified track made from extruded aluminium, Eurostandard Plus compliant. The wires are enclosed in rigid extruded profiles made of PVC insulating material with high dielectric strength. Length: 1000-2000-3000-4000 mm. Available colors: white (B) and anodized aluminium (GR). (L1/L2/L3/N/GRD/DA/DA) 16A/440V 2x1A/50V FELV AC (DALI). Copper conductors.

Dimensions

378 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

Binario 3F

Aluminium extruded track with 6 copper conductors (L1/L2/L3/N/GRD/DA/DA) 16A/440V.

Code I	ltem	Dimensions L x A x H
○ A4151 I	Binario 3F - L1000 - WH	1000x32x38
O A4152	Binario 3F - L2000 - WH	2000x32x38
O A4153 I	Binario 3F - L3000 - WH	3000x32x38
O A4154	Binario 3F - L4000 - WH	4000x32x38
O A4158	Binario 3F - L1000 - GR	1000x32x38
O A4159	Binario 3F - L2000 - GR	2000x32x38
O A4160	Binario 3F - L3000 - GR	3000x32x38
O A4161	Binario 3F - L4000 - GR	4000x32x38
• A4144	Binario 3F - L1000 - BK	1000x32x38
• A4145	Binario 3F - L2000 - BK	2000x32x38
• A4146	Binario 3F - L3000 - BK	3000x32x38
• A4147	Binario 3F - L4000 - BK	4000x32x38

End feed

Power connection: polycarbonate body and copper alloy contacts. Warning: as the track structure is asymmetrical because of the grounding element placed laterally, feeding heads and connecting joints must be chosen accordingly.

Code

Item

Feeding head SX - BK

Right (view from top)

• A4218

5 1	- 17	
O A4174	Feeding head DX - WH	95x32x38
O A4166	Feeding head DX - GR	95x32x38
• A4209	Feeding head DX - BK	95x32x38
Left (view fron	n top)	
O A4196	feeding head SX - WH	95x32x38
O A4190	Feeding head SX - GR	95x32x38

Dimensions L x A x H

95x32x38

Central feeding

Central power supply with polycarbonate body and copper alloy contacts.

Code	Item	Dimensions L x A x H
○ A4175	Central feeding - WH	148x32x38
O A4167	Central feeding - GR	148x32x38
• A4210	Central feeding - BK	148x32x38

End cap

	Per c		960°C Polycarbonate closing cap with locking screw.	
	Code	Item		Dimensions L x A x H
C) A4180	End cap - WH		32x35x38
\subset) A4172	End cap - GR		32x35x38
	A4215	End cap - BK		32x35x38

Linear junction element

380 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

Flexible connecting element

Flexible connecting element with polycarbonate body and copper alloy contacts.

Code	Item	Dimensions L x A x H
○ A4176	Flexible connecting element - WH	265x32x38
O A4168	Flexible connecting element - GR	265x32x38
• A4211	Flexible connecting element - BK	265x32x38

L-junction

CE 960°C

"L"-shaped connecting element with polycarbonate body and copper alloy contacts. Warning: as the track structure is asymmetrical because of the grounding element placed laterally, feeding heads and connecting joints must be chosen accordingly.

Code	Item	Dimensions
		L x A x H

External (view from top)

O A4177	L-joint - EXT - WH	90x90x38
O A4169	L-joint - EXT - GR	90x90x38
• A4212	L-joint - EXT - BK	90x90x38

Internal (view from top)

O A4197	L-joint - INT - WH	90x90x38
O A4191	L-joint - INT - GR	90x90x38
• A4219	L-joint - INT - BK	90x90x38

T-junction

"T"-shaped connecting element with polycarbonate body and copper alloy contacts. Warning: as the track structure is asymmetrical because of the grounding element placed laterally, feeding heads and connecting joints must be chosen accordingly.

Code	Item	
		LXAXH

External (view from top)

O A4198	T-joint - EXT + DX - WH	148x90x38
○ A4178	T-joint - EXT + SX - WH	148x90x38
O A4192	T-joint - EXT + DX - GR	148x90x38
O A4170	T-joint - EXT + SX - GR	148x90x38
• A4220	T-joint - EXT + DX - BK	148x90x38
• A4213	T-joint - EXT + SX - BK	148x90x38

Internal (view from top)

O A4200	T-joint - INT + DX - WH	148x90x38
○ A4199	T-joint - INT + SX - WH	148x90x38
O A4194	T-joint - INT + DX - GR	148x90x38
O A4193	T-joint - INT + SX - GR	148x90x38
• A4222	T-joint - INT + DX - BK	148x90x38
• A4221	T-joint - INT + SX - BK	148x90x38

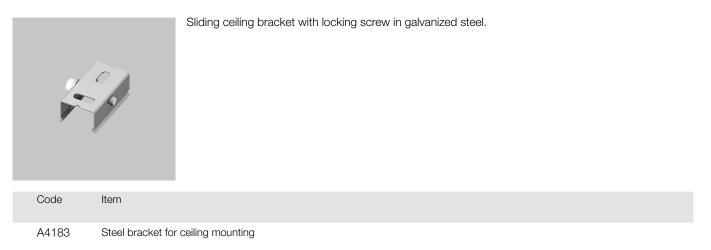
Cross joint

Cross-shaped connecting element with polycarbonate body and copper alloy contacts.

Code	Item	Dimensions L x A x H
O A4179	Cross joint - WH	148x148x38
O A4171	Cross joint - GR	148x148x38
• A4214	Cross joint - BK	148x148x38

CE

960°C


PVC closing element

		PVC cover for track closing.
	Code	Item
0	A4181	PVC closing top - L1000 - WH
\bigcirc	A4173	PVC closing top - L1000 - GR

PVC closing top - L1000 - BK

Bracket for ceiling mounting

• A4216

Adjustable suspension kit

Adjustable suspension kit with galvanized steel sliding bracket and locking screw, metal rose and steel cable with diameter of 1.5 mm.

9	
Code	Item
A4204	Adjustable suspension boss + 1.5m bracket
A4205	Adjustable suspension boss + 3m bracket
A4206	Adjustable suspension boss + 5m bracket

Dimensions L x A x H 1000x20x10 1000x20x10

1000x20x10

3F LEM

Beta A3F - i3F

3F Linda

Beta 430

Beta 235

3F Cub

Waterproof and corrosion-proof

Page	Product	Steel	Stainless steel	Stainless steel	Polycarbonate
386	3F LEM				
396	3F LEM	•	•		
400	3F LEM DALI Sensor	•	•		
404	3F LEM High Output	•	•		
408	3F LEM High Temperature	•	•		
412	3F LEM Sport	•	•		
418	3F Linda				
424	UPDATE 3F Linda LED				•
430	3F Linda LED HS				•
432	3F Linda LED Transparent				•
434	3F Linda LED Ice				•
436	3F Linda LED Sensor				•
	Data 005				
444	Beta 235				
450	Beta 235 LED Steel	•			
458	Beta 235 LED Stainless Steel			•	
464	Beta A3F - i3F				
404 464	Beta i3F 75-76 LED	•			
468	Beta Ice LED		•		
470	Kit LED Retrofit for Beta 2x				
110					
476	Beta 430				
476	Beta 430 LED	•			
478	Kit LED Retrofit for Beta 430				
482	3F Cub				
484	3F Cub LED		•		

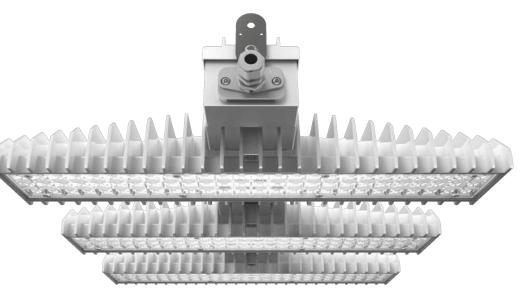
112

11A

NOT ATTAIN THE ATTAIN

30 TC

TITISI


Lucia a

TETTE

X

30 D

A new way of thinking about light

Patented

3F LEM is a highly specialised product, designed to satisfy customers who need to light large areas evenly.

We have designed and manufactured it with large injectionmoulded shielding which permits different photometric distributions and lighting modules in aluminium alloy which are able to optimally dissipate the heat generated by the latest LED sources.

The design of the 3F LEM is based on simplification and modularity of design: "LEM" means "Light Emitting Modules", and thanks to common platforms and structures it is possible to obtain advantages for the customer in terms of the use, during installation and even when changing the sources at the end of the product life cycle.

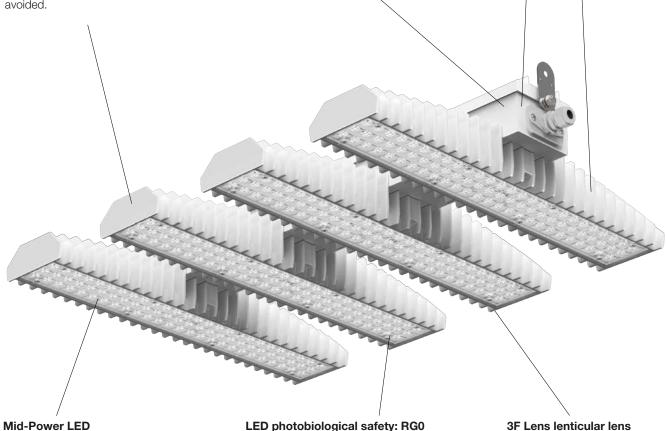
Passion, experience and expertise

3F Filippi is an Emilia-Romagna-based company, and a passion for mechanical engineering is part of our culture and expertise. It is for precisely this reason that when creating the 3F LEM heatsink module we consulted the foremost authority in the field, the mechanical engineering department at the University of Bologna.

Their precious support and expertise led to the creation of the heart of the 3F LEM, the heatsink, or dissipator, module. This is the common denominator across all modules in the product family, and the performance of LEDs depends in large part on their ability to dissipate the heat they generate. Our goal was to create a product which could be installed in high-temperature environments and which would be able to make the sources work correctly. The result is a body made from an innovative pressure die-cast body, which can be installed in environments with temperatures up to 70°C.

Heat dissipation is not the only innovation on 3F LEM:

Air passage


3F LEM has been designed to have the best possible air passage in all installation conditions, including ceiling mounted. Aerodynamic analysis has allowed dust deposits on the heat dissipators to be avoided.

Wiring compartment separate from heat dissipators

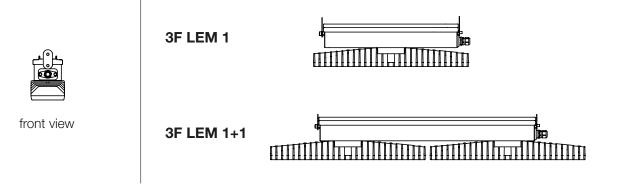
Thanks to this design, the power supplies are not affected by the heat emitted by the modules. This solution also allows wiring compartments of different lengths to be created.

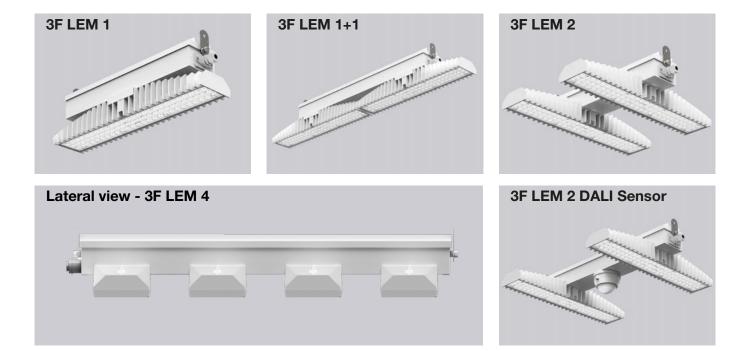
Upgradability

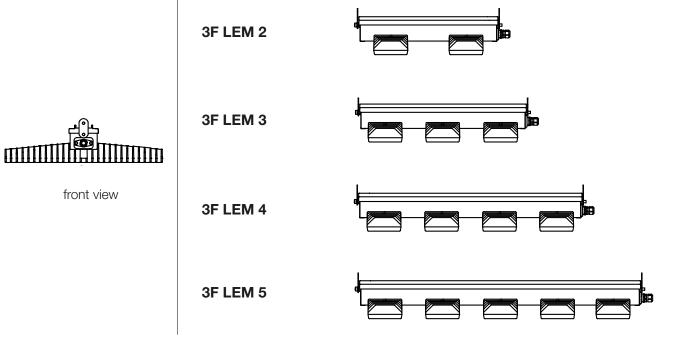
Shielding, sources and power supplies can be replaced at the end of their life cycle, or upgraded to next-generation sources.

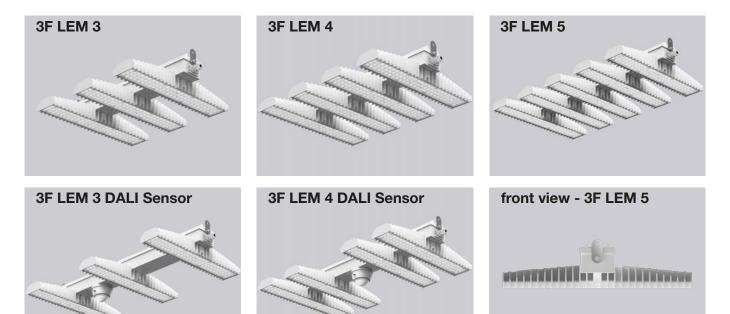
Use of these LEDs offers improved efficiency (compared to High Power LEDs), less glare and optimised heat distribution (less thermal stress on the sources).

The LEDs used are RG0 class (photobiological risk absent), that is they do not emit any radiation harmful to human organs.


Available with Wide, Medium or Concentrated controlled emission (UGR <22).


Product range


3F LEM is available in the following versions:


- 3F LEM Standard version for environments with temperatures from -30°C to +55°C
- 3F LEM HO High luminous flux version for environments with temperatures from -30°C a +45°C
- 3F LEM DALI Sensor Version with light level sensor, suitable for environments with temperatures from -25°C to +50°C
- 3F LEM Version for environments with temperatures from -30°C to +70°C
- 3F LEM Sport Version for sports environments with temperatures from -20°C to +55°C

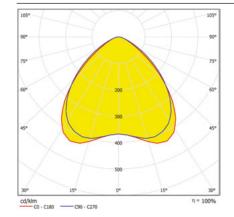
3F LEM is available with different module configurations:

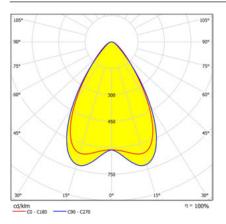


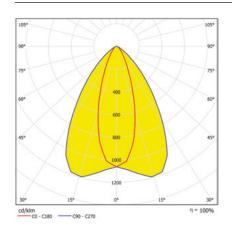
Photometric distributions

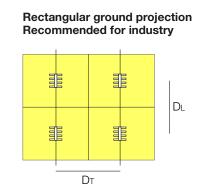
3F LEM is equipped with the highest quality LED sources with a CRI>80, but on request can be fitted with sources with CRI>90.

It is also possible to obtain light with a colour temperature of 4000K (neutral white), 6500K (cold white) and, on request, 3000K (warm white).

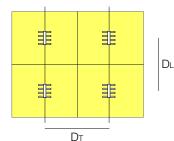

With a UGR value of <22, we respect the vision of those who work under 3F LEM lights, as well as respecting health by ensuring all luminaires are RG0 class (photobiological risk absent).


66666666

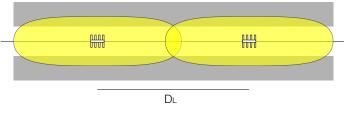

WIDE DISTRIBUTION


MEDIUM DISTRIBUTION

CONCENTRATED DISTRIBUTION


3F LEM fully complies with all applicable illuminotechnical standards and legislation: its lighting distribution comes from careful analysis of BS EN 12464-1 which covers lighting of indoor work environments. We have paid great attention to the requirements of the market and believe that the two different distributions are capable of satisfying even the most demanding customers:

Uniformity


To obtain uniform lighting, the installation pitch is equal to: $DT = 1.5 \times hu$ $DL = 1.4 \times hu$ hu = Effective installation height

Rectangular ground projection Recommended for industry

As there is no photometric overlap, the energy used and number of luminaires is optimised.

Elliptical ground projection Recommended for warehouses with large installation heights

Allows large longitudinal pitch to obtain uniformity over the aisles and shelving.

Uniformity

To obtain uniform lighting, the installation pitch is equal to: DT = 1.1 x hu DL = 1.1 x huhu = Effective installation height Waterproof and corrosion-proof

Uniformity

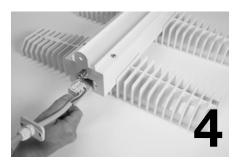
To obtain uniform lighting, the installation pitch is equal to: $DL = 1.2 \times hu$ hu = Effective installation height

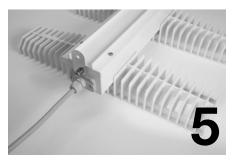
As there is no photometric overlap, the energy used and number of luminaires is optimised.



Quick connection.

Thanks to the FastWiring system, the installation time for 3f lem is significantly reduced:


3F LEM is supplied with our new "FastWiring" quick connector. Here is what it looks like when removed from the packaging.


Remove the support by grasping the tab.

At this point the quick connection closing cap and the cable gland are inserted onto the cable and the electrical cables can be connected to the quick connect terminal board. No tools are required.

Push the sliding support into the luminaire and screw down the two phillips head screws on the closing cap.

Done! 3F LEM is now ready for installation.

Construction characteristics

Illuminotechnical characteristics

Wide, medium, concentrated symmetric elliptical distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Passive modular heatsinks in die-casted aluminum, painted in white color. To optimize the thermal management of the LED module, the heatsinks are oversized and provided with self-cleaning of cooling fins.

Wiring body in aluminum and galvanized steel anchored solidly to the sinks and thermally separated.

3F Lens lenses with high luminous efficiency, transparent PMMA, fixed to the LED modules.

Fixing brackets in stainless steel.

Electrical characteristics

Quick connection in polycarbonate with M20x1,5 cable gland, to access the

terminal block positioned on a removable runner.

Power unit positioned on a separate compartment by the LED module to ensure optimum temperatures of cabling components, to be inspectable and maintainable.

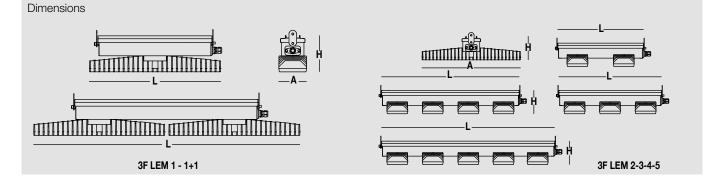
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- double quick connection
- polycarbonate lenses (IK08 5J)
- wiring: twin-circuit, CLO (more
- information on page 542)
 linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- HACCP versions for use in the food industry

Applications


Ambient temperature from -30°C to +55°C.

Dry, dusty indoor environments, subject to occasional water splashes. Commercial, industrial and sporting environments (with no high-flying balls), as

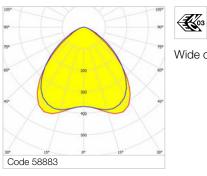
well as warehouses. Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with polycarbonate lenses.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

396 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

1J


Dimensions

LxAxH

3F LEM Wide

Code

CE

Output

flux (Im)

650°C IP65

CRI

Wide distribution with rectangular shape.

CCT

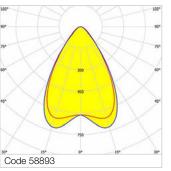
(K)

Electronic wiring 230V-50/60Hz

Item

	•					
58881	3F LEM 1 LED 50 CR AMPIO	56	8369	4000	>80	542x115x150
59157	3F LEM 1 LED 50/865 CR AMPIO	56	8076	6500	>80	542x115x150
58885	3F LEM 1+1 LED 100 CR AMPIO	110	16738	4000	>80	1099x115x150
59161	3F LEM 1+1 LED 100/865 CR AMPIO	110	16152	6500	>80	1099x115x150
58882	3F LEM 2 LED 100 CR AMPIO	110	16738	4000	>80	470x542x129
59158	3F LEM 2 LED 100/865 CR AMPIO	110	16152	6500	>80	470x542x129
58883	3F LEM 3 LED 150 CR AMPIO	169	25106	4000	>80	657x542x129
59159	3F LEM 3 LED 150/865 CR AMPIO	169	24228	6500	>80	657x542x129
58884	3F LEM 4 LED 200 CR AMPIO	220	33475	4000	>80	757x542x129
59160	3F LEM 4 LED 200/865 CR AMPIO	220	32303	6500	>80	757x542x129
58886	3F LEM 5 LED 250 CR AMPIO	284	41844	4000	>80	952x542x129

Absorbed


power (W)

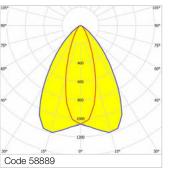
DALI electronic wiring 230V-50/60Hz

58899	3F LEM 1 LED 50 DALI CR AMPIO	56	8369	4000	>80	542x115x150	
58903	3F LEM 1+1 LED 100 DALI CR AMPIO	110	16738	4000	>80	1099x115x150	
58900	3F LEM 2 LED 100 DALI CR AMPIO	110	16738	4000	>80	470x542x129	
58901	3F LEM 3 LED 150 DALI CR AMPIO	169	25106	4000	>80	657x542x129	
58902	3F LEM 4 LED 200 DALI CR AMPIO	220	33475	4000	>80	757x542x129	
58904	3F LEM 5 LED 250 DALI CR AMPIO	284	41844	4000	>80	952x542x129	

3F LEM Medium

🛣 CE 🛡

650°C


IK06 A++

Medium distribution with square shape.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
58896	3F LEM 1+1 LED 100 CR MEDIO	110	17097	4000	>80	1099x115x150
58893	3F LEM 2 LED 100 CR MEDIO	110	17097	4000	>80	470x542x129
58894	3F LEM 3 LED 150 CR MEDIO	169	25646	4000	>80	657x542x129
58895	3F LEM 4 LED 200 CR MEDIO	220	34194	4000	>80	757x542x129
58897	3F LEM 5 LED 250 CR MEDIO	284	42743	4000	>80	952x542x129
DALI elec	stronic wiring 230V-50/60Hz					
58914	3F LEM 1+1 LED 100 DALI CR MEDIO	110	17097	4000	>80	1099x115x150
58911	3F LEM 2 LED 100 DALI CR MEDIO	110	17097	4000	>80	470x542x129
58912	3F LEM 3 LED 150 DALI CR MEDIO	169	25646	4000	>80	657x542x129
58913	3F LEM 4 LED 200 DALI CR MEDIO	220	34194	4000	>80	757x542x129
58915	3F LEM 5 LED 250 DALI CR MEDIO	284	42743	4000	>80	952x542x129

3F LEM Concentrated

🐼 CE 🖓

D 650°C

Concentrated elliptical distribution.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
-						
Electronic	wiring 230V-50/60Hz					
58887	3F LEM 1 LED 50 CR CONC	56	8567	4000	>80	542x115x150
58888	3F LEM 2 LED 100 CR CONC	110	17133	4000	>80	470x542x129
59164	3F LEM 2 LED 100/865 CR CONC	110	16533	6500	>80	470x542x129
58889	3F LEM 3 LED 150 CR CONC	169	25700	4000	>80	657x542x129
59165	3F LEM 3 LED 150/865 CR CONC	169	24800	6500	>80	657x542x129
58890	3F LEM 4 LED 200 CR CONC	220	34266	4000	>80	757x542x129
59166	3F LEM 4 LED 200/865 CR CONC	220	33067	6500	>80	757x542x129
DALI elec	tronic wiring 230V-50/60Hz					
58905	3F LEM 1 LED 50 DALI CR CONC	56	8567	4000	>80	542x115x150
58906	3F LEM 2 LED 100 DALI CR CONC	110	17133	4000	>80	470x542x129
58907	3F LEM 3 LED 150 DALI CR CONC	169	25700	4000	>80	657x542x129
58908	3F LEM 4 LED 200 DALI CR CONC	220	34266	4000	>80	757x542x129

3F LEM DALI Sensor

Construction characteristics

Illuminotechnical characteristics

Wide, medium, concentrated symmetric elliptical distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Passive modular heatsinks in die-casted aluminum, painted in white color. To optimize the thermal management of the LED module, the heatsinks are oversized and provided with self-cleaning of cooling fins.

Wiring body in aluminum and galvanized steel anchored solidly to the sinks and thermally separated.

3F Lens lenses with high luminous efficiency, transparent PMMA, fixed to the LED modules.

Fixing brackets in stainless steel.

Electrical characteristics

In compliance with EN 60598-1. Quick connection.

Power unit positioned on a separate compartment by the LED module to ensure optimum temperatures of cabling components, to be inspectable and maintainable.

Integrated DALI light sensor on the luminaire, able to maintain a constant level of illumination as a function of the natural light.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- presence function
- manual light intensity adjustment
- double quick connection
- polycarbonate lenses (IK08)
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- HACCP versions for use in the food industry

Applications

Ambient temperature from -25°C to +50°C.

Recommended in environments with strong amount of natural light (or areas with staff present discontinuously). Dry. dusty indoor environments, subject to

occasional water splashes.

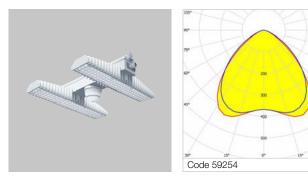
Commercial, industrial and sporting environments and warehouses and spaces where sports which involve high-flying balls etc. are not practised.

Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with polycarbonate lenses.

Installation

Recommended maximum height 13 m.

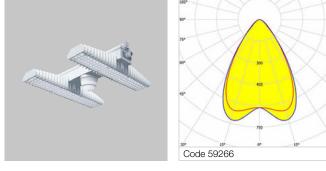
Light Management


The DALI SENSOR products from this product family are all fitted with DALI light sensors integrated into the luminaire (see "Light Management" chapter).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

400

3F LEM DALI Sensor Wide

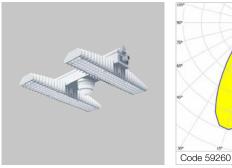


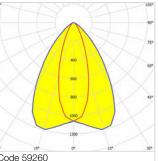
Wide distribution with rectangular shape. Integrated DALI light sensor on the luminaire, able to maintain a constant level of illumination as a function of the natural light.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
DALI elec	stronic wiring 230V-50/60Hz					
59253	3F LEM 2 LED 100 DALI Sensor CR AMPIO	111	16738	4000	>80	657x542x129

59254	3F LEM 3 LED 150 DALI Sensor CR AMPIO	170	25106	4000 >80 952x542x129	
59255	3F LEM 4 LED 200 DALI Sensor CR AMPIO	221	33475	4000 >80 952x542x129	

3F LEM DALI Sensor Medium


CE	⁷ 650°C	IP54	IK06	A++ A+ A	
-----------	--------------------	------	------	----------------	--


Medium distribution with square shape. Integrated DALI light sensor on the luminaire, able to maintain a constant level of illumination as a function of the natural light.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
DALI elec	tronic wiring 230V-50/60Hz						

59265	3F LEM 2 LED 100 DALI Sensor CR MEDIO	111	17097	4000	>80	657x542x129
59266	3F LEM 3 LED 150 DALI Sensor CR MEDIO	170	25646	4000	>80	952x542x129
59267	3F LEM 4 LED 200 DALI Sensor CR MEDIO	221	34194	4000	>80	952x542x129

3F LEM DALI Sensor Concentrated

650°C

Concentrated elliptical distribution. Integrated DALI light sensor on the luminaire, able to maintain a constant level of illumination as a function of the natural light.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
DALI ele	ctronic wiring 230V-50/60Hz						
59259	3F LEM 2 LED 100 DALI Sensor CR CONC	111	17133	4000	>80	657x542x129	
59260	3F LEM 3 LED 150 DALI Sensor CR CONC	170	25700	4000	>80	952x542x129	
59261	3F LEM 4 LED 200 DALI Sensor CR CONC	221	34266	4000	>80	952x542x129	

Construction characteristics com

Illuminotechnical characteristics

Wide, medium, concentrated symmetric elliptical distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Passive modular heatsinks in die-casted aluminum, painted in white color. To optimize the thermal management of the LED module, the heatsinks are oversized and provided with self-cleaning of cooling fins.

Wiring body in aluminum and galvanized steel anchored solidly to the sinks and thermally separated.

3F Lens lenses with high luminous efficiency, transparent PMMA, fixed to the LED modules.

Fixing brackets in stainless steel.

Electrical characteristics

Quick connection.

Power unit positioned on a separate

compartment by the LED module to ensure optimum temperatures of cabling components, to be inspectable and maintainable.

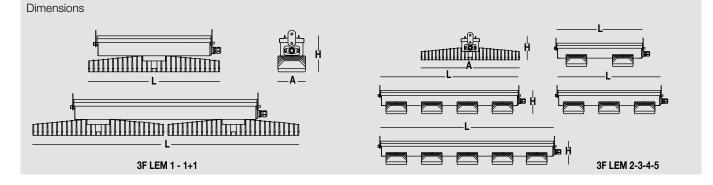
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering indices and colour temperatures
- double quick connection
- polycarbonate lenses (IK08)
- wiring: twin-circuit, CLO (more information on page 542)
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- HACCP versions for use in the food industry

Applications

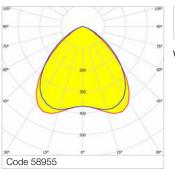

Ambient temperature from -30°C to +45°C. Dry, dusty indoor environments, subject to occasional water splashes.

Commercial, industrial and sporting environments and warehouses and spaces where sports which involve high-flying balls etc. are not practised.

Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with polycarbonate lenses.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).


404 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

3F LEM HO Wide

Item

Code

🐝 CE Ӯ

Output

flux (Im)

D∕ 650°C

CCT

(K)

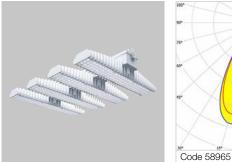
CRI

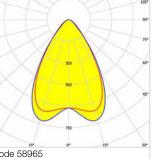
IP65 1J

Dimensions

LxAxH

Wide distribution with rectangular shape.


Electronic wiring 230V-50/60Hz


58953 3F LEM 1 HO LED 70 CR AMPIO 73 10453 4000 >80 542x115x150 58957 3F LEM 1+1 HO LED 140 CR AMPIO 147 20907 4000 >80 1099x115x150 58954 3F LEM 2 HO LED 140 CR AMPIO 147 20907 4000 >80 470x542x129 58955 3F LEM 3 HO LED 210 CR AMPIO 222 31360 4000 >80 657x542x129 58956 3F LEM 4 HO LED 280 CR AMPIO 294 41813 4000 >80 757x542x129 58958 3F LEM 5 HO LED 350 CR AMPIO 370 52266 4000 >80 952x542x129 S8971 SF LEM 1 HO LED 70 DALI CR AMPIO 73 10453 4000 >80 542x115x150 S8971 3F LEM 1 HO LED 70 DALI CR AMPIO 73 10453 4000 >80 542x115x150 58975 3F LEM 1 +1 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 1099x115x150 58972 3F LEM 2 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 657x542x129 58973 3F LEM 3 HO LED 21
58954 3F LEM 2 HO LED 140 CR AMPIO 147 20907 4000 >80 470x542x129 58955 3F LEM 3 HO LED 210 CR AMPIO 222 31360 4000 >80 657x542x129 58956 3F LEM 4 HO LED 280 CR AMPIO 294 41813 4000 >80 757x542x129 58958 3F LEM 5 HO LED 350 CR AMPIO 370 52266 4000 >80 952x542x129 DALL electronic wiring 230V-50/60Hz Total colspan="4">Total CR AMPIO 58971 3F LEM 1 HO LED 70 DALI CR AMPIO 73 10453 4000 >80 542x115x150 58975 3F LEM 1 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 1099x115x150 58972 3F LEM 2 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 470x542x129 58973 3F LEM 3 HO LED 210 DALI CR AMPIO 147 20907 4000 >80 470x542x129 58973 3F LEM 3 HO LED 210 DALI CR AMPIO 222 31360 4000 >80 657x542x129
58955 3F LEM 3 HO LED 210 CR AMPIO 222 31360 4000 >80 657x542x129 58956 3F LEM 4 HO LED 280 CR AMPIO 294 41813 4000 >80 757x542x129 58958 3F LEM 5 HO LED 350 CR AMPIO 370 52266 4000 >80 952x542x129 DALL electronic wiring 230V-50/60Hz 58971 3F LEM 1 HO LED 70 DALI CR AMPIO 73 10453 4000 >80 542x115x150 58975 3F LEM 1 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 1099x115x150 58972 3F LEM 2 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 470x542x129 58973 3F LEM 3 HO LED 210 DALI CR AMPIO 222 31360 4000 >80 657x542x129
58956 3F LEM 4 HO LED 280 CR AMPIO 294 41813 4000 >80 757x542x129 58958 3F LEM 5 HO LED 350 CR AMPIO 370 52266 4000 >80 952x542x129 DALL electronic wiring 230V-50/60Hz 58971 3F LEM 1 HO LED 70 DALI CR AMPIO 73 10453 4000 >80 542x115x150 58975 3F LEM 1 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 1099x115x150 58972 3F LEM 2 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 470x542x129 58973 3F LEM 3 HO LED 210 DALI CR AMPIO 222 31360 4000 >80 657x542x129
58958 3F LEM 5 HO LED 350 CR AMPIO 370 52266 4000 >80 952x542x129 DALI electronic wiring 230V-50/60Hz 58971 3F LEM 1 HO LED 70 DALI CR AMPIO 73 10453 4000 >80 542x115x150 58975 3F LEM 1+1 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 1099x115x150 58972 3F LEM 2 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 470x542x129 58973 3F LEM 3 HO LED 210 DALI CR AMPIO 222 31360 4000 >80 657x542x129
DALI electronic wiring 230V-50/60Hz 510 5100 5100 50000 50000 50000 50000 500000 500000 500000 5000000 500000000 5000000000000000000000000000000000000
58971 3F LEM 1 HO LED 70 DALI CR AMPIO 73 10453 4000 >80 542x115x150 58975 3F LEM 1+1 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 1099x115x150 58972 3F LEM 2 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 470x542x129 58973 3F LEM 3 HO LED 210 DALI CR AMPIO 222 31360 4000 >80 657x542x129
58975 3F LEM 1+1 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 1099x115x150 58972 3F LEM 2 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 470x542x129 58973 3F LEM 3 HO LED 210 DALI CR AMPIO 222 31360 4000 >80 657x542x129
58972 3F LEM 2 HO LED 140 DALI CR AMPIO 147 20907 4000 >80 470x542x129 58973 3F LEM 3 HO LED 210 DALI CR AMPIO 222 31360 4000 >80 657x542x129
58973 3F LEM 3 HO LED 210 DALI CR AMPIO 222 31360 4000 >80 657x542x129
58974 3F LEM 4 HO LED 280 DALL CR AMPIO 294 41813 4000 >80 757x542x129

Absorbed

power (W)

3F LEM HO Medium

🐼 CE 🛡

Output

flux (Im)

Dimensions

LxAxH

650°C

CCT

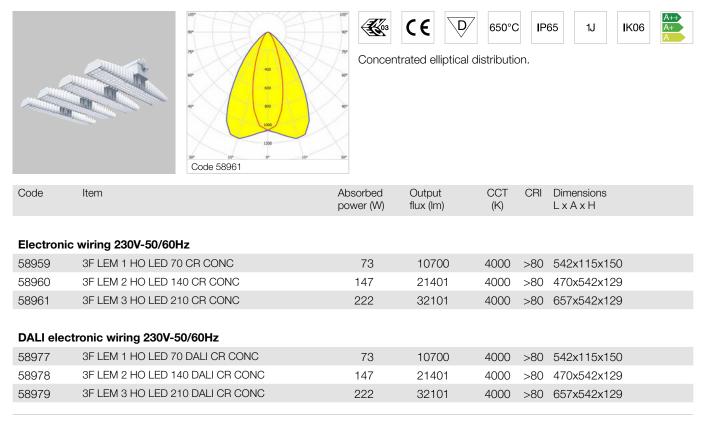
(K)

CRI

Medium distribution with square shape.

Electronic wiring 230V-50/60Hz

Item


Code

	-						
58968	3F LEM 1+1 HO LED 140 CR MEDIO	147	21356	4000	>80	1099x115x150	
58965	3F LEM 2 HO LED 140 CR MEDIO	147	21356	4000	>80	470x542x129	
58966	3F LEM 3 HO LED 210 CR MEDIO	222	32033	4000	>80	657x542x129	
58967	3F LEM 4 HO LED 280 CR MEDIO	294	42711	4000	>80	757x542x129	
58969	3F LEM 5 HO LED 350 CR MEDIO	370	53389	4000	>80	952x542x129	
DALI elec	ctronic wiring 230V-50/60Hz						
DALI elec 58986	Stronic wiring 230V-50/60Hz 3F LEM 1+1 HO LED 140 DALI CR MEDIO	147	21356	4000	>80	1099x115x150	
	Ŭ	147 147	21356 21356	4000 4000	>80 >80		
58986	3F LEM 1+1 HO LED 140 DALI CR MEDIO				>80		
58986 58983	3F LEM 1+1 HO LED 140 DALI CR MEDIO 3F LEM 2 HO LED 140 DALI CR MEDIO	147	21356	4000	>80 >80	470x542x129	
58986 58983 58984	3F LEM 1+1 HO LED 140 DALI CR MEDIO 3F LEM 2 HO LED 140 DALI CR MEDIO 3F LEM 3 HO LED 210 DALI CR MEDIO	147 222	21356 32033	4000 4000	>80 >80 >80	470x542x129 657x542x129	

Absorbed

power (W)

3F LEM HO Concentrated

406 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

or LEW High remperatu

Construction characteristics

Illuminotechnical characteristics

Wide, medium, concentrated symmetric elliptical distribution.

Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Luminous flux at +70°C: -13.5%. Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Passive modular heatsinks in die-casted aluminum, painted in white color. To optimize the thermal management of the LED module, the heatsinks are oversized and provided with self-cleaning of cooling fins.

Wiring body in aluminum and galvanized steel anchored solidly to the sinks and thermally separated.

3F Lens lenses with high luminous efficiency, transparent polycarbonate, fixed to the LED modules.

Fixing brackets in stainless steel.

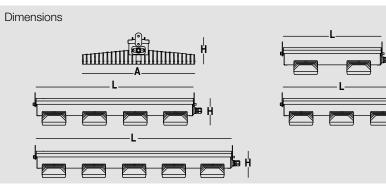
Electrical characteristics

In compliance with EN 60598-1. Quick connection. Power unit positioned on a separate compartment by the LED module to ensure optimum temperatures of cabling components, to be inspectable and maintainable.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

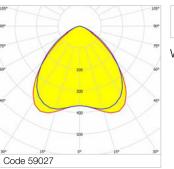

- different power levels, colour rendering indices and colour temperatures
- double quick connection
- wiring: twin-circuit, dimmable, CLO (more information on page 542)
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- HACCP versions for use in the food industry

Applications

Ambient temperature from -30°C to +70°C. Dry, dusty indoor environments, subject to occasional water splashes. Commercial, industrial and sporting environments and warehouses and spaces where sports which involve high-flying balls

where sports which involve high-flying ba etc. are not practised.

Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with polycarbonate lenses.


408

3F LEM HT Wide

Item

Code

CE 850°C **I**P65

Output

flux (Im)

Wide distribution with rectangular shape.

5J

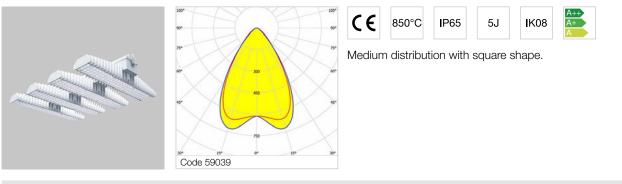
CCT

(K)

CRI

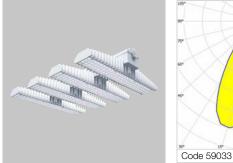
Dimensions

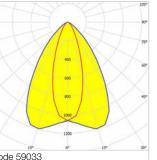
LxAxH

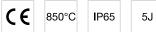

Electronic wiring 230V-50/60Hz

59026 3F LEM 2 H	T LED 60 CR AMPIO	68	10615	4000	>80	470x542x129	
59027 3F LEM 3 H	T LED 90 CR AMPIO	102	15922	4000	>80	657x542x129	
59028 3F LEM 4 H	T LED 120 CR AMPIO	136	21230	4000	>80	757x542x129	
59030 3F LEM 5 H	T LED 150 CR AMPIO	170	26537	4000	>80	952x542x129	

Absorbed


power (W)


3F LEM HT Medium



Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
Electronic	c wiring 230V-50/60Hz						
59039	3F LEM 4 HT LED 120 CR MEDIO	136	21676	4000	>80	757x542x129	
59041	3F LEM 5 HT LED 150 CR MEDIO	170	27094	4000	>80	952x542x129	

3F LEM HT Concentrated

Concentrated elliptical distribution.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
59032	3F LEM 2 HT LED 60 CR CONC	68	10863	4000	>80	470x542x129
59033	3F LEM 3 HT LED 90 CR CONC	102	16294	4000	>80	657x542x129
59034	3F LEM 4 HT LED 120 CR CONC	136	21725	4000	>80	757x542x129

Construction characteristics

Illuminotechnical characteristics

Wide symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tg+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tg+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Passive modular heatsinks in die-casted aluminum, painted in white color. To optimize the thermal management of the LED module, the heatsinks are oversized and provided with self-cleaning of cooling fins.

Wiring body in aluminum and steel in white colour, specially strengthened, anchored solidly to the sinks and thermally separated.

3F Lens lenses with high luminous efficiency, transparent PMMA, fixed to the LED modules.

Fixing brackets in stainless steel.

Electrical characteristics

Quick connection in polycarbonate with M20x1,5 cable gland, to access the terminal block positioned on a removable runner.

Power unit positioned on a separate compartment by the LED module to ensure optimum temperatures of cabling components, to be inspectable and maintainable.

Source characteristics

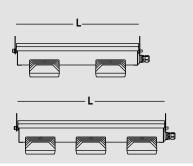
- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different power levels, colour rendering • indices and colour temperatures
- double quick connection
- polycarbonate lenses (IK08 5J) wiring: twin-circuit, CLO (more • information on page 542)
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology

Applications

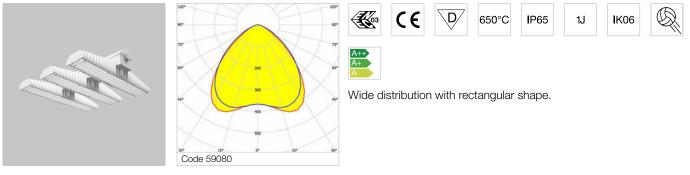
Ambient temperature from -20°C to +55°C.


Luminaire suitable for gyms as weel as sports, commercial, exhibition and industrial environments.

Resistance against ball impacts in accordance with DIN 18032-3, CSI certification (IMQ group) (more information on page 579).

Dry, dusty indoor environments, subject to occasional water splashes.

Dimensions



Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

412

3F LEM Sport Wide

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H

Electronic wiring 230V-50/60Hz

59080	3F LEM 2 Sport LED 100 CR AMPIO	110	16738	4000	>80 470x542x129
59081	3F LEM 3 Sport LED 150 CR AMPIO	169	25106	4000	>80 657x542x129

3F LEM Accessories

Brackets for mounting of luminaire on ceiling or on bus ducts, stainless steel.

Code	ltem
A0652	Couple of brackets for ceiling installation - 3F LEM

college college

Brackets for ceiling mounting, in hot-galvanized steel painted in white polyester.

Code	Item
A0632	Couple of brackets for ceiling installation - 3F LEM
The brack	et A0632 allows the luminaire to be ceiling mounted without the possibility to rotate it.

The bracket A0632 allows the luminaire to be ceiling mounted without the possibility to rotate it. To allow free orientation, both accessories (A0651+A0632) must be installed.

Brackets for wall mounting, in in hot-galvanized steel painted in white polyester.

Code	Item
A0654	Pair of wall brackets - 3F LEM

The bracket A0654 allows the luminaire to be wall mounted without the possibility to rotate it. To allow free orientation, both accessories (A0651+A0654) must be installed.

Additional bracket that, combined with the A0654 or A0632 accessories, makes it possible for the luminaires to be oriented on the ceiling or the wall, in hot-galvanized steel painted in white polyester.

Code	Item
A0651	3F LEM bracket rotation support

This accessory must ALWAYS be used with one of the following codes: A0632 o A0654.

Brackets for rotating luminaries mounted on ceilings or on bus ducts.

Code	Item
A0776	Horizontal rotation bracket 90° 3F LEM 1-2
A0777	Horizontal rotating bracket 90° 3F LEM 3 - 3F LEM 2 Sensor
A0778	Horizontal Rotating Bracket 90° 3F LEM 4

Dust covers for food processing areas in white-painted galvanized steel.

Code	Item
A0728	Cover for food applications - for 3F LEM 1
A0733	Cover for food applications - for 3F LEM 2-3-4-5 (one for each module)

HACCP

For a LEM 3, for example, 3 pcs of the cod. A0733 must be ordered. Not available for the 1+1 version. To find out the maximum ambient operating temperature of the appliance fitted with the cover, contact our Sales Network or our Technical Offices.

Snap hooks clips for chain suspension, galvanized steel.

Code	Item
A0653	Couple of fixing carabiniers for chain installation

 Code
 Item

 A0811
 Transparent glass with gasket (10pcs) The pack contains 10 pieces.

Glass with gasket to protect the louvre compartment from dust and noxious fumes. Recommended for use

A0812	Printed glass with gasket (10pcs) The pack contains 10 pieces.

Anti-fall safety cable \varnothing 2 mm for fastening the body to the building structure.

in very dirty environments or in which aggressive chemical agents are used.

Code	Item
A0242	100m galvanized steel cable coil The pack contains 100 metres.
A0243	500m galvanized steel cable coil The pack contains 500 metres.

Coupling accessory A0714 to one of the two safety cables (A0242 or A0243) provides an anti-fall kit fixing and adjusting the cable on the load-bearing element of the building structure. The cable passes between the two passage holes on the hanging brackets mounted on the 3F LEM. Suitable for environments subject to impacts or seismic zones.

Contraction of the second	1,5 mm -	Clamp in nickel-plated brass suitable for fixing and adjustment of galvanized steel wire (diameter 1,25 mm - 1,5 mm - 2 mm), complete with locking screws. The 2 hole clamp allows to block and adjust the cable on a bearing element (part of the building) or on rounded eye bolt.				
	Code	Item				
	A0714	Clamp 2 holes - 100 pcs The pack contains 100 pieces.				

CE

Reducing	sealing ring, dedicated to the use of cables with an external diameter of up to 8 mm.
Code	Item

Oude	Item
A0521 NEW	Reducing sealing ring – diam.8mm

IR remote control for user, compatible with DALI sensors (incompatible with On-Off and Slave sensors). Accessory compatible with 3F LEM DALI Sensor. Code Item A3021 Remote controller IR DALI

IR remote control for programmer, compatible with DALI sensors (incompatible with On-Off and Slave sensors).

Accessory compatible with 3F LEM DALI Sensor.

Code Item A3020 Programmer IR DALI

CE

IR adapter for Smartphones, compatible with all programmable sensors. Free App available for Android and iOS devices.

Accessory compatible with 3F LEM DALI Sensor.

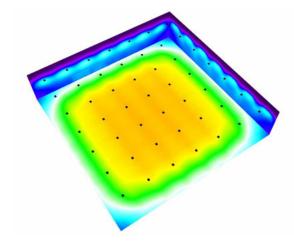
CodeItemA3022IR-Adapter for Smartphone

3F LEM

Examples of design

Comparison to 400W JM reflector

0.85 metres


Design data:

Room dimensions	50x50 metres
Room height	11 metres
Installation height	10 metres

Like-for-like replacement of light points

Reflection	ceiling 30% walls 30% floor 10%

Work surface height

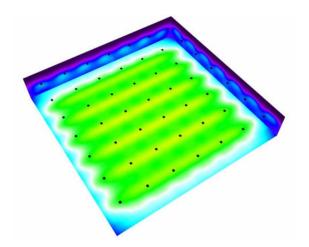
	Current system 400 JM reflector	Like-for-like replacement of light points 3F LEM 2 HO LED 140	Reduction in light points 3F LEM 4 HO LED 280
Lighting values	290 lx	345 lx (MEDIO) - 325 lx (AMPIO)	345 lx (MEDIO) - 325 lx (AMPIO)
Number of light points	49	49	25
Total luminaire	21,560 W	7,203 W	7,350 W
Difference		-67%	-66%
Average source life	8,000 hours	>100,000 hours	>100,000 hours

Comparison to 250W JM reflector

Design data:

Room dimensions
Room height
Installation height

50x50 metres 8 metres 7 metres


ceiling 30% walls 30%

Like-for-like replacement of light points

Reflection		

Work surface height

floor 10% 0.85 metres

	Current system 250 JM reflector	Like-for-like replacement of light points 3F LEM 2 LED 100	Reduction in light points 3F LEM 2 LED 100
Lighting values	174 lx	288 lx (MEDIO) - 275 lx (AMPIO)	247 lx (MEDIO) - 237 lx (AMPIO)
Number of light points	49	49	42
Total luminaire	14,210 W	5,390 W	4,620 W
Difference		-62%	-67%
Average source life	8,000 hours	>100,000 hours	>100,000 hours

3F Linda

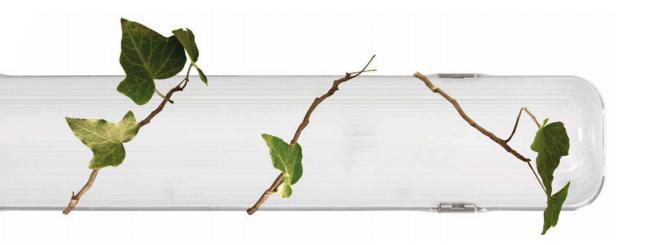
Clean lines, compact and solid. Like always.

Patented

3F Linda has become famous for its soft and smooth lines, its patented snug fit snap-lock clips, its compact egg-shaped housing (110 millimetres maximum in the case of ceiling installation with brackets), its internal reinforcement structure and its elastic, shatterproof polycarbonate diffuser. Thanks to its flexibility, it finds applications in residential, commercial and even food industry environments **(IFS,**

HACCP and BRC certification).

3F Linda is available in three different lengths (600, 1200 and 1500 mm) with different power and luminous flux levels, and with both housing widths (100 millimetres and 160 millimetres).


Its efficient electronic wiring decreases power consumption and start-up times.

Thanks to the photo-etched diffuser, 3F Linda is now even higher-performance and economical, with improved diffusion and softer light, and increased visual comfort.

Efficient and ecological. For you, for the world.

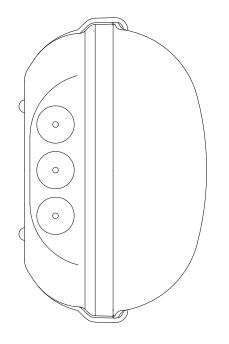
3F Linda shows off the best of 3F Filippi's design philosophy in looking for the best production solutions which respect the environment and lead to a reduction in materials and energy across the whole of the product's life cycle, by:

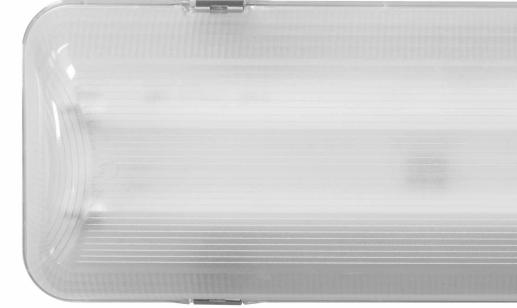
- Reducing power consumption and increasing the efficiency of our products thanks to the introduction of intelligent electronic wiring, high-efficiency sources and optimisation of the distribution of the luminous flux, thanks also to the possibility of installing flow recuperators.
- Limited use of different materials in order to facilitate the assembly, installation and recycling phases: only polycarbonate (body, diffuser, clips), aluminium or steel (flow recuperator, gear tray and stainless-steel clips) and the copper in the wires (completely removable) are used in 3F Linda. Moreover, connection between components are all reversible and use completely recyclable materials, facilitating disassembly and disposal of the product at the end of its lifetime.
- Recyclable green packaging, like all of 3F Filippi's products, in recycled cardboard.
- Reduced ecological footprint, with products manufactured with energy from PV solar panels and product handling following a "zeromile" philosophy.
- Installation compatibility with previous versions: the new 3F Linda integrates perfectly in all environments, becoming the perfect solution to update existing installations thanks to its full compatibility with the previous fluorescent version in terms of its size and accessories.
- Reuse of these elements means that less energy is used to create new products and accessories for adaption of previous installations.
- Installation is quick and safe thanks to the fixing brackets made entirely of stainless steel (both the internal and external part); the weight is distributed optimally. The sliding quick connection bracket can also be adjusted to suit the thermal expansion of the luminaire even in environments with a notable temperature range. The set of three fixing brackets is supplied with each luminaire.
- For installations with direct exposure to sunlight, use of the "Beta 235" or "Beta A3F i3F" product is recommended.
- The sliding quick connection bracket can also be adjusted to suit the thermal expansion of the luminaire even in environments with a notable temperature range. The set of three fixing brackets is supplied with each luminaire.
- 3F Linda is a luminaire with Fire Reaction Class 1 as per Italian Ministerial Decree of 24 June 1984 (Classification of reaction to fire and type-approval of materials for fire-prevention purposes).
- This classification meets the requirements of Italian Ministerial Decrees of 11 January 1988 (Fire-prevention standards in subways) and of 28 October 2005 (Safety in railway tunnels).

3F Linda

Product range

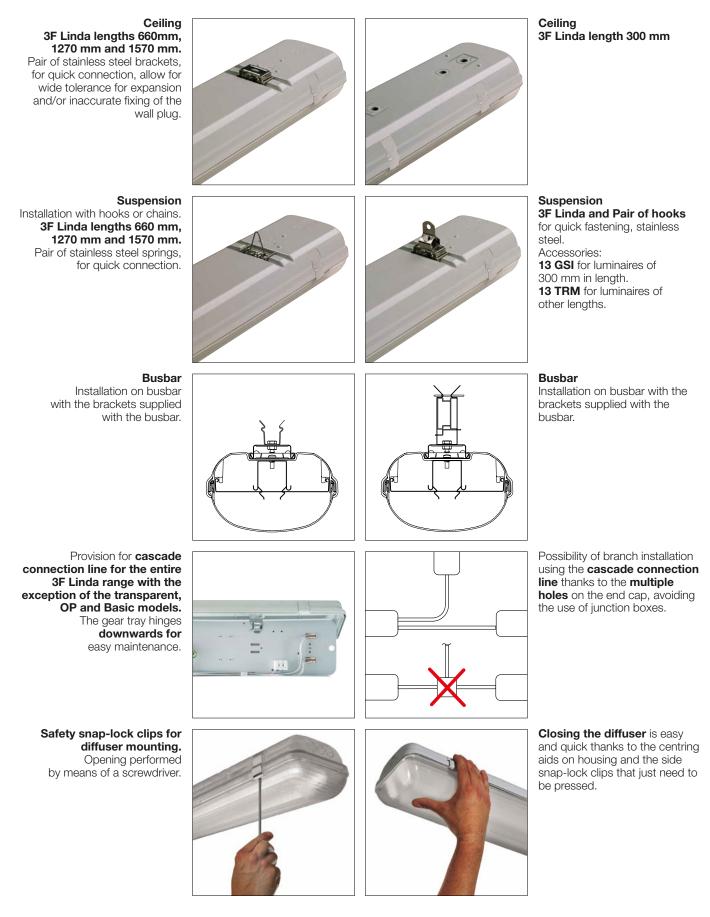
3F Linda is available in the following versions:


- 3F Linda LED High-performance watertight luminaire
- 3F Linda LED Wide Version with wide distribution
- 3F Linda LED Concentrated Version with concentrated distribution
- 3F Linda LED Basic The ideal solution for replacing old fluorescent solutions
- 3F Linda LED Soft Watertight luminaire with high visual comfort
- 3F Linda LED Compact Luminaire 300 mm in length
- 3F Linda LED HS Watertight luminaire for environments with corrosive substances
- 3F Linda LED Transparent Watertight luminaire with transparent body and diffuser
- 3F Linda LED Ice Watertight luminaire for refrigeration cells with temperatures down to -30°C
- 3F Linda LED Sensor Watertight luminaire with integrated presence sensor
- 3F Linda LED Sensor Bluetooth Watertight luminaire controlled via Bluetooth radio signal


3F Linda is available with two different body widths:

3F Linda 100 mm

3F Linda 160 mm



1:2 scale image

Installation Details

3F Linda allows for quick and safe installation with various fixing methods.

Construction characteristics

Illuminotechnical characteristics

Controlled symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tg+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Self-extinguishing V2 polycarbonate housing, injection moulded, RAL 7035 grey. Ecologic anti-aging injected sealing

gasket. Gear-tray reflector unit in hot-galvanized

steel, painted in white polyester, fixed to the housing by means of steel rapid devices, hinged opening. Diffuser in self-

extinguishing V2 polycarbonate, photoengraved interior, UV stabilised, injection moulded with smooth outer surface. Stainless steel fixing brackets, L=300 mm versions excluded.

Electrical characteristics

Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- · different colour rendering indices and colour temperatures
- wiring: CLO (more information on page 542), dimmable D1-10V, class II
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology

Applications

Dry, dusty indoor environments, subject to occasional water splashes.

Virtually in all environments compatibly with the use of any chemicals which could compromise the use of plastic materials. Not suitable in environments where chlorine fumes, ligroin, hydrocarbon mixtures, mineral oil vapours or fumes of lubricating emulsions to cool down machine tools are present.

Not suitable for installation on surfaces subject to important vibrations, exposed to weather conditions, on ropes or poles. Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Suitable for illumination of public car parks and parking grounds referred to DIN 67528:2018-04.

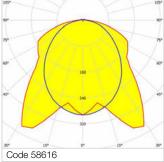
For specific applications please contact our technical offices.

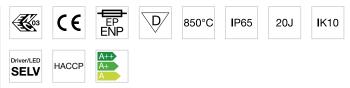
Wide version

Environments with low ceilings, parking lots or wide installation grids.

Concentraded version

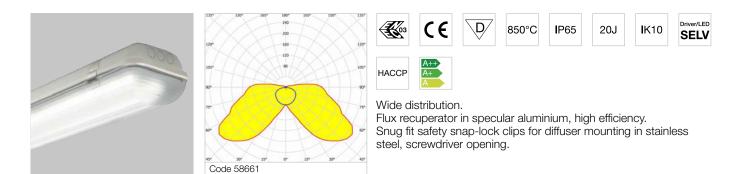
Environments with high ceilings.


Dimensions Δ Δ н


Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

424

3F Linda LED



Snug fit safety snap-lock clips for diffuser mounting in stainless steel, screwdriver opening. Fixing brackets in stainless steel.

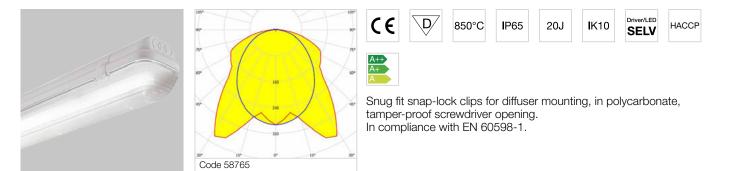
Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
58563	3F Linda LED 1x6W L660	7.5	1029	4000	>80	660x100x100
58561	3F Linda LED 1x12W L660	15	1918	4000	>80	660x100x100
58583	3F Linda LED 1x24W L1270	28	3914	4000	>80	1270x100x100
58585	3F Linda LED 1x24W/830 L1270	28	3640	3000	>80	1270x100x100
58584	3F Linda LED 1x24W/865 L1270	28	3777	6500	>80	1270x100x100
58572	3F Linda LED 2x12W L660	30	3732	4000	>80	660x160x100
58605	3F Linda LED 1x30W L1570	35	4899	4000	>80	1570x100x100
58607	3F Linda LED 1x30W/830 L1570	35	4556	3000	>80	1570x100x100
58606	3F Linda LED 1x30W/865 L1570	35	4727	6500	>80	1570x100x100
58594	3F Linda LED 2x24W L1270	56	7617	4000	>80	1270x160x100
58596	3F Linda LED 2x24W/830 L1270	56	7084	3000	>80	1270x160x100
58595	3F Linda LED 2x24W/865 L1270	56	7350	6500	>80	1270x160x100
58616	3F Linda LED 2x30W L1570	70	9533	4000	>80	1570x160x100
58618	3F Linda LED 2x30W/830 L1570	70	8865	3000	>80	1570x160x100
58617	3F Linda LED 2x30W/865 L1570	70	9199	6500	>80	1570x160x100
DALI elect	tronic wiring 230V-50/60Hz					
58549 ^{NEW}	3F Linda LED 1x12W DALI L660	15	1918	4000	>80	660x100x100
58550 ^{NEW}	3F Linda LED 2x12W DALI L660	30	3732	4000	>80	660x160x100
58551	3F Linda LED 1x24W DALI L1270	28	3914	4000	>80	1270x100x100
58553	3F Linda LED 1x30W DALI L1570	35	4899	4000	>80	1570x100x100
58552	3F Linda LED 2x24W DALI L1270	56	7617	4000	>80	1270x160x100
58554	3F Linda LED 2x30W DALI L1570	70	9533	4000	>80	1570x160x100
EP mainta	ined emergency wiring, 1hr duration with 24h	rs recharge, fu	use (fluxes or	n page 56	60)	
58569	3F Linda LED 1x6W EP LA L660	8.5	1029	4000	>80	660x160x100
58567	3F Linda LED 1x12W EP LA L660	16	1918	4000	>80	660x160x100
58589	3F Linda LED 1x24W EP L1270	29	3914	4000	>80	1270x100x100
58591	3F Linda LED 1x24W/830 EP L1270	29	3640	3000	>80	1270x100x100
58590	3F Linda LED 1x24W/865 EP L1270	29	3777	6500	>80	1270x100x100
58611	3F Linda LED 1x30W EP L1570	36	4899	4000	>80	1570x100x100
58613	3F Linda LED 1x30W/830 EP L1570	36	4556	3000	>80	1570x100x100
58612	3F Linda LED 1x30W/865 EP L1570	36	4727	6500	>80	1570x100x100
58600	3F Linda LED 2x24W EP L1270	57	7617	4000	>80	1270x160x100
58602	3F Linda LED 2x24W/830 EP L1270	57	7084	3000	>80	1270x160x100
58601	3F Linda LED 2x24W/865 EP L1270	57	7350	6500	>80	1270x160x100
58623	3F Linda LED 2x30W EP L1570	71	9533	4000	>80	1570x160x100
58625	3F Linda LED 2x30W/830 EP L1570	71	8865	3000	>80	1570x160x100
58624	3F Linda LED 2x30W/865 EP L1570	71	9199	6500	>80	1570x160x100
ENP non-	permanent emergency wiring, 1hr duration wit	h 24hrs recha	rge, fuse (flu	xes on p	age 5	60)
58705	3F Linda LED 1x12W ENP LA L660		543	4000	>80	660x160x100
58713	3F Linda LED 1x24W ENP L1270		544	4000	00	1270x100x100

3F Linda LED Wide

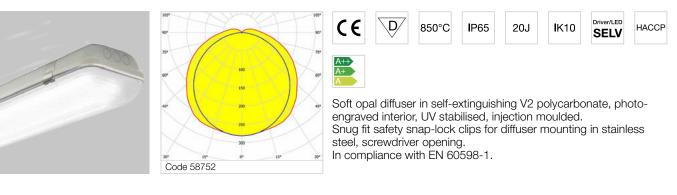
Code	Item	Absorbed	Output	CCT	CRI	Dimensions	
		power (W)	flux (lm)	(K)		LxAxH	

Electronic wiring 230V-50/60Hz

	-				
58659	3F Linda LED 2x24W AMPIO L1270	56	7600	4000 >80 1270x160x100	
58661	3F Linda LED 2x30W AMPIO L1570	70	9511	4000 >80 1570x160x100	


3F Linda LED Concentrated

Electronic wiring 230V-50/60Hz


58630	3F Linda LED 2x24W CONC L1270	56	7465	4000	>80	1270x160x100
58632	3F Linda LED 2x30W CONC L1570	70	9342	4000	>80	1570x160x100

3F Linda LED Basic

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Flectroni	c wiring 230V-50/60Hz					
LICCUOIN						
58762	3F Linda LED Basic 1x19W L1270	21	2738	4000	>80	1270x100x100
58764	3F Linda LED Basic 1x23W L1570	29	3435	4000	>80	1570x100x100
58766	3F Linda LED Basic ST 2x16W L1270	36	4952	4000	>80	1270x100x100
58763	3F Linda LED Basic 2x19W L1270	42	5329	4000	>80	1270x160x100
58767	3F Linda LED Basic ST 2x20W L1570	45	6225	4000	>80	1570x100x100
58765	3F Linda LED Basic 2x23W L1570	56	6685	4000	>80	1570x160x100

3F Linda LED Soft

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
58731 NEW	3F Linda LED Soft 1x12W L660	15	1760	4000	>80	660x100x100
58732 ^{NEW}	3F Linda LED Soft 2x12W L660	30	3376	4000	>80	
58733 ^{NEW}	3F Linda LED Soft 1x24W L1270	28	3593	4000	>80	
58734 ^{NEW}	3F Linda LED Soft 1x30W L1570	35	4497	4000	>80	1570x100x100
58751	3F Linda LED Soft 2x22W L1570	50	6838	4000	>80	1570x160x100
58737 NEW	3F Linda LED Soft 2x24W L1270	56	6890	4000	>80	1270x160x100
58752	3F Linda LED Soft 2x30W L1570	70	8623	4000	>80	1570x160x100
DALI elec	tronic wiring 230V-50/60Hz					
58735 ^{NEW}	3F Linda LED Soft 1x24W DALI L1270	28	3593	4000	>80	1270x100x100
58736 ^{NEW}	3F Linda LED Soft 1x30W DALI L1570	35	4497	4000	>80	1570x100x100
58753	3F Linda LED Soft 2x22W DALI L1570	50	6838	4000	>80	1570x160x100
58738 ^{NEW}	3F Linda LED Soft 2x24W DALI L1270	56	6890	4000	>80	1270x160x100
58754	3F Linda LED Soft 2x30W DALI L1570	70	8623	4000	>80	1570x160x100

3F Linda LED Compact

Code Item Absorbed Output CCT CRI Dimensions power (W) flux (Im) (K) LXAXH Electronic wiring 230V-50/60Hz 3F Linda Compatta LED 1x5W 160x300 5791 7.5 464 300x160x100 4000 >80 3F Linda Compatta LED 1x5W 100x300 5790 7.5 461 >80 300x100x100 4000 EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

The **Linda LED Compact** version is specially designed to be installed in corridors, emergency exits and transit areas: its light guides you along very clearly with its distribution which has been optimised to create light corridors.

Thanks to a new type of LED specially designed for this device, consistent energy savings can be achieved and maintenance costs eliminated (average estimated LED source lifetime 80,000 h).

Both Linda Compact LED versions can be wall or ceiling mounted, and offer the possibility to direct the LED source, easily adapting the light strip to any type of installation.

The rotating support the LED is fixed to allows the light flow to be oriented up to 45° in both directions, meeting any dedicated lighting requirements and allowing these adjustments to be made with great precision directly on site:

orientation

Example: Asymmetric I oriented at 45°

428

3F Linda LED HS

Construction characteristics

Illuminotechnical characteristics

Controlled symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Body and screen in polycarbonate with additional protective treatment for use in environments with aggressive substances. Ecologic anti-aging injected sealing gasket.

Gear-tray reflector unit in hot-galvanized steel, painted in white polyester, fixed to the housing by means of steel rapid devices, hinged opening. Diffuser in self-

extinguishing V2 polycarbonate, photoengraved interior, UV stabilised, injection moulded with smooth outer surface. Snug fit safety snap-lock clips for diffuser mounting in stainless steel, screwdriver opening.

Fixing brackets in stainless steel.

Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

- Linear anti-sulfur LED modules (SiO2), with special protection against aggressive chemicallyvolatile substances, for standard LED technology.
- Color initial tolerance (MacAdam): SDCM 3.

On request

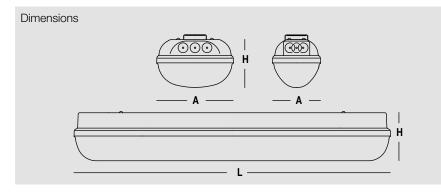
- different colour temperatures
- wiring: dimmable, CLO (more information on page 542), class II

Applications

Dry, dusty indoor environments, subject to occasional water splashes. Product suitable for installation in foodproduction/processing environments (HACCP), IFS (Food Version 6), BRC (GSFS Food Version 7). Virtually in all environments compatibly with the use of any chemicals which could compromise the use of plastic materials. Not suitable for installation on surfaces subject to important vibrations, exposed to

weather conditions, on ropes or poles.

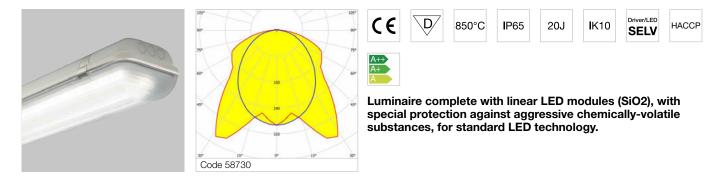
Luminaire complete with linear anti-sulfur LED modules (SiO2), with special protection against aggressive chemically-volatile substances, for standard LED technology.


Body and diffuser resistant to the following substances: Ethyl alcohol (24 hours at 20°C), aqueous detergents, hydrochloric acid 10% (leaves slight mark), DOT4 brake oil, sulphuric acid (leaves slight mark), ammonia.

When using this data, remember that it is the result of laboratory tests, and therefore valid only under those test conditions: the data is to be considered approximate and, in the absence of practical experience, it is advisable to carry out tests under actual operating conditions.

Please refer to the resistance to corrosive substances table on page 581.

The temperature and concentration of the chemical substance may significantly affect the materials and the LED technology. For specific applications please contact our technical offices.


Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

430

3F Linda LED HS

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
Electron	ic wiring 230V-50/60Hz						
58722	3F Linda LED HS 1x24W L1270	28	3914	4000	>80	1270x100x100	
58724	3F Linda LED HS 1x30W L1570	35	4899	4000	>80	1570x100x100	
58728	3F Linda LED HS 2x24W L1270	56	7617	4000	>80	1270x160x100	
58730	3F Linda LED HS 2x30W L1570	70	9533	4000	>80	1570x160x100	

3F Linda LED Transparent

Construction characteristics

Illuminotechnical characteristics

Controlled symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tg+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RGO, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in transparent selfextinguishing V2 polycarbonate, injection moulded.

Ecologic anti-aging injected sealing gasket.

Gear-tray reflector unit in hot-galvanized steel, painted in white polyester, fixed to the housing by means of steel rapid devices, hinged opening. Diffuser in self-

extinguishing V2 polycarbonate, photoengraved interior, UV stabilised, injection moulded with smooth outer surface. Snug fit safety snap-lock clips for diffuser mounting in stainless steel, screwdriver opening.

Fixing brackets in stainless steel.

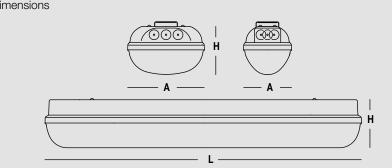
Electrical characteristics

In compliance with EN 60598-1.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

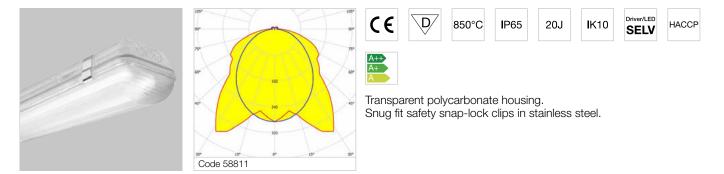
On request


- · different colour rendering indices and colour temperatures
- wiring: dimmable, CLO (more information on page 542), class II
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology

Applications

Dry, dusty indoor environments, subject to occasional water splashes. Environments: transit areas, parking lots. Environments where soft diffuse light is required for optimal visual comfort. Virtually in all environments compatibly with the use of any chemicals which could compromise the use of plastic materials. Not suitable in environments where chlorine fumes, ligroin, hydrocarbon mixtures, mineral oil vapours or fumes of lubricating emulsions to cool down machine tools are present. Not suitable for installation on surfaces subject to important vibrations, exposed to weather conditions, on ropes or poles. Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Suitable for illumination of public car parks and parking grounds referred to DIN 67528:2018-04.


Dimensions

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

432

3F Linda LED Transparent

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
58806	3F Linda LED Trasparente 1x12W L660	15	1928	4000	>80	660x100x100
58808	3F Linda LED Trasparente 1x24W L1270	28	3935	4000	>80	1270x100x100
58810	3F Linda LED Trasparente 1x30W L1570	35	4925	4000	>80	1570x100x100
58809	3F Linda LED Trasparente 2x24W L1270	56	7693	4000	>80	1270x160x100
58811	3F Linda LED Trasparente 2x30W L1570	70	9628	4000	>80	1570x160x100

Construction characteristics

Illuminotechnical characteristics

Controlled symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Self-extinguishing V2 polycarbonate housing, injection moulded, RAL 7035 grey. Ecologic anti-aging injected sealing gasket.

Gear-tray reflector unit in hot-galvanized steel, painted in white polyester, fixed to the housing by means of steel rapid devices, hinged opening. Diffuser in self-

extinguishing V2 polycarbonate, photoengraved interior, UV stabilised, injection moulded with smooth outer surface. Snug fit safety snap-lock clips for diffuser mounting in stainless steel, screwdriver opening.

Fixing brackets in stainless steel.

Electrical characteristics

In compliance with EN 60598-1. L-N-E line terminal block with ceramic isolator protection powder-filled fuse, rapid type, 5x20 mm, of suitable capacity, breaking capacity 1500 A. Solid single-core silicone rubber insulated wiring cable with fiberglass braid type UG4T2/2 cross section 0.75 mm².

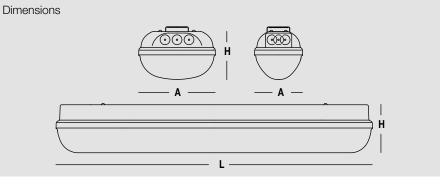
Source characteristics

- Linear LED modules UR95.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different colour rendering indices and colour temperatures
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- DALI version

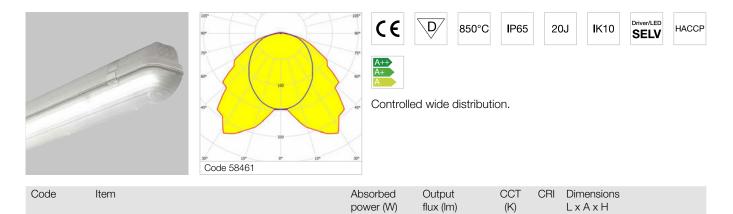
Applications


Cells with temperature from -30°C to + 40°C with a humidity degree up to 95%. Before installation, we recommend checking that there are no contraindications to the use of and polycarbonate inside the refrigerating room.

For applications in environments in which disturbances on the power network may be present and/or involve use at low temperatures, surge protection devices should be fitted on the power supply and any causes of undervoltages eliminated. Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Installation

Thanks to new 3F LED technology, the advantages of using 3F Linda LED ICE technology are manifold:


- switch-on time less than 5 seconds
- unlimited on cycles
 lifetime of LED source
- lifetime of LED source does not decline in relation to the number of on cycles
 All this results in cost reductions thanks to:
- power consumption lower than for
- fluorescent versionsno heat transfer from the luminaire to the cooled environment

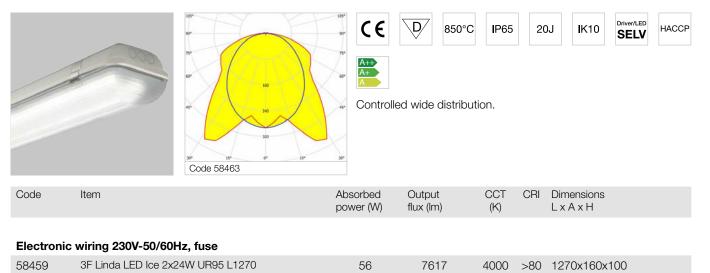
434 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

LxAxH

3F Linda LED Ice 1x

flux (Im)

(K)

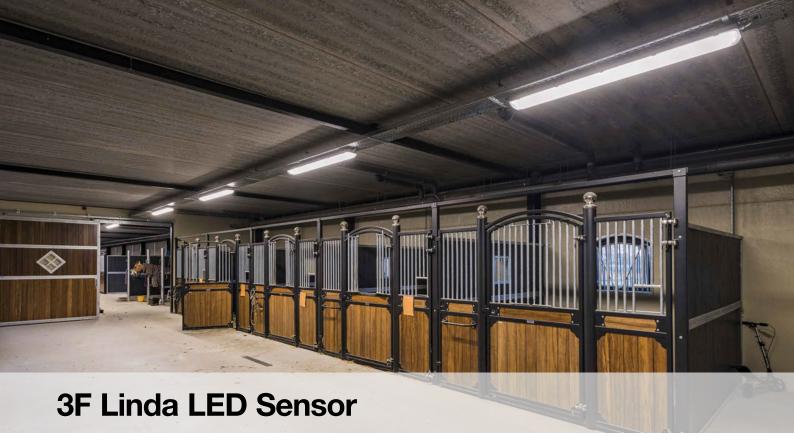

Electronic wiring 230V-50/60Hz. fuse

	· ····································					
58457	3F Linda LED Ice 1x24W UR95 L1270	28	3914	4000 >80	1270x100x100	
58461	3F Linda LED Ice 1x30W UR95 L1570	35	4899	4000 >80	1570x100x100	

3F Linda LED Ice 2x

58463

3F Linda LED Ice 2x30W UR95 L1570


70

9533

>80

4000

1570x160x100

Construction characteristics

Illuminotechnical characteristics

Controlled symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Self-extinguishing V2 polycarbonate housing, injection moulded, RAL 7035 grey.

Ecologic anti-aging injected sealing gasket.

Gear-tray reflector unit in hot-galvanized steel, painted in white polyester, fixed to the housing by means of steel rapid devices, hinged opening. Diffuser in self-

extinguishing V2 polycarbonate, photoengraved interior, UV stabilised, injection moulded with smooth outer surface. Snug fit safety snap-lock clips for diffuser mounting in stainless steel, screwdriver opening.

Fixing brackets in stainless steel.

Electrical characteristics

In compliance with EN 60598-1. Integrated presence sensor.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

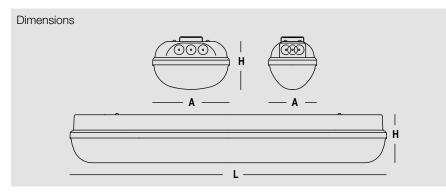
On request

- different colour rendering indices and colour temperatures
- wiring: emergency
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology

Applications

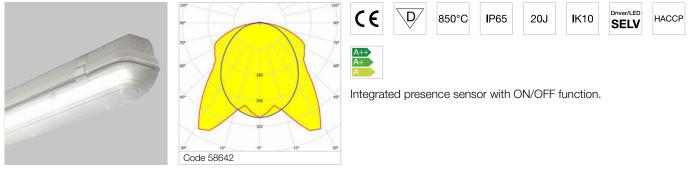
Dry, dusty indoor environments, subject to occasional water splashes.

Environments: transit areas, parking lots. Virtually in all environments compatibly with the use of any chemicals which could compromise the use of plastic materials. Not suitable in environments where chlorine fumes, ligroin, hydrocarbon mixtures, mineral oil vapours or fumes of lubricating emulsions to cool down machine tools are present. Not suitable for installation on surfaces


subject to important vibrations, exposed to weather conditions, on ropes or poles. For specific applications please contact our technical offices.

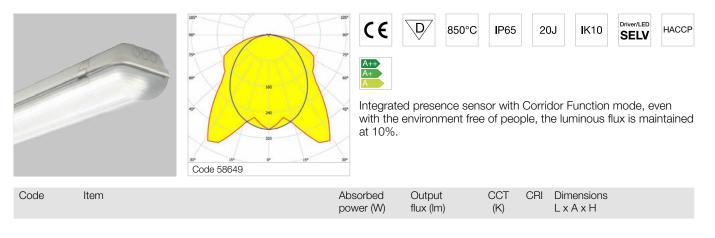
Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Suitable for illumination of public car parks and parking grounds referred to DIN 67528:2018-04.


Light Management

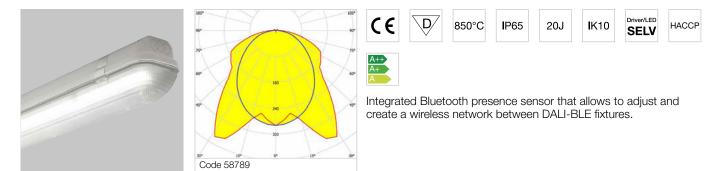
For more information on 3F Sensor technology, refer to the specific chapter in the "Light Management" section.

436


3F Linda LED Sensor

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H	
Electroni	ic wiring 230V-50/60Hz						
58638	3F Linda LED 1x30W Sensor L1570	36	4899	4000	>80	1570x100x100	

00000	SI LINUA LED TASUW SENSUL 1570	30	4099	4000	>00	137021002100
58642	3F Linda LED 2x30W Sensor L1570	71	9533	4000	>80	1570x160x100


3F Linda LED Sensor Corridor Function

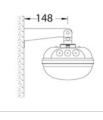
Electronic wiring 230V-50/60Hz

58645	3F Linda LED 1x30W Sensor CF L1570	36	4899	4000	>80	1570x100x100
58649	3F Linda LED 2x30W Sensor CF L1570	71	9533	4000	>80	1570x160x100

3F Linda LED Sensor Bluetooth

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
DALI elec	stronic wiring 230V-50/60Hz					
58786	3F Linda LED 1x24W Sensor DALI-BLE L1270	29	3914	4000	>80	1270x100x100
58787	3F Linda LED 1x30W Sensor DALI-BLE L1570	36	4899	4000	>80	1570x100x100
58788	3F Linda LED 2x24W Sensor DALI-BLE L1270	57	7617	4000	>80	1270x160x100
58789	3F Linda LED 2x30W Sensor DALI-BLE L1570	71	9533	4000	>80	1570x160x100

3F Linda Accessories


Snug fit snap-lock clips for diffuser mounting, in stainless steel, safety opening.

Accessory compatible with 3F Linda LED.

	Code	Item
	A0160	Inox clips 3F Linda L660-4pcs The pack contains 4 pieces.
	A0161	Inox clips 3F Linda L1270-8pcs The pack contains 8 pieces.
	A0162	Inox clips 3F Linda L1570-10pcs The pack contains 10 pieces.

Pair of brackets and hooks in stainless steel, with nuts and bolts for fixing to 3F Linda, for ceiling or wallmounting, single and twin-lamp luminaires. Minimum tilt angle = 45°.

Code	Item
A0449	15 GZI (w/brack. Linda L300)
A0450	15 RIT (w/brack.+ hooks Linda L660-1270-1570)

Pair of s 3F Linda Code

Pair of brackets and hooks in stainless steel, with nuts and bolts for fixing to 3F Linda, for wall-mounting, single and twin-lamp luminaires.

	Code	Item
	A0451	15 MBI (w/brack. Linda L300)
	A0452	15 FBR (w/brack.+ hooks Linda L660-1270-1570)

A0462	13 GSI (pair of susp. hooks Linda L300)
A0463	13 TRM (pair of susp. hooks Linda L660-1270-1570)

Wire-guard for applications in dry environments, against shocks coming from any directions, galvanized steel rod Ø 5 mm.

	Code	Item
	A0455	Wire guard 180x1330 03F/Linda
	A0456	Wire guard 180x1330 03F/Linda
	A0457	Wire guard280x1330 03F/Linda/Beta
	A0458	Wire guard 280x1630 03F/Linda/Beta

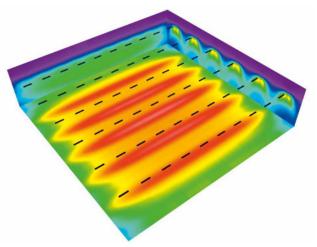
Only for luminaires fixed without hooks.

5-pole cascade connection line, stiff cable H07 V2-U, HT 90°C, 1.5 mm², terminal blocks with connection capacity 2x2.5 mm².

Accessory compatible with 3F Linda LED, 3F Linda LED HS, 3F Linda LED Ice, 3F Linda LED Sensor.

Code	Item
A0447	3F Linda though line L1570

. 1	Code	Item
	A0187	Anti-condensation cable gland
	Recomme condensa	ended for installations in environments with temperature sudden changes or subject to tion.
	Reducing	sealing ring, dedicated to the use of cables with an external diameter of up to 8 mm.
	Code	Item
9	A0521 ^{NEW}	Reducing sealing ring – diam.8mm
	135 mm h	ns for warning signs to be applied on emergency luminaire's diffusers 160 mm wide. Pictogram, nigh, 240 mm long for L300 luminaires, 605 mm long for L660 luminaires. Pictograms complying bean standards concerning health and safety signals on the workplace.
	Code	Item
	A0464	26 CSG (pictogram P1 Linda L300)
	A0465	26 MTH (pictogram P1 Linda L660)
	135 mm h	ns for warning signs to be applied on emergency luminaire's diffusers 160 mm wide. Pictogram, nigh, 240 mm long for L300 luminaires, 605 mm long for L660 luminaires. Pictograms complying bean standards concerning health and safety signals on the workplace.
	Code	Item
	A0466	26 DVI (pictogram P2 Linda L300)
	A0467	26 MVL (pictogram P2 Linda L660)
	135 mm h	ns for warning signs to be applied on emergency luminaire's diffusers 160 mm wide. Pictogram, nigh, 240 mm long for L300 luminaires, 605 mm long for L660 luminaires. Pictograms complying bean standards concerning health and safety signals on the workplace.
	Code	Item
2 /B-1	A0468	26 GZM (pictogram P3 Linda L300)
	A0469	26 PXN (pictogram P3 Linda L660)


3F Linda LED

Examples of design

Comparison with waterproof Fluorescent 2x58 Starter

Design data:

Room dimensions Room height Installation height	30x30 metres 7 metres 5 metres
Number of luminaires:	60 luminaires
Like-for-like replacement of I	light points
Reflection	ceiling 30% walls 30% floor 10%
Work surface height	0.85 metres

	Current system Waterproof Fluorescent 2x58W	Like-for-like replacement of light points 3F Linda LED Basic ST 2x20W L1570	Reduction in light points 3F Linda LED 2x30W L1570
Lighting values	300 lx	321 lx	329 lx
Number of light points	60	60	42**
Total luminaire	8,460 W (starter) 6,600 W (electronic)	2,700 W	2,940 W
Difference		-68% (starter) -59% (electronic)	-65% (starter) -55% (electronic)
Average source life	10,000 hours (starter) 18,000 hours (electronic)	>50,000 hours	>50,000 hours

2,000 hours annual operation (8 hours per day) 0.18 €/kWh

Energy costs	51€ (starter) 40€ (electronic)	16€	17€**
Energy savings for each		35€* (starter)	34€* (starter)
luminaire currently installed		24€* (electronic)	23€* (electronic)

3000 hours annual operation (12 hours per day) 0.18 €/kWh

Energy costs	76€ (starter) 59€ (electronic)	24€	26€**
Energy savings for each		52€* (starter)	50€* (starter)
Iuminaire currently installed		35€* (electronic)	33€* (electronic)

*Savings from the drastic reduction in maintenance costs should then be added to this! **Less investment for the fixture purchase and installation

Comparison table between fluorescent and LED luminaires

Flu	orescent	Version	Power consumption (W)	Corresponding LED	Power consumption (W)	Savings
T8 2x58W starter 141		141	3F Linda LED Basic ST 2x20W L1570	45	68%	
		HF	109			59%
	2x36W	starter	90	3F Linda LED Basic ST 2x16W L1270	36	60%
		HF	71			49%
	2x18W	starter	45	3F Linda LED 1x12W L660	15	67%
		HF	35			57%
	1x58W	starter	70	3F Linda LED Basic 1x23W L1570	29	59%
		HF	55			47%
	1x36W	starter	45	3F Linda LED Basic 1x19W L1270	21	53%
		HF	36			42%
	1x18W	starter	27	3F Linda LED 1x6W L660	7.5	72%
		HF	19			61%
Τ5	2x49W		106	3F Linda LED Basic ST 2x20W L1570	45	58%
	2x35W		76	3F Linda LED 1x30W L1570	35	54%
	2x28W		60	3F Linda LED 1x24W L1270	28	53%
	2x14W		31	3F Linda LED 1x12W L660	15	52%
	1x80W		86	3F Linda LED 1x30W L1570	35	59%
	1x49W		53	3F Linda LED Basic 1x23W L1570	29	45%
	1x35W		38	3F Linda LED Basic 1x19W L1270	21	45%
	1x28W		31	3F Linda LED 1x12W L660	15	52%
	1x14W		16	3F Linda LED 1x6W L660	7.5	53%

Why choose 3F Linda LED?

Never-ending light

3F Linda LED is equipped with new 3F LED technology whose sources specially developed for demanding applications guarantee an operating lifetime of over 50,000 hours, at the end of which at least 90% of the LED will still be providing 90% of their initial light output! (50,000h L90/B10).

You won't believe your wallet!

- 3F LED technology allows you to save up to 60% compared to traditional sources.
- Existing luminaires can be replaced while maintaining the same light locations and wiring system, but reducing energy consumption.
- Reduced maintenance significantly lowers running costs.

Beauty which doesn't blind!

The new 3F Linda LED photo-etched diffuser cancels out all glare to provide truly enviable lighting uniformity. Its clean, elegant lines make 3F Linda LED a luminaire which can fit in perfectly with any environment.

Eco-logical

3F Linda LED has been created according to the principles of Eco Design, and stands out for:

- Manufactured using energy from solar panels and assembled according to our "zero mileage" philosophy.
- Limited use of different materials, facilitating assembly, installation and recycling.
- Recyclable green packaging.

Significant reduction in maintenance costs

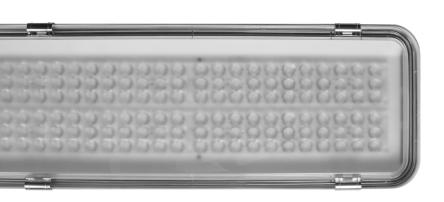
Longer life means less maintenance. Less maintenance means greater savings. Less maintenance means fewer problems. Fewer problems means greater peace of mind.

Tough and Versatile

An extremely versatile lighting body, 3F Beta 235 is the ideal lighting design solution for working environments requiring increased levels of protection.

It is equipped with LED sources with very high luminous fluxes. (135 lm/W) and is particularly suitable for environments such as warehouses, garages and production areas thanks to the wide range of operation, from -20° C to 45° C.

Available in 655 mm, 1,265 mm and 1,565 mm widths, 3F Beta 235 is composed of a steel or stainless steel body and offers a choice between a glass or polycarbonate diffuser to achieve the best performance for the specific installation location. In addition to the technical performance and high strength of this product is its ease of installation and maintenance: the new quick connection reduces installation time and makes the work of the installers much easier.


Product range

Beta 235 is available in the following versions:

Housing in steel	Beta 235 LED 75 PC - Polycarbonate Diffuser Beta 235 LED 76 VS - Moulded Glass Beta 235 LED 76 VT - Transparent Glass
Housing in stainless steel	Beta 235 LED 92 PC - Polycarbonate Diffuser Beta 235 LED 93 VS - Moulded Glass Beta 235 LED 93 VT - Transparent Glass

1

Beta 235 is available with three different diffuser types:

Polycarbonate diffuser

Moulded glass

Transparent glass

New quick connection.

Thanks to the FastWiring system, the installation time for the new Beta 235 is significantly reduced:

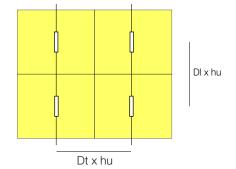
Beta 235 is supplied with our new "FastWiring" quick connector. Here is what it looks like when removed from the packaging.

Remove the support by grasping the tab.

At this point the quick connection closing cap and the cable gland are inserted onto the cable and the electrical cables can be connected to the quick connect terminal board. No tools are required.

Push the sliding support into the luminaire and screw down the two phillips head screws on the closing cap.

Done! 235 is now ready for installation.

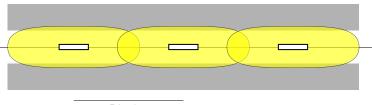

Photometric distributions

WIDE AND MEDIUM DISTRIBUTION

Rectangular ground projection

As there is no photometric overlap, the energy used and number of luminaires is optimised.

- Dt= Transverse distance
- DI= Longitudinal distance
- hu= Useful height (between luminaire and work surface)



Photometric curves	Models	D _T	DL
	Diffuser in	1.2	1.3
	Polycarbonate	1	0.9
	Moulded glass	1.3	1.3
MEDIUM		0.9	0.8
	Transparent glass	1.2	1.2
MEDIUM		1.1	0.9

HYPERCONCENTRATED AND CONCENTRATED DISTRIBUTION

Elliptical ground projection

Allows large longitudinal pitch to obtain uniformity over the aisles and shelving.

DI x hu

Photometric curves		Models	D _T	DL
CONCENTRATED		Diffuser in	0.6	1.2
HYPERCONCENTRATED		Polycarbonate	0.4	0.7
CONCENTRATED		Moulded glass	0.6	0.9
HYPERCONCENTRATED			0.5	0.7
CONCENTRATED		- Transparent glass	0.5	1.2
HYPERCONCENTRATED			0.4	0.7

Beta 235 LED Steel

Construction characteristics

Illuminotechnical characteristics

Symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Single-piece housing in pressed steel, powder-coated in white epoxy-polyester. Ecologic anti-aging injected sealing gasket.

Highly reflective white polyester painted, hot-dip galvanised steel, oversized cable housing reflector, fixed to the body with screws.

PMMA lenses with external flat surface (superimposed to obtain full protection of LED modules).

Galvanised steel snap-lock clips for attaching screens (safety n° 4 per fixture).

Electrical characteristics

Quick connection in polycarbonate with M20x1,5 cable gland, to access the terminal block positioned on a removable runner.

Source characteristics

- LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different colour rendering indices and colour temperatures
- different powers
- · laminated glass
- wiring: CLO (more information on page 542), twin-circuit
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology

Applications

Ambient temperature from -20°C to +45°C. Dry, dusty indoor environments, subject to occasional water splashes. Industrial environments, warehouses,

environments requiring safety luminaires, such as prisons, thanks to the clips that can be locked by bolts (on request). Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with laminated glass. Tempered glass is not immune to falling fragments from harmless and caused by shocks or exceptionally derived from the tempering process.

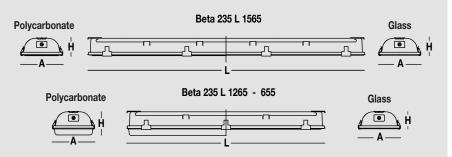
PC version

Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

VT version

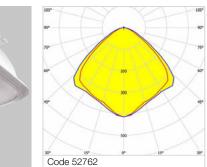
On request, HACCP versions for use in the food industry.

Installation


Ceiling, suspended, on busbar or wallmounted.

For mounting hooks and brackets see accessories on page 462.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

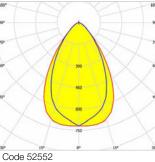
Beta 235 LED 75 PC Wide

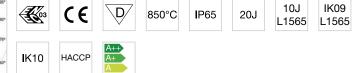
Steel housing | Polycarbonate diffuser

Wide symmetric lighting distribution. Polycarbonate screen etched internally, V2 self-extinguishing, UV stabilized, injection moulded. Attention: the diffuser supplied with our L655 and L1265 long luminaires is higher than the one which is supplied with our

L1565 long versions (please consult Dimensions table).

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
52931	Beta 235 LED 751x25 AMPIO L655	27.5	3683	4000	>80	655x235x140
52930	Beta 235 LED 752x20 AMPIO L655	42	6247	4000	>80	655x235x140
52849	Beta 235 LED 751x50 AMPIO L1265	56	7365	4000	>80	1265x235x135
52765	Beta 235 LED 751x60 AMPIO L1565	67	9259	4000	>80	1565x235x107
52846	Beta 235 LED 752x45 AMPIO L1265	94	13014	4000	>80	1265x235x135
52762	Beta 235 LED 752x55 AMPIO L1565	116	16300	4000	>80	1565x235x107

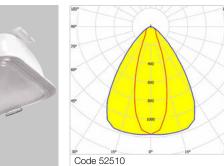

DALI electronic wiring 230V-50/60Hz


52807	Beta 235 LED 751x60 DALI AMPIO L1565	67	9259	4000 >80) 1565x235x107	
52888	Beta 235 LED 752x45 DALI AMPIO L1265	94	13014	4000 >80) 1265x235x135	
52804	Beta 235 LED 752x55 DALI AMPIO L1565	116	16300	4000 >80) 1565x235x107	

Beta 235 LED 75 PC Medium

Steel housing | Polycarbonate diffuser

Medium symmetric distribution.


Polycarbonate screen etched internally, V2 self-extinguishing, UV stabilized, injection moulded.

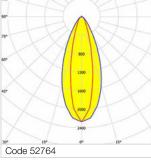
Attention: the diffuser supplied with our L655 and L1265 long luminaires is higher than the one which is supplied with our L1565 long versions (please consult Dimensions table).

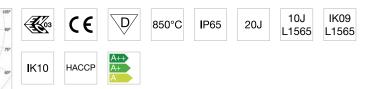
Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Electronic	s wiring 230V-50/60Hz					
52567	Beta 235 LED 751x50 MEDIO L1265	56	7440	4000	>80	1265x235x135
52553	Beta 235 LED 751x60 MEDIO L1565	67	9362	4000	>80	1565x235x107
52566	Beta 235 LED 752x45 MEDIO L1265	94	13059	4000	>80	1265x235x135
52552	Beta 235 LED 752x55 MEDIO L1565	116	16431	4000	>80	1565x235x107
DALI elec	tronic wiring 230V-50/60Hz					
52574	Beta 235 LED 751x50 DALI MEDIO L1265	56	7440	4000	>80	1265x235x135
52560	Beta 235 LED 751x60 DALI MEDIO L1565	67	9362	4000	>80	1565x235x107
52573	Beta 235 LED 752x45 DALI MEDIO L1265	94	13059	4000	>80	1265x235x135
52559	Beta 235 LED 752x55 DALI MEDIO L1565	116	16431	4000	>80	1565x235x107

Beta 235 LED 75 PC Concentrated

Steel housing | Polycarbonate diffuser

Concentrated elliptical distribution. Polycarbonate screen etched internally, V2 self-extinguishing, UV stabilized, injection moulded. Attention: the diffuser supplied with our L655 and L1265 long luminaires is higher than the one which is supplied with our


L1565 long versions (please consult Dimensions table).


Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
52511	Beta 235 LED 751x60 CONC L1565	67	9155	4000	>80	1565x235x107
52524	Beta 235 LED 752x45 CONC L1265	94	12760	4000	>80	1265x235x135
52510	Beta 235 LED 752x55 CONC L1565	116	16431	4000	>80	1565x235x107
DALI elec	tronic wiring 230V-50/60Hz					
52518	Beta 235 LED 751x60 DALI CONC L1565	67	9155	4000	>80	1565x235x107
52531	Beta 235 LED 752x45 DALI CONC L1265	94	12760	4000	>80	1265x235x135
52517	Beta 235 LED 752x55 DALI CONC L1565	116	16431	4000	>80	1565x235x107

Beta 235 LED 75 PC Iperconcentrated

Steel housing | Polycarbonate diffuser

Symmetrical elliptical hyperconcentrated distribution. Polycarbonate screen etched internally, V2 self-extinguishing, UV stabilized, injection moulded.

Attention: the diffuser supplied with our L655 and L1265 long luminaires is higher than the one which is supplied with our L1565 long versions (please consult Dimensions table). Recommended minimum installation height: 4 meters from the ground.

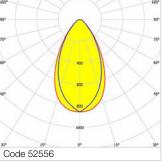
Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
52848	Beta 235 LED 752x45 IPERCONC L1265	94	11820	4000	>80	1265x235x135
52764	Beta 235 LED 752x55 IPERCONC L1565	116	15293	4000	>80	1565x235x107
DALI elec	stronic wiring 230V-50/60Hz					
52890	Beta 235 LED 752x45 DALI IPERCONC L1265	94	11820	4000	>80	1265x235x135
52806	Beta 235 LED 752x55 DALI IPERCONC L1565	116	16990	4000	>80	1565x235x107

452

Beta 235 LED 76 VS Wide

Steel housing | Moulded glass

10J

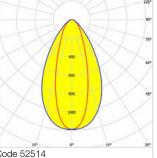

Wide symmetric lighting distribution. VS moulded anti-glare glass, non-combustible, single-piece perimeter frame in galvanized steel.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
52937	Beta 235 LED 761x25 AMPIO VS L655	27.5	3372	4000	>80	655x235x110
52936	Beta 235 LED 762x20 AMPIO VS L655	42	5566	4000	>80	655x235x110
52863	Beta 235 LED 761x50 AMPIO VS L1265	56	6743	4000	>80	1265x235x105
52779	Beta 235 LED 761x60 AMPIO VS L1565	67	8429	4000	>80	1565x235x105
52860	Beta 235 LED 762x45 AMPIO VS L1265	94	11596	4000	>80	1265x235x105
52776	Beta 235 LED 762x55 AMPIO VS L1565	116	14491	4000	>80	1565x235x105
DALI elec	tronic wiring 230V-50/60Hz					
52821	Beta 235 LED 761x60 DALI AMPIO VS L1565	67	8429	4000	>80	1565x235x105
52902	Beta 235 LED 762x45 DALI AMPIO VS L1265	94	11596	4000	>80	1265x235x105
52818	Beta 235 LED 762x55 DALI AMPIO VS L1565	116	14491	4000	>80	1565x235x105

Beta 235 LED 76 VS Medium

Steel housing | Moulded glass

Ko3 CE D 960°C **I**P65 10J **I**K09 A+


Medium symmetric distribution. VS moulded anti-glare glass, non-combustible, single-piece perimeter frame in galvanized steel.

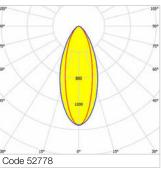
Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
52571	Beta 235 LED 761x50 MEDIO VS L1265	56	6751	4000	>80	1265x235x105
52557	Beta 235 LED 761x60 MEDIO VS L1565	67	8440	4000	>80	1565x235x105
52570	Beta 235 LED 762x45 MEDIO VS L1265	94	11626	4000	>80	1265x235x105
52556	Beta 235 LED 762x55 MEDIO VS L1565	116	14528	4000	>80	1565x235x105
DALI elec	tronic wiring 230V-50/60Hz					
52578	Beta 235 LED 761x50 DALI MEDIO VS L1265	56	6751	4000	>80	1265x235x105
52564	Beta 235 LED 761x60 DALI MEDIO VS L1565	67	8440	4000	>80	1565x235x105
52577	Beta 235 LED 762x45 DALI MEDIO VS L1265	94	11626	4000	>80	1265x235x105
52563	Beta 235 LED 762x55 DALI MEDIO VS L1565	116	14528	4000	>80	1565x235x105

Beta 235 LED 76 VS Concentrated

Steel housing | Moulded glass

10J

Concentrated elliptical distribution. VS moulded anti-glare glass, non-combustible, single-piece perimeter frame in galvanized steel.


960°C

Code 52514 Dimensions Code Item Absorbed Output CCT CRI power (W) flux (Im) LxAxH (K) Electronic wiring 230V-50/60Hz Beta 235 LED 761x60 CONC VS L1565 52515 67 8450 4000 >80 1565x235x105 52528 Beta 235 LED 762x45 CONC VS L1265 94 11820 4000 >80 1265x235x105 52514 Beta 235 LED 762x55 CONC VS L1565 116 14771 4000 >80 1565x235x105 DALI electronic wiring 230V-50/60Hz 52522 Beta 235 LED 761x60 DALI CONC VS L1565 8450 4000 1565x235x105 67 >80 52535 Beta 235 LED 762x45 DALI CONC VS L1265 11820 4000 >80 1265x235x105 94 52521 Beta 235 LED 762x55 DALI CONC VS L1565 1565x235x105 116 14771 4000 >80

Beta 235 LED 76 VS Iperconcentrated

Steel housing | Moulded glass

Symmetrical elliptical hyperconcentrated distribution. VS moulded anti-glare glass, non-combustible, single-piece perimeter frame in galvanized steel.

Recommended minimum installation height: 4 meters from the ground.

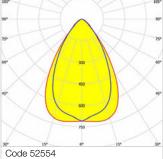
Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
Liceaonia	, wining 2004-00/00112					
52862	Beta 235 LED 762x45 IPERCONC VS L1265	94	11133	4000	>80	1265x235x105
52778	Beta 235 LED 762x55 IPERCONC VS L1565	116	13913	4000	>80	1565x235x105
	tronic wiring 230V-50/60Hz					
DALI EIEC						
52904	Beta 235 LED 762x45 DALI IPERCONC VS L1265	94	11133	4000	>80	1265x235x105
52820	Beta 235 LED 762x55 DALI IPERCONC VS L1565	116	13913	4000	>80	1565x235x105

Beta 235 LED 76 VT Wide

Steel housing | Transparent glass

EK03 CE

Wide symmetric lighting distribution. VT transparent glass, non-combustible, single-piece perimeter frame in galvanized steel.


960°C

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
52856	Beta 235 LED 761x50 AMPIO VT L1265	56	7539	4000	>80	1265x235x105
52772	Beta 235 LED 761x60 AMPIO VT L1565	67	9425	4000	>80	1565x235x105
52853	Beta 235 LED 762x45 AMPIO VT L1265	94	13103	4000	>80	1265x235x105
52769	Beta 235 LED 762x55 AMPIO VT L1565	116	16375	4000	>80	1565x235x105
DALI elec	ctronic wiring 230V-50/60Hz					
52814	Beta 235 LED 761x60 DALI AMPIO VT L1565	67	9425	4000	>80	1565x235x105
52895	Beta 235 LED 762x45 DALI AMPIO VT L1265	94	13103	4000	>80	1265x235x105
52811	Beta 235 LED 762x55 DALI AMPIO VT L1565	116	16375	4000	>80	1565x235x105

Beta 235 LED 76 VT Medium

Steel housing | Transparent glass

960°C **I**P65 10J **4**403 CE **I**K09 Medium symmetric distribution.

A+

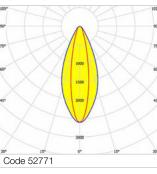
VT transparent glass, non-combustible, single-piece perimeter frame in galvanized steel.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
52569	Beta 235 LED 761x50 MEDIO VT L1265	56	7556	4000	>80	1265x235x105
52555	Beta 235 LED 761x60 MEDIO VT L1565	67	9445	4000	>80	1565x235x105
52568	Beta 235 LED 762x45 MEDIO VT L1265	94	13267	4000	>80	1265x235x105
52554	Beta 235 LED 762x55 MEDIO VT L1565	116	16580	4000	>80	1565x235x105
DALI elec	tronic wiring 230V-50/60Hz					
52576	Beta 235 LED 761x50 DALI MEDIO VT L1265	56	7556	4000	>80	1265x235x105
52562	Beta 235 LED 761x60 DALI MEDIO VT L1565	67	9445	4000	>80	1565x235x105
52575	Beta 235 LED 762x45 DALI MEDIO VT L1265	94	13267	4000	>80	1265x235x105
52561	Beta 235 LED 762x55 DALI MEDIO VT L1565	116	16580	4000	>80	1565x235x105

Beta 235 LED 76 VT Concentrated

Steel housing | Transparent glass

Concentrated elliptical distribution.


VT transparent glass, non-combustible, single-piece perimeter frame in galvanized steel.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
52513	Beta 235 LED 761x60 CONC VT L1565	67	9207	4000	>80	1565x235x105
52526	Beta 235 LED 762x45 CONC VT L1265	94	13103	4000	>80	1265x235x105
52512	Beta 235 LED 762x55 CONC VT L1565	116	16375	4000	>80	1565x235x105
DALI elec	stronic wiring 230V-50/60Hz					
52520	Beta 235 LED 761x60 DALI CONC VT L1565	67	9207	4000	>80	1565x235x105
52533	Beta 235 LED 762x45 DALI CONC VT L1265	94	13103	4000	>80	1265x235x105
52519	Beta 235 LED 762x55 DALI CONC VT L1565	116	16375	4000	>80	1565x235x105

Beta 235 LED 76 VT Iperconcentrated

Steel housing | Transparent glass

Symmetrical elliptical hyperconcentrated distribution. VT transparent glass, non-combustible, single-piece perimeter frame in galvanized steel.

Recommended minimum installation height: 4 meters from the ground.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	wiring 230V-50/60Hz					
Liectionit						
52855	Beta 235 LED 762x45 IPERCONC VT L1265	94	12297	4000	>80	1265x235x105
52771	Beta 235 LED 762x55 IPERCONC VT L1565	116	15368	4000	>80	1565x235x105
DALI elec	tronic wiring 230V-50/60Hz					
52897	Beta 235 LED 762x45 DALI IPERCONC VT L1265	94	12297	4000	>80	1265x235x105
52813	Beta 235 LED 762x55 DALI IPERCONC VT L1565	116	15368	4000	>80	1565x235x105

Construction characteristics

Illuminotechnical characteristics

Symmetric distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in AISI 304 stainless steel, pressed in one single piece. Oversized gear-tray reflector unit in highly reflective white painted hot-galvanized steel.

PMMA lenses with external flat surface (superimposed to obtain full protection of LED modules).

Stainless steel snap-lock clips for attaching screens (safety n° 4 per fixture).

Electrical characteristics

Quick connection in polycarbonate with M20x1,5 cable gland, to access the terminal block positioned on a removable runner.

Source characteristics

- LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different colour rendering indices and colour temperatures
- different powers
- laminated glass
- wiring: emergency, CLO (more information on page 542), twin-circuit
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology

Applications

Ambient temperature from -20°C to +45°C. Dry, dusty indoor environments, subject to occasional water splashes.

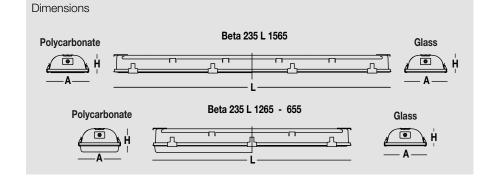
Any environments except the ones where the luminaire materials are unsuitable. Environments requiring safety luminaires, such as prisons, thanks to the clips that can be locked by bolts (on request). Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with laminated glass. Tempered glass is not immune to falling fragments from harmless and caused by shocks or exceptionally derived from the tempering process.

PC version

Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

VT version

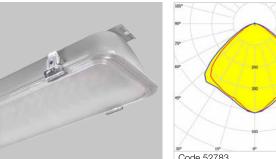
On request, HACCP versions for use in the food industry.

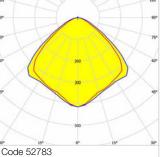

Installation

Ceiling, suspended, on busbar or wall-mounted.

For mounting hooks and brackets see accessories on page 462.

Light Management


The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).

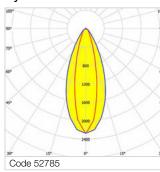


458 Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

Beta 235 LED 92 PC Wide

Stainless steel housing | Polycarbonate diffuser

Wide symmetric lighting distribution. Polycarbonate screen etched internally, V2 self-extinguishing, UV stabilized, injection moulded. Attention: the diffuser supplied with our L655 and L1265 long luminaires is higher than the one which is supplied with our


L1565 long versions (please consult Dimensions table).

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
52940	Beta 235 LED 921x25 AMPIO L655	27.5	3620	4000	>80	655x235x140
52939	Beta 235 LED 922x15 AMPIO L655	34.5	4736	4000	>80	655x235x140
52870	Beta 235 LED 921x50 AMPIO L1265	56	7241	4000	>80	1265x235x135
52786	Beta 235 LED 921x60 AMPIO L1565	67	9103	4000	>80	1565x235x107
52867	Beta 235 LED 922x40 AMPIO L1265	82	11407	4000	>80	1265x235x135
52783	Beta 235 LED 922x50 AMPIO L1565	101	14290	4000	>80	1565x235x107
DALI elec	tronic wiring 230V-50/60Hz					
52828	Beta 235 LED 921x60 DALI AMPIO L1565	67	9103	4000	>80	1565x235x107
52909	Beta 235 LED 922x40 DALI AMPIO L1265	82	11407	4000	>80	1265x235x135
52825	Beta 235 LED 922x50 DALI AMPIO L1565	101	14290	4000	>80	1565x235x107

Beta 235 LED 92 PC Iperconcentrated

Stainless steel housing | Polycarbonate diffuser

Symmetrical elliptical hyperconcentrated distribution. Polycarbonate screen etched internally, V2 self-extinguishing, UV stabilized, injection moulded.

Attention: the diffuser supplied with our L1265 long luminaires is higher than the one which is supplied with our L1565 long versions (please consult Dimensions table). Recommended minimum installation height: 4 meters from the ground.

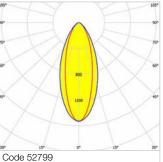
Code	Item	Absorbed	Output	CCT	CRI	Dimensions
		power (W)	flux (lm)	(K)		LxAxH
Electronia	c wiring 230V-50/60Hz					
Liectionit	5 wiring 250¥-50/00112					
52869	Beta 235 LED 922x40 IPERCONC L1265	82	10368	4000	>80	1265x235x135
52785	Beta 235 LED 922x50 IPERCONC L1565	101	13409	4000	>80	1565x235x107
DALI elec	tronic wiring 230V-50/60Hz					
52911	Beta 235 LED 922x40 DALI IPERCONC L1265	82	10368	4000	>80	1265x235x135
52827	Beta 235 LED 922x50 DALI IPERCONC L1565	101	13409	4000	>80	1565x235x107

Beta 235 LED 93 VS Wide

Stainless steel housing | Moulded glass

10J

Wide symmetric lighting distribution. VS moulded anti-glare glass, non-combustible, single-piece perimeter frame in stainless steel.

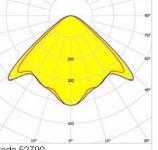

Code Item Absorbed Output CCT CRI Dimensions power (W) flux (Im) LXAXH (K) Electronic wiring 230V-50/60Hz 52946 Beta 235 LED 931x25 AMPIO VS L655 27.5 3372 4000 >80 655x235x110 52945 Beta 235 LED 932x15 AMPIO VS L655 34.5 4294 4000 >80 655x235x110 52884 Beta 235 LED 931x50 AMPIO VS L1265 6743 56 4000 >80 1265x235x105 Beta 235 LED 931x60 AMPIO VS L1565 52800 67 8429 4000 >80 1565x235x105 52881 Beta 235 LED 932x40 AMPIO VS L1265 82 10342 1265x235x105 4000 >80 52797 Beta 235 LED 932x50 AMPIO VS L1565 101 12926 4000 >80 1565x235x105 DALI electronic wiring 230V-50/60Hz 52842 Beta 235 LED 931x60 DALI AMPIO VS L1565 67 8429 4000 >80 1565x235x105 52923 Beta 235 LED 932x40 DALI AMPIO VS L1265 10342 4000 >80 1265x235x105 82 Beta 235 LED 932x50 DALI AMPIO VS L1565 52839 101 12926 4000 >80 1565x235x105

Beta 235 LED 93 VS Iperconcentrated

Stainless steel housing | Moulded glass

460

Symmetrical elliptical hyperconcentrated distribution. VS moulded anti-glare glass, non-combustible, single-piece perimeter frame in stainless steel.

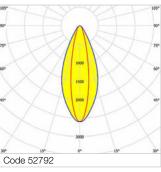

Recommended minimum installation height: 4 meters from the ground.

Code Item Absorbed Output CCT CRI Dimensions	
power (W) flux (Im) (K) L x A x H	
Electronic wiring 230V-50/60Hz	
52883 Beta 235 LED 932x40 IPERCONC VS L1265 82 9929 4000 >80 1265x235x	(105
52799 Beta 235 LED 932x50 IPERCONC VS L1565 101 12410 4000 >80 1565x235	(105
DALI electronic wiring 230V-50/60Hz	
52925 Beta 235 LED 932x40 DALI IPERCONC VS L1265 82 9929 4000 >80 1265x235	(105
52841 Beta 235 LED 932x50 DALI IPERCONC VS L1565 101 12410 4000 >80 1565x235	(105

Beta 235 LED 93 VT Wide

Stainless steel housing | Transparent glass

10J


Wide symmetric lighting distribution. VT transparent glass, non-combustible, single-piece perimeter frame in stainless steel.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H
Electroni	c wiring 230V-50/60Hz					
52877	Beta 235 LED 931x50 AMPIO VT L1265	56	7539	4000	>80	1265x235x105
52793	Beta 235 LED 931x60 AMPIO VT L1565	67	9425	4000	>80	1565x235x105
52874	Beta 235 LED 932x40 AMPIO VT L1265	82	11686	4000	>80	1265x235x105
52790	Beta 235 LED 932x50 AMPIO VT L1565	101	14606	4000	>80	1565x235x105
DALI electronic wiring 230V-50/60Hz						
52835	Beta 235 LED 931x60 DALI AMPIO VT L1565	67	9425	4000	>80	1565x235x105
52916	Beta 235 LED 932x40 DALI AMPIO VT L1265	82	11686	4000	>80	1265x235x105
52832	Beta 235 LED 932x50 DALI AMPIO VT L1565	101	14606	4000	>80	1565x235x105

Beta 235 LED 93 VT Iperconcentrated

Stainless steel housing | Transparent glass

Symmetrical elliptical hyperconcentrated distribution. VT transparent glass, non-combustible, single-piece perimeter frame in stainless steel.

Recommended minimum installation height: 4 meters from the ground.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H
Electronic	c wiring 230V-50/60Hz					
52876	Beta 235 LED 932x40 IPERCONC VT L1265	82	10967	4000	>80	1265x235x105
52792	Beta 235 LED 932x50 IPERCONC VT L1565	101	13708	4000	>80	1565x235x105
DALI elec	tronic wiring 230V-50/60Hz					
52918	Beta 235 LED 932x40 DALI IPERCONC VT L1265	82	10967	4000	>80	1265x235x105
52834	Beta 235 LED 932x50 DALI IPERCONC VT L1565	101	13708	4000	>80	1565x235x105

	Anti-conde	ensation diffuser cable gland.
	Code	Item
11	A0187	Anti-condensation cable gland
	Recomme condensa	ended for installations in environments with temperature sudden changes or subject to tion.
	Reducing	sealing ring, dedicated to the use of cables with an external diameter of up to 8 mm.
	Code	Item
0	A0521 NEW	Reducing sealing ring – diam.8mm
	Snap hool	ks clips for chain suspension, galvanized steel.
	Code	Item
60	A0653	Couple of fixing carabiniers for chain installation
	Wire-guard rod Ø 5 m	d for applications in dry environments, against shocks coming from any directions, galvanized ste m.
	Code	Item
	A0457	Wire guard280x1330 03F/Linda/Beta
	710-101	
	A0458	Wire guard 280x1630 03F/Linda/Beta
	A0458	-
	A0458 Only for lu	Wire guard 280x1630 03F/Linda/Beta
	A0458 Only for lu	Wire guard 280x1630 03F/Linda/Beta minaires fixed without hooks.
	A0458 Only for lu Safety scr	Wire guard 280x1630 03F/Linda/Beta minaires fixed without hooks. ew that prevents improper opening of the luminaire.
	A0458 Only for lu Safety scr Code A0471 The produ L1265 (6 c	Wire guard 280x1630 03F/Linda/Beta minaires fixed without hooks. ew that prevents improper opening of the luminaire. Item Security screws - Beta 235 The pack contains 100 pieces. icts from the Beta 235 range are equipped with safety snap-lock clips: L655mm (4 clips), clips) and L1565 (8 clips) - of which only 4 are equipped with pre-mounted safety screws. In
	A0458 Only for lu Safety scr Code A0471 The produ L1265 (6 d application clips.	Wire guard 280x1630 03F/Linda/Beta minaires fixed without hooks. ew that prevents improper opening of the luminaire. Item Security screws - Beta 235 The pack contains 100 pieces. ints from the Beta 235 range are equipped with safety snap-lock clips: L655mm (4 clips),
	A0458 Only for lu Safety scr Code A0471 The produ L1265 (6 d application clips.	Wire guard 280x1630 03F/Linda/Beta minaires fixed without hooks. ew that prevents improper opening of the luminaire. Item Security screws - Beta 235 The pack contains 100 pieces. Inters from the Beta 235 range are equipped with safety snap-lock clips: L655mm (4 clips), clips) and L1565 (8 clips) - of which only 4 are equipped with pre-mounted safety screws. In his requiring a total inaccessibility to the luminaire, the screws can be fitted to the open snap-lock punting brackets and hooks for ceiling mounting, with nuts and bolts for fastening the luminaire,

	ting brackets and hooks for wall-mounting, with nuts and bolts for luminaire fastening, stainless steel.
Code	Item

A0835 Couple brackets and hooks for wall - Beta 235

Pair of steel hooks for suspended installation, with nuts and bolts for luminaire fastening.

A0836 Pair of	of galvanized hooks for suspension - Beta 235
A0837 Pair of	of stainless steel hooks for suspension - Beta 235

In case of chain suspension installation, ALWAYS use one of the following codes: A0653.

Pair of hooks in galvanized steel for suspended installation, with nuts and bolts for luminaire fastening.

Code	Item
A0838	Pair of S-hooks for chain - Beta 235

Safety screw	r for locking to busbar.
Code	Item
A0325	Mounting kit on busbar - Beta 235

Construction characteristics

Illuminotechnical characteristics

Wide or concentrated direct distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tg+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tg+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Single-piece housing in pressed steel, powder-coated in white epoxy-polyester. Oversized flux recuperator in specular aluminium, with titanium-magnesium surface treatment, non-iridescent. Gear-tray unit in hot-galvanized steel, painted in white polyester, fixed to the housing by means of "Ribloc" rapid devices in galvanized steel, hinged opening.

Stainless steel screen fixing clips.

Electrical characteristics

In compliance with EN 60598-1. Luminaires with EP permanent emergency wiring are EN 60598-2-22 standard compliant.

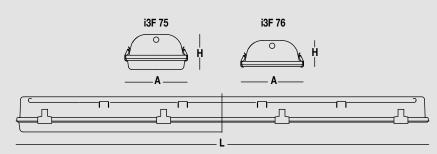
Entry for power-supply cable at one end cap, through M20x1,5 self-extinguishing nylon cable gland.

Source characteristics

- · Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- · different colour rendering indices and colour temperatures
- different powers
- laminated glass
- wiring: dimmable, CLO (more information on page 542), twin-circuit, class II
- safety snap-lock clips
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- body in painted aluminum or stainless steel

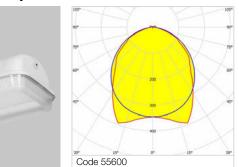

Applications

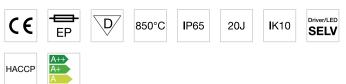
Ambient temperature from -20°C to +35°C. Dry, dusty indoor environments, subject to occasional water splashes. Industrial environments, warehouses, environments requiring safety luminaires, such as prisons, thanks to the clips that can be locked by bolts (on request). Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with laminated glass. Tempered glass is not immune to falling fragments from harmless and caused by shocks or exceptionally derived from the tempering process.

Installation

Ceiling, suspended, on busbar or wallmounted. For mounting hooks and brackets see accessories on page 473.

Dimensions




Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

464

Beta i3F LED 75 PC Wide

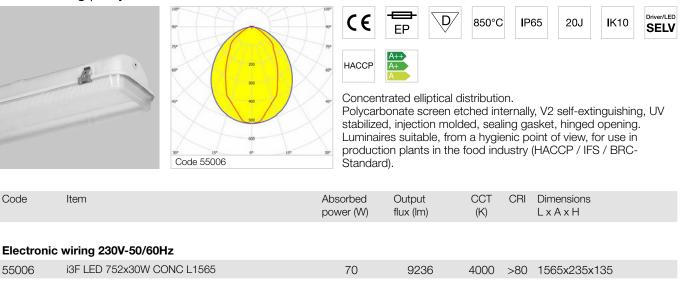
Steel housing | Polycarbonate diffuser

Wide distribution.

Polycarbonate screen etched internally, V2 self-extinguishing, UV stabilized, injection molded, sealing gasket, hinged opening. Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).

Code Item Absorbed Output CCT CRI Dimensions power (W) flux (Im) (K) L x A x H		
--	--	--

Electronic wiring 230V-50/60Hz

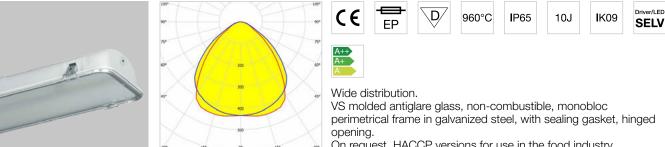

55596	i3F LED 752x12W AMPIO L655	30	3732	4000 >80 655x235x140
55598	i3F LED 752x24W AMPIO L1265	56	7471	4000 >80 1265x235x135
55600	i3F LED 752x30W AMPIO L1565	70	9351	4000 >80 1565x235x135

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

55607	i3F LED 752x12W EP AMPIO L655	31	3732	4000 >	>80 655x235x140
55609	i3F LED 752x24W EP AMPIO L1265	57	7471	4000 >	>80 1265x235x135
55611	i3F LED 752x30W EP AMPIO L1565	71	9351	4000 >	>80 1565x235x135

Beta i3F LED 75 PC Concentrated

Steel housing | Polycarbonate diffuser



EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

	55017	i3F LED 752x30W EP CONC L1565	71	9236	4000 >80	1565x235x135	
--	-------	-------------------------------	----	------	----------	--------------	--

Beta i3F LED 76 VS Wide

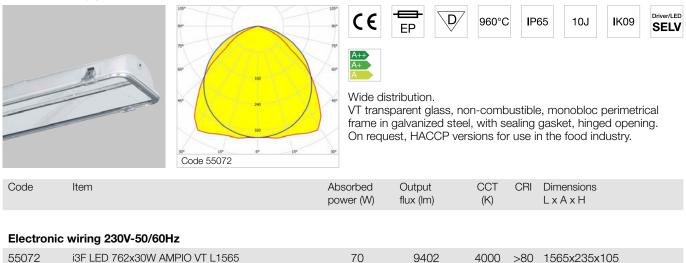
Steel housing | Moulded glass

On request, HACCP versions for use in the food industry.

Code	Item	Absorbed	Output	CCT	CRI	Dimensions
		power (W)	flux (lm)	(K)		LxAxH

Electronic wiring 230V-50/60Hz

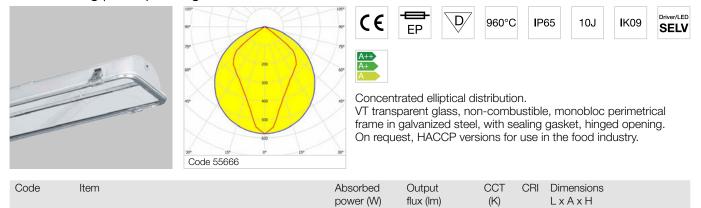
55134	i3F LED 762x12W AMPIO VS L655	30	3388	4000	>80	655x235x110
55136	i3F LED 762x24W AMPIO VS L1265	56	6783	4000	>80	1265x235x105
55138	i3F LED 762x30W AMPIO VS L1565	70	8489	4000	>80	1565x235x105


EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

Code 55138

55145	i3F LED 762x12W EP AMPIO VS L655	31	3388	4000 >80 655x235x110
55147	i3F LED 762x24W EP AMPIO VS L1265	57	6783	4000 >80 1265x235x105
55149	i3F LED 762x30W EP AMPIO VS L1565	71	8489	4000 >80 1565x235x105

Beta i3F LED 76 VT Wide


Steel housing | Transparent glass

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

Beta i3F LED 76 VT Concentrated

Steel housing | Transparent glass

Electronic wiring 230V-50/60Hz

55666	i3F LED 762x30W CONC VT L1565	70	9454	4000	>80	1565x235x105	

EP maintained emergency wiring, 1hr duration with 24hrs recharge, fuse (fluxes on page 560)

55677	i3F LED 762x30W EP CONC VT L1565	71	9454	4000 >80 1565x235x105

Construction characteristics

Illuminotechnical characteristics

Wide or concentrated direct distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Single-piece housing in pressed aluminium, powder-coated in white epoxy-polyester.

Oversized flux recuperator in specular aluminium, with titanium-magnesium surface treatment, non-iridescent. Gear-tray unit in hot-galvanized steel, painted in white polyester, fixed to the housing by means of "Ribloc" rapid devices in galvanized steel, hinged opening.

Mounting brackets and locking screen clips in stainless steel AISI 304.

Electrical characteristics

In compliance with EN 60598-1. Entry for power-supply cable at one end cap, through M20x1,5 self-extinguishing nylon cable gland.

L-N-E line terminal block with ceramic isolator protection powder-filled fuse, rapid type, 5x20 mm, of suitable capacity, breaking capacity 1500 A.

Solid single-core silicone rubber insulated wiring cable with fiberglass braid type UG4T2/2 cross section 0.75 mm².

Source characteristics

- Linear LED modules protected up to RH95 relative humidity.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different colour rendering indices and colour temperatures
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- DALI version

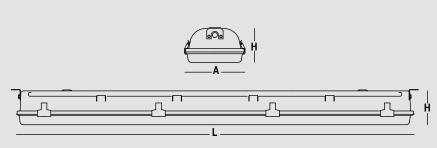
Applications

12W version

Ambient temperature from -30°C to +45°C. **24W, 30W versions**

Ambient temperature from -35°C to +45°C. **60W version**

Ambient temperature from -35°C to +25°C. Before installation we recommend checking that there are no

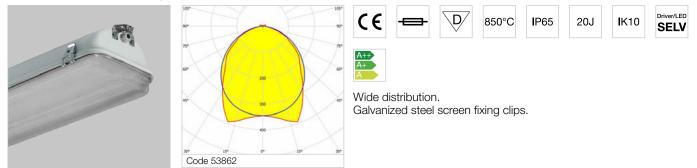

contraindications to the use of aluminium and polycarbonate inside the refrigeration cell.

For applications in environments in which disturbances on the power network may be present and/or involve use at low temperatures, surge protection devices should be fitted on the power supply and any causes of undervoltages eliminated.

Installation

By means of slotted corner brackets and stainless steel nuts and bolts. Beta Ice LED luminaires can be installed in environments with humidity rate up to 95%.

Dimensions

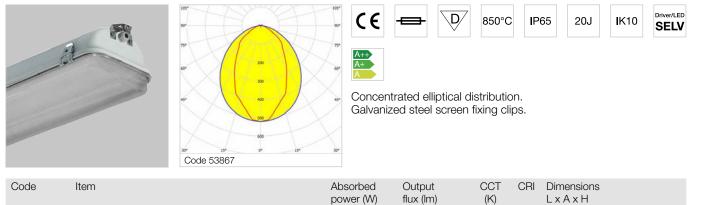


Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com

468

Beta Ice LED Wide

Polycarbonate diffuser | Aluminium housing


Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H

Electronic wiring 230V-50/60Hz, fuse

53860	A3F Ice LED 902x12W UR95 AMPIO L655	30	3732	4000	>80	655x235x140
53861	A3F Ice LED 902x24W UR95 AMPIO L1265	56	7471	4000	>80	1265x235x135
53862	A3F Ice LED 902x30W UR95 AMPIO L1565	70	9351	4000	>80	1565x235x135
53863	A3F Ice LED 902x60W UR95 AMPIO L1565	140	17435	4000	>80	1565x235x135

Beta Ice LED Concentrated

Polycarbonate diffuser | Aluminium housing

Electronic wiring 230V-50/60Hz, fuse

	-						
53867	A3F Ice LED 902x30W UR95 CONC L1565	70	9236	4000	>80	1565x235x135	
53868	A3F Ice LED 902x60W UR95 CONC L1565	140	17746	4000	>80	1565x235x135	

Kit LED Retrofit for Beta 2x

Construction characteristics

Illuminotechnical characteristics

Wide or concentrated direct distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Gear-tray in hot galvanized steel, painted in white polyester, to be fixed to the body by rapid devices "Ribloc".

2x40W version

PMMA lenses with external flat surface (superimposed to obtain full protection of LED modules).

For installations prior to 2010, the hinge opening is lost.

Electrical characteristics

In compliance with EN 60598-1.

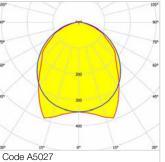
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- retrofit Kit for luminaires of length 655mm (1-2x18W), power 1x36W - 1x58W, for Beta Stainless A3F 92-93, for Beta Ice 90
- wiring: dimmable, CLO (more information on page 542), twin-circuit, different powers, emergency
- version with asymmetric lighting distribution
- wide flux recuperator to increase luminous flux by 5%
- different colour rendering indices and colour temperatures

Installation


Correct installation of the Retrofit LED kit, compliant with EN 60598-1 and CE marked, must be only performed by qualified personnel to ensure compliance with the national installation standards.

Notes

Evaluate the use of moulded anti-glare glass according to the application.

Kit LED Retrofit for polycarbonate diffuser

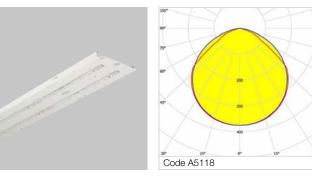
Wide or concentrated symmetric lighting distribution. Flow recuperator in specular aluminium, with superficial titaniummagnesium treatment, non-iridescent (only for 2x22W CONCENTRATED version).

Internal transparent methacrylate lenses (only for 2x40W version). Diffuser in self-extinguishing V2 polycarbonate, photo-engraved interior, UV stabilised, injection moulded, with smooth outer surface, sealing gasket.

The high output versions are NOT SELV.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H

Version without recuperator - Driver/LED SELV - Electronic wiring 230V-50/60Hz


A5057	Kit LED i3F 75,A3F 90-92 L1265 2x18W +PC	40	5952	4000	>80	1265x235x135
A5027	Kit LED I3F 75, A3F 90, A3F 92-L1565 - 2X22W+PC	49	6996	4000	>80	1565x235x135
A5026	KIT LED i3F 75, A3F 90-L1565 - 2x30W+PC	70	8790	4000	>80	1565x235x135

Version with CONCENTRATED recuperator - Driver/LED SELV - Electronic wiring 230V-50/60Hz

A5013	Kit LED I3F75,A3F 90,A3F 92-L1565-2X22W CONC+PC	49	7351	4000	>80	1565x235x135
High outp	ut version with WIDE lenses - Electronic wiring 23	0V-50/60H	z			
A5215	Kit LED i3F 75,A3F 90 - L1565 - L 2x40W AMPIO + PC	84	11988	4000	>80	1565x235x135
High outp	ut version with CONCENTRATED lenses - Electror	nic wiring 2	230V-50/60Hz			

A5217 Kit LED i3F 75,A3F 90 PC	- L1565 - L 2x40W CONC +	84	11889	4000	>80	1565x235x135	
-----------------------------------	--------------------------	----	-------	------	-----	--------------	--

Kit LED Retrofit for glass diffuser

Wide or concentrated symmetric lighting distribution. Flow recuperator in specular aluminium, with superficial titaniummagnesium treatment, non-iridescent (only for 2x22W CONCENTRATED version).

Internal transparent methacrylate lenses (only for 2x40W version). Glass diffuser is NOT included in the kit. The high output versions are NOT SELV.

Code	Item	Absorbed power (W)	Output flux (Im)	CCT (K)	CRI	Dimensions L x A x H

Version without recuperator - Driver/LED SELV - Electronic wiring 230V-50/60Hz

		-		
A5148	KIT LED i3F 76,A3F 91,A3F 93-L1265-2x18W	40	5549	4000 >80 1265x235x105
A5118	Kit LED I3F 76, A3F 91, A3F 93 - L1565-2X22W	49	6938	4000 >80 1565x235x135
A5117	KIT LED i3F 76, A3F 91 - L1565-2x30W	70	8718	4000 >80 1565x235x105

Version with CONCENTRATED recuperator - Driver/LED SELV - Electronic wiring 230V-50/60Hz

A5104	Kit LED I3F 76, A3F 91, A3F 93-L1565-2X22W CONC	49	7525	4000	>80	1565x235x135	
High outp	ut version with WIDE lenses - Electronic wiring 2	30V-50/60H	z				
A5210	Kit LED i3F 76,A3F 91 - L1565 - L 2x40W AMPIO	84	11860	4000	>80	1565x235x105	

High output version with CONCENTRATED lenses - Electronic wiring 230V-50/60Hz

A5212	Kit LED i3F 76,A3F 91 - L1565 - L 2x40W CONC	84	11959	4000 >80 1565x235x105	
-------	--	----	-------	-----------------------	--

Beta A3F - i3F

Accessories

Pair of mounting brackets and hooks for wall-mounting, with nuts and bolts for luminaire fastening, everything in stainless steel.

Itom

Codo

503 15 CD (pair of bracket and hooks A3F)

Pair of steel hooks for suspended installation, with nuts and bolts for luminaire fastening.

COUE	Iten	
A050	0 13	DH (pair of susp. galvanised steel hooks i3F)
A050	1 13	HC (pair of susp. stainless steel hooks A3F)

In case of chain suspension installation, ALWAYS use one of the following codes: A0653.

5-pole cascade connection line, stiff cable H07 V2-U, HT 90°C, 1.5 mm², terminal blocks with connection capacity 2x2.5 mm².

Code	Item
A0508	20 TKA (casc. conn. line i3F/A3F 1265)
A0509	20 ZFE (casc. conn. line i3F/A3F 1565)

Wire-guard for applications in dry environments, against shocks coming from any directions, galvanized steel rod \emptyset 5 mm.

Code	Item
A0457	Wire guard280x1330 03F/Linda/Beta
A0458	Wire guard 280x1630 03F/Linda/Beta

Only for luminaires fixed without hooks.

Anti-condensation diffuser cable gland. Code Item

A0187	Anti-condensation cable gland

Recommended for installations in environments with temperature sudden changes or subject to condensation.

Reducing sealing ring, dedicated to the use of cables with an external diameter of up to 8 mm.

Code	Item
A0521 NEW	Reducing sealing ring – diam.8mm

Snap hooks	clips for chain suspension, galvanized steel.
Code	Item
A0653	Couple of fixing carabiniers for chain installation

Moulded anti-glare glass for retrofit LED kits, non-combustible, tempered, mounted and locked by a galvanised steel mono-block perimetrical frame with a sealing gasket. For installations prior to 2010, the hinge opening is lost. On request: versions with stainless steel frame for Beta 2x A3F91 - A3F93.

Accessory compatible with Kit LED Retrofit for Beta 2x.

Code	Item
A5184	Printed glass Beta 2x i3F 76 - L1565
A5185	Printed glass Beta 2x i3F 76 - L1265

Construction characteristics

Illuminotechnical characteristics

Wide symmetrical or hyperconcentrated distribution.

Lifetime (L93/B10): 30000 h. (tg+25°C) Lifetime (L90/B10): 50000 h. (tg+25°C) Lifetime (L85/B10): 80000 h. (ta+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing in steel, powder-coated in white epoxy-polyester.

Total flow recuperator in specular aluminium, high efficiency, with superficial titanium-magnesium treatment, noniridescent.

Single-piece perimeter frame in galvanized steel, sealing gasket, hinged opening by means of clips in galvanized steel. Safety system to prevent diffuser from falling

Transparent glass HST tempered, non-combustible.

SL transparent PMMA flat diffuser.

Electrical characteristics

In compliance with EN 60598-1. Quick connection in polycarbonate with M20x1,5 cable gland, to access the terminal block positioned on a removable runner. Twin-circuit.

Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.
- Zhaga Book 7 compliant.

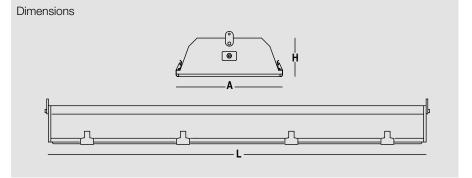
On request

- different colour rendering indices and colour temperatures
- anti-glare moulded VS glass
- laminated glass
- diffuser in prismatic PMMA or polycarbonate, either transparent or prismatic
- wiring: dimmable, CLO (more information on page 542), single-circuit
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology

Applications

Ambient temperature from -20°C to +35°C. Environments: commercial, industrial, sports, stores, sports halls, gymnasiums. Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with laminated glass. Tempered glass is not immune to falling fragments from harmless and caused by shocks or exceptionally derived from the tempering process.

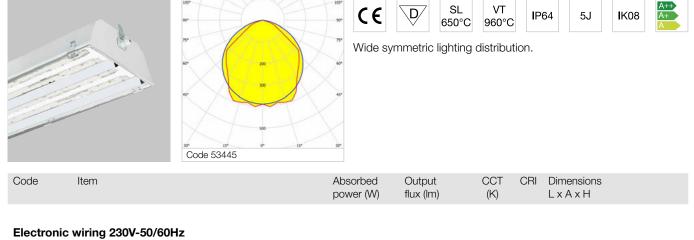
Installation


Suspension mounted with a chain or a bus bar.

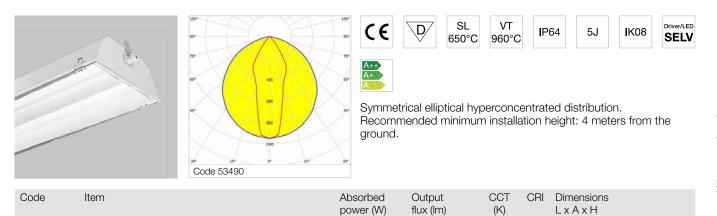
Notes

HST glass

HST glass is composed of a tempered glass sheet which has undergone a thermal stabilisation process (Heat Soak Test) which reduces the risk of spontaneous breakage caused by nickel-sulfide inclusions inside the glass. It is not immune from harmless falling fragments, caused byshocks or, exceptionally, derived from the tempering process.


It is the user's responsibility to identify the most suitable type of diffuser for the application type.

Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: www.3f-filippi.com


476

Beta 430 LED Wide

53438	i3F LED 764x50W CR AMPIO VT L1251	209	31651	4000 >80	1251x430x159
53452	i3F LED 764x50W CR AMPIO SL L1251	209	31651	4000 >80	1251x430x159
53445	i3F LED 764x63W CR AMPIO VT L1551	261	39567	4000 >80	1551x430x159
53459	i3F LED 764x63W CR AMPIO SL L1551	261	39567	4000 >80	1551x430x159

Beta 430 LED Iperconcentrated

Electronic wiring 230V-50/60Hz

	-					
53490	Beta Iperconc LED 4x30W CR VT IP64 L1551	140	17975	4000	>80	1551x430x159
53493	Beta Iperconc LED 4x30W CR SL IP64 L1551	140	17975	4000	>80	1551x430x159

Kit LED Retrofit for Beta 430

Construction characteristics

Illuminotechnical characteristics

Wide or concentrated direct distribution. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Gear-tray unit in white pre-painted steel. PMMA lenses with external flat surface (superimposed to obtain full protection of LED modules).

Electrical characteristics

In compliance with EN 60598-1. Twin-circuit.

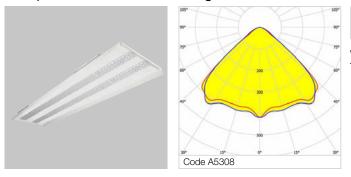
Source characteristics

- Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- wiring: CLO (more information on page 542), emergency, dimmable, different powers
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology

Installation


Correct installation of the Retrofit LED kit, compliant with EN 60598-1 and CE marked, must be only performed by qualified personnel to ensure compliance with the national installation standards.

Notes

Evaluate the use of moulded anti-glare glass according to the application.

Retrofit Kit

To replace the 4x49W T5 Amalgam or the 4x58W T8 version

CE 650°C

Wide or concentrated symmetric lighting distribution. Transparent methacrylate lenses.


Code	Item	Absorbed	Output	CCT	CRI	Dimensions
		power (W)	flux (lm)	(K)		L×A×H
		pono. (n)		(2777777
Version w	ith WIDE lenses - Electronic wiring 230V-50/60	Hz				
A5308	Kit LED Beta 430 - L1551- 2X65W AMPIO	133	18872	4000	>80	1551x430x159
A0000		100	10072	4000	200	100174007109
Version w	ith CONCENTRATED lenses - Electronic wiring	230V-50/60H	Z			
A5309	Kit LED Beta 430 - L1551- 2X65W CONC	133	18431	4000	>80	1551x430x159
/ 10000		100	10-01	-000	200	10017-007100

Retrofit Kit

A5312

To replace the 4x80W - 6x49W T5 Amalgam version

Kit LED Beta 430 - L1551- 3X65W CONC

200

27300

4000 >80 1551x430x159

Beta 430 Accessories

Wire-guard for applications in dry environments, against shocks coming from any directions, in galvanized steel rod \emptyset 5 mm; only for luminaires fixed with no hooks.

Accessory compatible with Beta 430 LED. Code Item

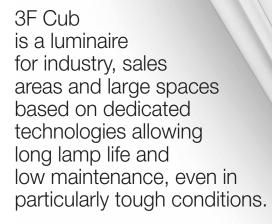
A0528	Wireguard Beta 430 L1251
A0529	Wireguard Beta 430 L1551

Moulded anti-glare glass for retrofit LED kits, non-combustible, tempered, mounted and locked by a galvanised steel mono-block perimetrical frame with a sealing gasket. For installations prior to 2010, the hinge opening is lost.

430.

Accesso	ory compatible with Kit LED Retrofit for Beta
Code	Item
A5322	Printed glass with Beta 430 frame - L1551

0


Reducing sealing ring, dedicated to the use of cables with an external diameter of up to 8 mm.

Code	Item
A0521 NEW	Reducing sealing ring – diam.8mm

Lighter. Brighter. More energy savings. With quick connection.

The best Cub ever.

Patented

Thanks to Quick Connection, minimal time is required to install the luminaires: as it is no longer necessary to open them, the terminal block can be extracted quickly and simply from the upper opening for connection.

- Easy and quick installation
- Energy savings
- Light quality
- High efficiency
- High dependability
- Economical management

thermal shielding effect

dust flows upwards

3F Cub LED

Light quality

- Turning on and turning back on always immediate.
- Excellent colour rendering Ra> 80 (in line with European standard EN 12464 on workplace lighting).
- Reduced glare.
- No strobe effect.
- Wide tolerance on mains voltage (\pm 10%).
- No UV emissions.
- Brightness of light.
- Adjustable luminous flux and/or lamp automatic switch-off thanks to sensors and photocells.

High efficiency

- Efficiency greater than 125 lm/W thanks to the oversized aluminium flow recuperator with titanium-magnesium treatment, with linear LED modules.

High dependability

- 3F Cub Led is suitable for ambient temperatures up to +45°C thanks to its oversized aluminium body which guarantees components optimum thermal balance.
- LED modules compliant with Zhaga specifications for changing LED strips.
- Photobiological risk absent (IEC/EN 62471:2010).

Economical Management

- Very high source lifetime, 100,000 hrs.
- Standard twin-circuit wiring.
- Less decrease of the source's light flow over time thanks to heat dissipation.
- Increased safety: the electronic wiring ensures automatic disconnection of the power supply in case of defective LED module.
- Highly efficient luminaire: over 125 lm/W.
- Mercury-free source.
- Less heat lost to the environment.
- No non-scheduled maintenance operations: faulty or burned-out strips do not compromise work.
- Easy and quick installation and power-supply connection also thanks to quick connection.
- 3F Cub LED has glass or diffuser for total protection, for environments with large quantities of dust to maintain lighting efficiency over time and minimise cleaning of reflecting surfaces.
- Very long lamp average life.

Energy savings

- Fast return on investment.

- Standard or dimmable electronic drivers.

3F Cub LED

Construction characteristics

Illuminotechnical characteristics

Wide symmetric distribution. Lifetime (L90/B10): 30000 h. (tq+25°C) Lifetime (L85/B10): 50000 h. (tq+25°C) Lifetime (L80/B20): 80000 h. (tq+25°C) Lifetime (L70/B20): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Housing with double casing in pressed aluminium, powder-coated in white epoxy-polyester, hinged opening. Quick connection in polycarbonate M20x1.5 cable gland for access to the terminal block.

Ecologic anti-aging injected sealing gaskets.

Stainless steel clips.

Total flow recuperator in specular aluminium, with superficial titaniummagnesium treatment, non-iridescent. Fixing bracket.

Electrical characteristics

Quick connection.

Source characteristics

- · Linear LED modules.
- Color initial tolerance (MacAdam): SDCM 3.

On request

- different colour rendering indices and colour temperatures
- concentrated distribution
- laminated glass
- wiring: single-circuit, emergency, CLO (more information on page 542)
- linear LED modules, with special protection against aggressive chemically-volatile substances, for standard LED technology
- double quick connection
- HACCP versions for use in the food industry

Applications

100W version

Ambient temperature from -20°C to $+45^{\circ}$ C.

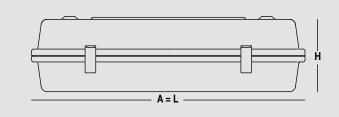
150W version

Ambient temperature from -20°C to +40°C.

Environments: commercial, industrial, sports, stores, sports halls, gymnasiums. Environments in which it is necessary a total protection against falling fragments (eg environments with foodstuffs or machines with moving parts or with extreme temperature changes), use luminaires with laminated glass. Tempered glass is not immune to falling fragments from harmless and caused by shocks or exceptionally derived from the tempering process.

SP version

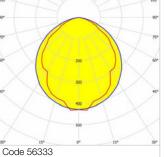
Luminaires suitable, from a hygienic point of view, for use in production plants in the food industry (HACCP / IFS / BRC-Standard).


Installation

Suspension mounted on a bus bar or with a chain attached to the ceiling. For brackets see accessories on page 487.

Light Management

The DALI products of this family can be controlled manually with the technology 3F Easy Dim or even automatically and manually using the 3F Smart Dimming technology (see "Light Management" chapter).



20J

3F Cub LED VT

Transparent glass

CE

E 103

960°C IP64

Transparent glass VT tempered, non-combustible.

Code	Item	Absorbed	Output	CCT	CRI	Dimensions
		power (W)	flux (lm)	(K)		L×A×H
Electronic	wiring 230V-50/60Hz, twin-circuit					
56330	3F CUB LED 100W CR VT	110	14957	4000	>80	680x680x187
56333	3F CUB LED 150W CR VT	163	22234	4000	>80	680x680x187
DALI elect	ronic wiring 230V-50/60Hz					
56332	3F CUB LED 100W DALI CR VT	110	14957	4000	>80	680x680x187
56335	3F CUB LED 150W DALI CR VT	163	22234	4000	>80	680x680x187

3F Cub LED SP

56346

56349

Flat diffuser, prismatic in methacrylate

3F CUB LED 100W DALI CR SP

3F CUB LED 150W DALI CR SP

110

163

14098

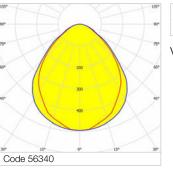
20844

4000

4000

>80

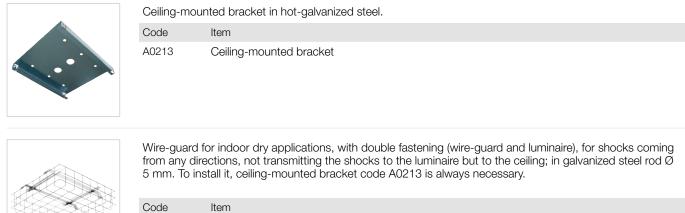
>80


680x680x187

680x680x187

3F Cub LED VS

Moulded glass



VS moulded glass, anti-glare, tempered, non-combustible.

Code	Item	Absorbed	Output	CCT	CRI	Dimensions
		power (W)	flux (lm)	(K)		LxAxH
Electron	ic wiring 230V-50/60Hz, twin-circuit					
56337	3F CUB LED 100W CR VS	110	13762	4000	>80	680x680x187
56340	3F CUB LED 150W CR VS	163	20415	4000	>80	680x680x187
DALI ele	ctronic wiring 230V-50/60Hz					
56339	3F CUB LED 100W DALI CR VS	110	13762	4000	>80	680x680x187
56342	3F CUB LED 150W DALI CR VS	163	20415	4000	>80	680x680x187

3F Cub Accessories

A0210 Wireguard 3F Cub

Reducing sealing ring, dedicated to the use of cables with an external diameter of up to 8 mm.

Code	Item
A0521 NEW	Reducing sealing ring – diam.8mm

3F Cub LED

Examples of design

Comparison to 400W JM reflector

Design data:

Boolginaatai		
Room dimensions Room height Installation height	50x50 metres 9 metres 8 metres	
Number of luminaires	56 luminaires (6.3x7.1 metre grid)	
Like-for-like replacement of	light points	
Reflection	ceiling 30% walls 30% floor 10%	
Work surface height	0.85 metres	

	400W JM reflector	3F Cub LED 150W CR VT	Difference
Lighting values	345 lx	381 lx	+ 10%
Luminaire power	440 W	163 W	- 63%
Circuit type	Single circuit (100%)	Twin circuit (50% - 100%)	
Regulation of luminous flux and power?	No	Yes, depending on requirements	
Source life	8,000 hours	>50,000 hours	+42,000 hours

Comparison to 3F Cub R90 4x55 IP43

Design data:

Design data.			
Room dimensions Room height Installation height	50x50 metres 9 metres 8 metres		
Number of luminaires:	56 luminaires (6.3x7.1 metre grid)		
Like-for-like replacement o	f light points		
Reflection	ceiling 30% walls 30% floor 10%		
Work surface height	0.85 metres	\checkmark	

	3F Cub R90 4x55 IP43	3F Cub LED 150W CR VT	Difference
Lighting values	334 Ix	381 lx	+ 14%
Luminaire power	240 W	163 W	- 32%
Circuit type	Twin circuit (50% - 100%)	Twin circuit (50% - 100%)	
Regulation of luminous flux and power?	Yes, depending on requirements	Yes, depending on requirements	
Source life	15,000 hours	>50,000 hours	+35,000 hours

Comparison to 3F Cub 4x55 VT IP64

Design data:

Doolgii datai		
Room dimensions Room height Installation height	30x30 metres 7 metres 6 metres	
Number of luminaires:	30 luminaires (6x5 metre grid)	
Like-for-like replacement c	f light points	
Reflection	ceiling 30% walls 30% floor 10%	
Work surface height	0.85 metres	

	3F Cub 4x55 CR VT IP64	3F Cub LED 100W CR VT	Difference
Lighting values	334 lx	380 lx	+ 14%
Luminaire power	240 W	110 W	- 54%
Circuit type	Twin circuit (50% - 100%)	Twin circuit (50% - 100%)	
Regulation of luminous flux and power?	Yes, depending on requirements	Yes, depending on requirements	
Source life	15,000 hours	>50,000 hours	+35,000 hours

Why choose 3F Cub LED?

Never-ending light

3F Cub LED is equipped with new 3F LED technology whose sources specially developed for demanding applications guarantee an operating lifetime of over 50,000 hours, at the end of which at least 50% of the LED will still be providing 80% of their initial light output.

You won't believe your wallet!

- 3F LED technology allows you to save up to 60% compared to traditional sources.
- Existing luminaires can be replaced while maintaining the same light locations and wiring system, but reducing energy consumption.
- Reduced maintenance significantly lowers running costs.

Beauty which doesn't blind!

The 3F Cub LED diffuser attenuates or cancels out all glare and creates a truly enviable lighting uniformity (in relation to the installation height).

Its clean, elegant lines make 3F Cub LED a luminaire which can fit in perfectly with any environment.

Eco-logical

- 3F Cub LED has been created according to the principles of Eco Design, and stands out for:
- Manufactured using energy from solar panels and assembled according to our "zero mileage" philosophy.
- Limited use of different materials, facilitating assembly, installation and recycling.
- Recyclable green packaging.

Significant reduction in maintenance costs

Longer life means less maintenance. Less maintenance means greater savings. Less maintenance means fewer problems. Fewer problems means greater peace of mind.

Outdoor

Page		Product	Wall	Bollard
492		3F Manta		
500	NEW	3F Manta	•	•
504		3F 66		
504		3F 66 LED	•	

3F Manta

Designed for those who work outdoors. 365 days a year.

3F Manta was created to bring the outstanding lighting technology that our company has been offering for over 60 years inside production facilities, retail areas, and architectural spaces outdoors. Thanks to the intense activity in its research laboratories, 3F Filippi is launching its first lighting fixture for outdoor work areas, a cutting edge solution dedicated to lighting private areas where vehicles and pedestrians pass through such as parking lots, perimeter areas of production facilities, loading/unloading docks, and other areas that refer to regulation EN 12464-2 "Lighting of outdoor work areas".

3F Manta is the result of precise design covering every facet, from the mechanical elements to the use of cutting-edge technological components. The sum of the individual details makes this fixture the ideal answer to the expectations of those who are looking for perfect, durable outdoor lighting.

The outer upper surface is designed to reduce the accumulation of impurities.

The aluminium allow body design prevents possible water stagnation due to weather.

The anti-condensation valve prevents the accumulation of moisture inside the luminaire, protecting the LED light sources.

The dimensions and shape of the fixture ensure perfect heat dissipation.

Safety and reliability

3F Manta is made with top quality components to ensure excellent performance in every aspect. The cutting-edge technology also make 3F Manta a reliable technical solution that maintains its performance over time.

Since 1952 we have been working to facilitate the work of planners and installers, even through very strict tests that we perform in our CTFs Level 2 certified laboratories under the supervision of a recognised Third Party: 3F Manta followed strict internal protocols to minimise any faults over the longest possible period of time.

Stainless Steel hardware

They prevent oxidation over time and are also used inside the body, allowing easy access even in severe weather conditions.

Aluminium optics

They allow the photometric performance to remain constant over time.

HST glass and gasket in polyurethane

Particularly sturdy, it ensures significant resistance to temperature changes. The watertight seal and IP66 protection rating are also guaranteed by the gaskets made of polyurethane, which is particularly resistant to weather and pollution.

NTC System

The LED module is equipped with a thermistor to prevent exceeding the expected operating temperatures.

SPD System

The SPD (Surge Protective Device) technology ensures adequate protection against atmospheric or electrical surges.

Nema Socket - Ready

The upper part of the fixture is made ready for the installation of devices created for the creation of Smart Lighting solutions (sensors, wireless antennas, video cameras, etc.).

Installation and maintenance

The 3F Filippi Team has designed and developed 3F Manta considering many technical and practical aspects. Among these, our technicians were very attentive to installation and maintenance of the fixture in order to facilitate the installers' work, allowing them to reduce work times and operate with maximum safety.

Safe and quick installation

The bayonet terminal block and the anticlosure block eliminate the risk of accidents when working on the luminaire. Also, it is not necessary to open the fixture to adjust the installation angle and to connect it to the electrical mains because it is provided with an outlet cable. These measures significantly reduce installation time.

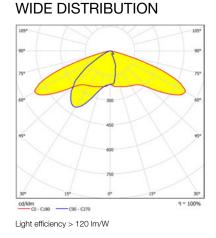
Practical and flexible installation

A single accessory (available for both 60 mm and 76 mm diameter pipes) allows installation on a pole or on the wall (pipe not supplied by 3F Filippi).

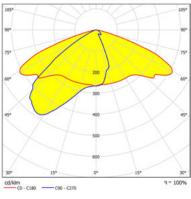
The wide 40° adjustment angle allows the luminaire to be tilted based on different needs, even after installation is complete.

Precision optics

For 3F Manta we developed an ad hoc multifaceted optics, with total luminous flux recovery cells, entirely made of semi-specular high reflection aluminium with titanium and magnesium surface treatment, without iridescence and luminous contrasts.



The aluminium allows the optical performance to be maintained over time, even in the most severe weather conditions, unlike chrome elements.

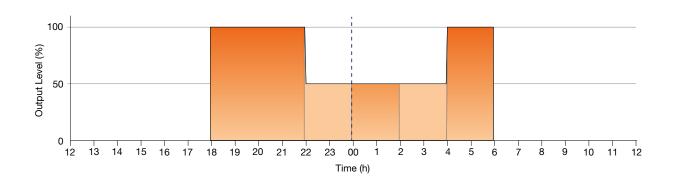

The versatile and mechanically solid optical group is comprised of:

- 8 completely separate optical compartments for maximum flux recovery
- Specifically modelled blades to create the right optical shielding and optimise asymmetrical frontal distribution without flux dispersion on the back of the fixture
- Versatile parabolic sides, with double optical focus, designed to provide different beam angles and optimise
 installation in different applications

In designing and creating 3F Manta, special attention was paid to the light distribution, which is perfectly controlled and guarantee the cancellation of light pollution (in compliance with current standards). The distributions, with two different optics, are designed for lighting large spaces, meeting the depth or width requirements.

MEDIUM DISTRIBUTION

Light efficiency > 120 lm/W

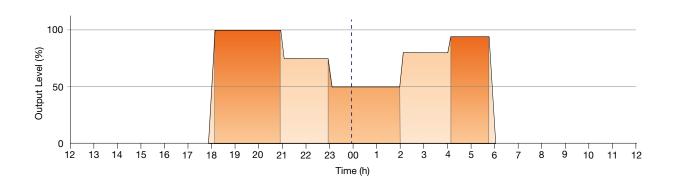

Virtual midnight (upon request)

In order to further increase energy savings when lighting outdoor areas (and others), when the light does not need to be operating at full power, the "virtual midnight" system allows the creation of a stand-alone control of the fixtures without the need for an external control infrastructure or any change to the existing system. It consists of activating a multi-level power reduction on the luminaire through a self-learning process that, based on previous times when switched on or off, determines the hypothetical "virtual midnight" between when it was switched on (sunset) and off (sunrise).

"Virtual midnight" is the reference point for applying the reduction of the output power according to the selected profile.

The default setting regulates it on two power levels: 100% and 50%.

A microprocessor calculates the reduction time starting from "virtual midnight". The default setting calls for 2 hours before and 4 hours after "virtual midnight" as follows:


The system allows the implementation of customised adjustment profiles (optionals to be requested specifically during the order process), which allow even greater control flexibility. In fact, it is possible to:

1. Set the output levels in an interval between 10% and 100%, with 1% increases divided over 5 different time intervals.

Create the passage from one adjustment level to the next by means of a fade with a programmed duration
 Switch the light on and off through a fade. This function allows further energy savings during the twilight stages.

4. Activate an adjustments that also takes into account the sunrise and sunset in the location described by the geographic coordinates in order to further optimise the power reduction periods.

The graph below shows an example of a programming profiles that summarizes the possibilities described in points 1, 2, and 3

Design examples

Loading and unloading area Wall installation

3F Manta 135W Wide

Installation height 6 m Installation spacing 20 m Average illumination at the ground 55 lux

Site perimeter Pole installation

3F Manta 50W Medium Installation height 6 m Installation spacing 20 m Average illumination at the ground 20 lux

Perimeter road Pole installation

3F Manta 75W Wide

Installation height 8 m Installation spacing 32 m Average illumination at the ground 25 lux

Input Pole installation

3F Manta 185W Medium

Installation height 8 m Average illumination at the ground 50 lux Roadway Pole installation

3F Manta 100W Wide

Installation height 12 m Installation spacing 48 m Average illumination at the ground 25 lux Parking Lot Pole installation

3F Manta 50W Wide

Installation height 5 m Installation spacing 15 m Average illumination at the ground 60 lux

Construction characteristics

Illuminotechnical characteristics

Asymmetric distribution with wide or medium bilateral.

No higher ULOR emission. Lifetime (L93/B10): 30000 h. (tq+25°C) Lifetime (L90/B10): 50000 h. (tq+25°C) Lifetime (L85/B10): 80000 h. (tq+25°C) Lifetime (L80/B10): 100000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Aerodynamically-shaped die-cast aluminium double-shell body for low wind resistance, equipped with fins to optimize the cooling of the internal components. Shell closure using stainless steel screws on stainless steel bushings, with hinged opening for easy access to the wiring compartment, equipped with system against accidental closure. Polyester powder coating with degreasing pre-treatment and phosphate layer deposit on the metal, UV stabilized, corrosion resistant, anthracite colour, salt spray resistance ISO 9227 >1000 h. Parabolic cellular optics with total recovery, entirely made of semi-specular high reflection aluminium with titanium and magnesium surface treatment, to maintain optical performance over time. Polyurethane foam seals, ecological, anti-aging, installed using a continuous automatic process with no joints. VT extra transparent tempered glass diffuser, 4 mm thick, non-combustible, with Heat Soak Test (HST) thermal treatment, which drastically reduces the risk of spontaneous breakage. Stainless steel internal and external screws

Electrical characteristics

In compliance with EN 60598-1. Flicker: <10%.

Safety break switch to shut off the power supply when opening the device. SPD type 2+3 (combined) device to protect against voltage surges up to 10 kV in common and differential mode. Thermal protection of the LED module via NTC sensor (Negative Temperature Coefficient).

M20x1.5 IP68 nylon cable gland for feeding input (cables with an min-max diameter 6-13mm).

Pressure compensating valve with anti-condensation effect. Insulation rating I.

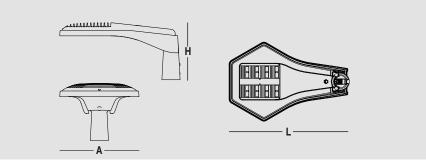
Source characteristics

- Squared LED module with special protection against aggressive chemically-volatile substances, for standard LED technology.
- Color initial tolerance (MacAdam): SDCM 5.

On request

- different power levels, colour rendering indices and colour temperatures
- wiring: DALI, CLO (more information on page 542), D1-10V, Wireless, class II
- Customised Virtual Midnight up to 5 independent intervals / levels
- watertight socket / plug connectors

Applications

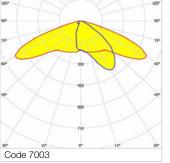

Ambient temperature from -30°C to +45°C. Outdoor environments, general lighting, work and roadway lighting, transit areas and building perimeters, parking lots, trade fairs.

Control of light pollution, in accordance with the legislative requirements in force.

Installation

Pole or wall mounted using always necessary accessories (see on page 502).

Dimensions


Performances are measured and certified by our CTFs stage 2 Photometric Laboratory (more information on page 10). Datasheets, product updates and specifications on our website: **www.3f-filippi.com**

500

3F Manta Wide

Code

CE 960°C IP66

Output

flux (Im)

Asymmetric distribution with wide bilateral.

10J

CCT

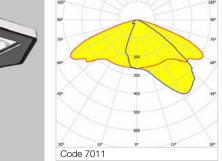
(K)

CRI

Dimensions

LxAxH

Electronic wiring 230V-50/60Hz


Item

7001 NEW	3F Manta AN 50/730 WIDE L660	52	6845	3000	>70 660x440x166	
7002 ^{NEW}	3F Manta AN 75/730 WIDE L660	77	9569	3000	>70 660x440x166	
7003 ^{NEW}	3F Manta AN 100/730 WIDE L660	101	12902	3000	>70 660x440x166	
7004 NEW	3F Manta AN 135/730 WIDE L660	147	17193	3000	>70 660x440x166	

Absorbed

power (W)

3F Manta Medium

CE 960°C IP66 10J IK09

Asymmetric distribution with medium bilateral.

Code	Item	Absorbed power (W)	Output flux (lm)	CCT (K)	CRI	Dimensions L x A x H	
Electronic	s wiring 230V-50/60Hz						
7009 ^{NEW}	3F Manta AN 50/730 MEDIUM L660	52	6808	3000	>70	660x440x166	
7010 ^{NEW}	3F Manta AN 75/730 MEDIUM L660	77	9516	3000	>70	660x440x166	
7011 NEW	3F Manta AN 100/730 MEDIUM L660	101	12830	3000	>70	660x440x166	
7012 ^{NEW}	3F Manta AN 135/730 MEDIUM L660	147	17097	3000	>70	660x440x166	
7020 ^{NEW}	3F Manta AN 185/730 MEDIUM L660	195	22111	3000	>70	660x440x166	

3F Manta Accessories

Pole mount in die-cast aluminium with the same paint treatment as the body (for \emptyset 60 mm and \emptyset 76 mm poles) equipped with special teeth for adjusting the inclination on the head of the device by \pm 20° with an adjustment pitch of 5°. Possibility of installing on vertical pole (pole head) and horizontal pole (arm). Mounting on the device using the supplied stainless steel screws on self-locking stainless steel nuts.

Code	Item
A0439 NEW	Pole mounting diameter 60mm
A0440 NEW	Pole mounting diameter 76mm

Accessory always required.

Galvanized steel bracket for fixing on flat facades. 3 mm thick and 200 mm long arm. Powder coated polyester paint, anthracite color. This bracket DOES NOT allow adjustment of the inclination of the product.

Code	Item	
A01480 NEW	Fixed position wall bracket	

Options on request: painting in different RAL color / 500 mm outreach / horizontal pole.

Galvanized steel bracket for fixing on flat facades. Thickness 3 mm, arm length 250 mm and inclined by 15°. Suitable for 60 mm diameter poles. This bracket allows adjustment of the inclination of the product.

CodeItemA01479Wall bracket 15° diam 60mm

To install this accessory, it is always necessary to use the pole connection code A0439. Options on request: painting in RAL colors / 500 mm outreach / horizontal pole.

Galvanized steel bracket for fixing on the corner between facades. Thickness 3 mm, arm length 250 mm and inclined by 15°. Suitable for 60 mm diameter poles. This bracket allows adjustment of the inclination of the product.

Code Item A01481[№] Corner wall bracket 15° diam 60mm

To install this accessory, it is always necessary to use the pole connection code A0439. Options on request: painting in RAL colors / 500 mm outreach / horizontal pole.

Construction characteristics

Illuminotechnical characteristics

Downward bilateral distribution. Lifetime (L75/B10): 30000 h. (tq+25°C) Lifetime (L70/B10): 50000 h. (tq+25°C) Photobiological safety RG0, risk exempt, in compliance with IEC 62471, IEC/TR 62778 (further information on page 18).

Mechanical characteristics

Self-extinguishing V2 polycarbonate housing, injection moulded, RAL 7035 grey. Flow recuperator in specular aluminium with superficial titanium-magnesium treatment, non-iridescent. Transparent PMMA diffuser, injection moulded, with smooth outer surface and differentiated prismatic inner surface. Sealing gaskets between housing and diffuser in ecological anti-aging EPDM. Diffuser safety seal with 4 latches attaching it to the housing, in stainless steel.

Electrical characteristics

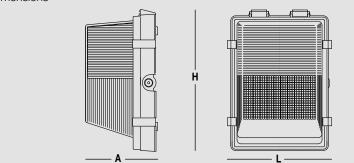
In compliance with EN 60598-1. Double insulated cables. Line entry at rear through rubber seal or at side after drilling. Class II.

Source characteristics

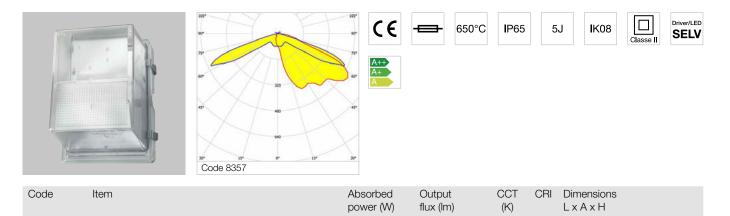
- LED modules.
- Color initial tolerance (MacAdam): SDCM 4.

On request

- LED sources with different colour temperatures
- different powers


Applications

Wall mounting, particularly suitable for outdoor lighting of civil and industrial buildings, porticos, underpasses and walkways.


Downwards bilateral controlled distribution allows to optimise the perimeter lighting uniformity of buildings.

Control of light pollution, in accordance with the legislative requirements in force.

Dimensions

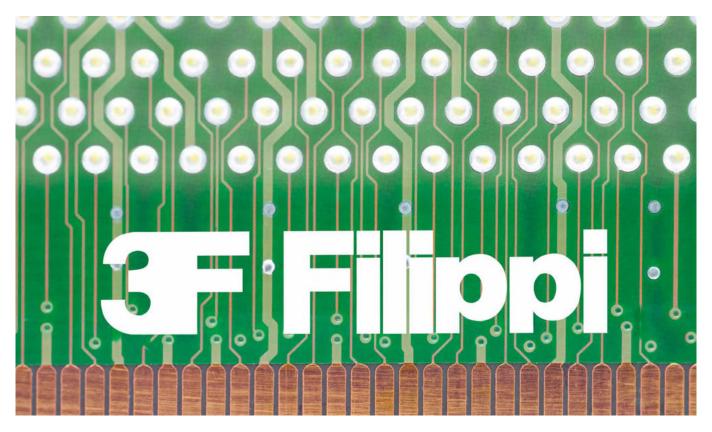
3F 66 LED

power (W)

(K)

LxAxH

Electronic wiring 230V-50/60Hz, fuse


	······································					
8357	3F 66 1 LED 6 II	10	689	4000	>80 255x176x344	
8358	3F 66 2 LED 12 II	16	1361	4000	>80 255x176x344	

Light Management

Page	
500	Light Management
508	Light Management
508	Overview
510	3F Easy Dim
510	Overview
511	Installation examples
512	Accessories
514	3F Sensor
514	Overview
516	Technical details 3F Sensor / 3F Sensor CF / 3F Sensor Bluetooth / 3F DALI Sensor
520	3F Smart Dimming
520	Overview
521	Installation Reference - Corridor Function
522	Installation Reference - Office / Open space
523	Installation Reference - Industrial / Gymnasiums
524	Installation Reference - School classroom
526	Accessories
532	3F HCL for Tunable White fixtures
532	Overview
535	Wired control systems
535	Overview
536	Accessories
538	3F Bluetooth control system
538	Overview
539	Accessories
541	3F & KNX
541	Overview
542	3F CLO
542	Overview
544	3F Wireless
544	Overview
546	Accessories

Light Management

Good for you, excellent for the environment.

3F Filippi is always at the forefront of energy savings and improving the efficiency of systems: this is why we are constantly striving to create luminaires which are able to interact with environments and with the people who live and work there.

One of the most important aspects of managing workplaces is certainly the lighting: it is indeed proven that poor illumination is not only harmful to workers, but creates both direct (higher power consumption or waste) and indirect (worker illness, decreases in productivity, stress or even physical issues) economic problems.

Good lighting may often seem difficult to obtain, but in reality small measures can obtain big results. Here are three useful tips:

- Let in the sun: natural light improves quality of life and saves you money!
- Use low-energy sources: luminaires fitted with LED sources are the best weapons in cutting costs, especially when they are optimised like those manufactured by 3F Filippi.
- Use luminaires with luminous fluxes which can be regulated according to requirements: dimming the luminaires lets you lower electricity consumption by up to 80%, at the same time creating a more pleasant and functional working environment.

Systems which are able to regulate the artificial lighting on the basis of the available natural light can be created, using only the power required to maintain an appropriate level of lighting in the environment, allowing you to save up to 80% on electricity bills. After performing analyses alongside lighting designers, we noticed that adopting control systems which can regulate lighting on the basis of the available natural light provides wide margins for improving the energy efficiency of systems, particularly during the summer months.

Adopting systems such as KNX - which can also be used throughout the building for automating all types of systems (HVAC, lighting, opening, blinds etc.) - combined with measurement of the natural light level provides excellent results, in part due to intelligent positioning of light measurement sensors in relation to the position of the workplace and geographical orientation.

3F Filippi offers light regulation systems to help you save energy and protect the environment: from manual regulation systems to luminaires able to turn on and off thanks to integrated brightness and presence sensors, energy management systems linked to building automation, right through to components which help you to create made-to-measure lighting installations with ease.

3F Filippi is at your side to offer you the best solutions both for your environment and your workers.

3F Smart Lighting

3F Easy Dim 3F Smart Dimming

Manual regulation systems which allow you to adjust the luminous flux of the luminaires.

3F Sensor

Luminaires with integrated ON-OFF radar movement sensor.

3F Sensor Bluetooth

Fixtures with DALI-BLE motion radar sensors to turn on and regulate groups of fixtures

3F & KNX

Automatic regulation system which compensates for the decline in luminous flux, providing a constant level of lighting over time.

3F Wireless

3F CLO

A 868MHz wireless control and regulation system that allows for communication between light fixtures and sensors Luminaires equipped with DALI driver able to interface with KNX systems for automated remote management of the technological systems of a building.

TW Tunable White fixtures for manual or automatic variation

Stand-alone sensors for ON/OFF control and regulation

(DALI versions only) of groups of luminaires.

DALI luminaires with integrated DALI sensor

for automatic regulation and on/off control of the luminous flux on the basis of the natural light.

3F HCL for TW fixtures

(with HCL systems) of colour temperature.

3F DALI Sensor

3F Bluetooth

Bluetooth adjustment and control system, allows communication between lighting devices and management via APP

These lighting management systems comply with UNI EN 15232 "Energy performance of buildings. Impact of Building Automation, Controls and Building Management" which introduces four energy efficiency categories for the control functions of building technical systems.

Introducing **3F Smart Lighting** control and light management systems - even in systems already equipped with high-efficiency light sources - can provide significant further energy efficiency improvements.

A great advantage of automated systems, like **3F Sensor** and **3F Smart Dimming**, is that regulation is completely automatic, without any requirement for operators to intervene, ensuring that the systems is constantly adapting itself to the required conditions.

3F Filippi lighting and Smart Buildings

Both for new builds and for existing systems, the costs of implementing these solutions are more than offset by simplification of the electrical wiring and corresponding installation: this reduction in conductors, conduits, power and control switchboards means that the time required to see a return on investment is drastically reduced.

Our sales and technical offices are at your disposal to support you in choosing the best solutions available; these can also be customised to the application you require.

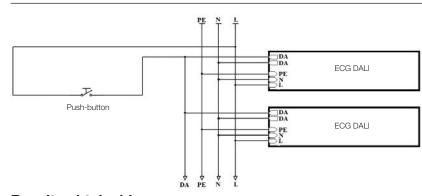
3F Easy Dim

Savings in your hands

Characteristics

3F Easy Dim technology lets you regulate luminous flux in an easy, low-cost and customisable manner. In terms of the system, it is composed of a commercially available push-button (up to 6 ballasts) and a DALI repeater (to manage up to 64 ballasts). This mode allows you to perform the following functions:

- Turning the luminaire **ON/OFF.**
- Manual regulation of the luminaire's luminous flux on the basis of specific requirements.


Advantages

The advantage of this technology is that it gives the user the possibility to customise the quantity of light present in the environment depending on taste and requirements, while using genuinely low-cost components. The control provided is manual, and as such savings will depend on how it is managed.

Savings

- Installation phase: up to 6 ballasts with PUSH DIM function, controlled via a commercially available push-button (environments without interference). Between 7 and 64 ballasts requires a DALI repeater.
- Use: if the luminous flux output is below 100%, power consumption of the luminaire is significantly reduced.

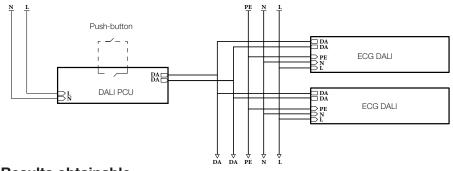
Up to 6 ballasts

N.b.: in environments where there is signal interference present, and with dimmer wire lengths of over 20 metres, the installation of a DALI repeater is advisable.

Results obtainable

- Manually turning the luminaire ON/OFF.

- Manual regulation of the luminaire's luminous flux on the basis of user requirements.


Compatible luminaires

Any luminaire from the 3F Filippi range, as long as it is equipped with DALI PUSH DIM ballast.

Components required

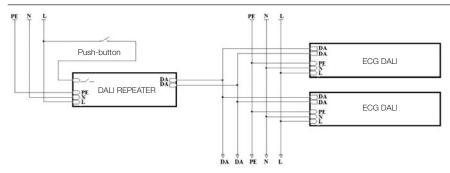
- 1 commercial push-button.

Up to 25 ballasts

Results obtainable

- Manually turning the luminaire ON/OFF.

- Manual regulation of the luminaire's luminous flux on the basis of user requirements.


Compatible luminaires Any luminaire from the 3F Filippi range, as long as it is equipped with DALI ballast.

Components required

- 1 commercial push-button.

- 1 DALI PCU fixture for each button (button cable length 15cm - max 1m).

Up to 64 ballasts

Results obtainable

- Manually turning the luminaire ON/OFF.
- Manual regulation of the luminaire's luminous flux on the basis of user requirements.

Compatible luminaires

Any luminaire from the 3F Filippi range, as long as it is equipped with DALI ballast.

Components required

- 1 commercial push-button.

- 1 DALI repeater.

3F Easy ^{Dim} Accessories

Signal Repeater for expansion of DALI systems (64 drivers - 300 meters of line), size 189x30x21 mm, integrated installation into the device or into the Box (cod. A3010).

Code Item A3008 Repeater DALI ext

Signal Repeater for expansion of DALI systems (64 drivers - 300 meters of line), size 96x72x62 mm, DIN rail mounting.

DALI Re	peater	
	Mind Han O	8+197 B
	HIF' (OSRAI
10-0/0		10.10

Code Item A3009 Repeater DALI DIN

 Box mounted housing DALI Repeater ext (cod. A3008), size 261x71x27 mm.

 Code
 Item

 A3010
 Box for Repeater DALI

DALI control panel for recessed installation, dimensions 48x49x22 mm, allows to regulate the flow power on/ off of a up to a maximum of 25 DALI drivers (max 300 m in a line) with just one commercial button (normally open).

Code Item A3007 DALI PCU push button interface

3F Sensor

A small revolution bringing you big advantages.

Available luminaires

3F Petra LED Sensor - 3F Linda Sensor L 320 LED Sensor CF - 3F Linda LED Sensor CF

Characteristics

Sensor technology allows you to make savings and manage your lighting systems in an easy, low-cost and customisable manner without investing significant capital in costly systems.

What we have done is extremely simple: we have incorporated an ON/OFF high-frequency (HF) 5.8GHz radar movement sensor inside the luminaire.

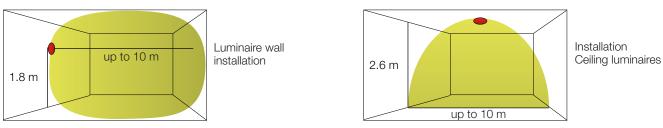
Advantages

The advantages of this technology create significant savings for the end customer:

- Time savings during installation: integrating these functions inside the luminaire means it is no longer necessary to install a network of sensors (and corresponding wiring) and connect it to the luminaires.
- Cost savings: you save money on installation time, electrical supplies and system calibration time.
- Ease of installation: it is no longer necessary to create or modify electrical systems. Just connect the luminaires to the mains
- Customisation of brightness levels: each luminaire "works" independently from the others, allowing you to create "made to measure" lighting.

Products equipped with 3F Sensor technology are individual, independent luminaires which cannot be connected together.

Savings


In practical terms, the advantages are real and tangible in these aspects for the end customer:

- Installation: to create a network of luminaires, it is no longer necessary to connect them physically; this means you no longer have to spend extra for wiring supplies and installation time.
- Independence and precision: Each luminaire is independent; this means that lights turn on in an increasingly localised and precise manner, with corresponding electricity savings.
- Simplicity: dimming and presence sensors are integrated and already operational. All that is left for you to do is to connect the phase, neutral and earth wires: wasting time setting up and adjusting the system is a thing of the past!
- Integration with existing installations: the same lighting connections, using standard electrical wiring: this means not wasting money adapting the systems.

3F Sensor: saves you money even before the light is turned on.

Versions	Sensor	Corridor Sensor Function
Standard position (no movement)	Luminaire off	Kept on at 10% power
Automatic	Via ON/OFF high-frequency (H	HF) 5.8GHz radar movement sensor
Mounting height	Wall installation at max 2.7 metre	es - Ceiling installation at max 4 metres
Twilight function	, 0	vilight / Night / Programmable mode etting "daylight")
On time	From 10 seconds to 30	minutes (default setting 900s)
Sensitivity/detection field	20% - 30% - 50% - 75%	% - 100% (default setting 75%)

Sensitivity

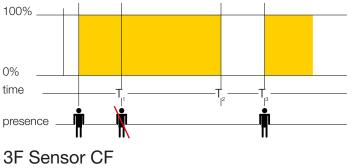
RADAR technology goes beyond glass, wood and plasterboard, therefore for the correct functioning of the luminaire, the sensor detection field (see instruction sheet) must be adjusted according to the type of installation/room.

3F Sensor

Components required

• ON/OFF high-frequency (HF) 5.8GHz radar movement sensor incorporated in the luminaire.

• Luminaires with standard ON/OFF driver.


Results obtainable

- Luminaire switching on the basis of the chosen light level (deactivated by default, but can be modified to meet requirements) and movement of persons within the range of the sensor.
- Regulation of the luminaire's on time, on the basis of specific requirements.

Available luminaires

3F Petra LED Sensor, 3F Linda LED Sensor.

Operation graph

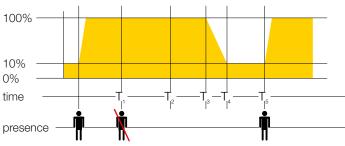
Legend:

 $T_{_{\rm I}}\!>\!T_{_{\rm 2}}$ - latency time managed by the sensor - default 900s

 $T_{_2}\!>\!T_{_3}$ - period of zero luminous flux - unlimited time

Components required

ON/OFF high-frequency (HF) 5.8GHz radar movement sensor incorporated in the luminaire.
 Luminaires with DALI driver programmed with Corridor Function (CF).


Results obtainable

- Two lighting levels (minimum 10% without movement and 100% with movement).
- The luminaire's luminous flux cannot be dimmed.

Available luminaires

L 320 LED Sensor CF, 3F Linda LED Sensor CF.

Operation graph

Legend:

- $T_{_{\rm 1}}\!>\!T_{_{\rm 2}}$ latency time managed by the sensor default 900s
- $T_2 > T_3$ latency time managed by the driver 120 seconds
- $T_{3} > T_{4}$ luminous flux decrease time 32 seconds
- $T_{_{\rm 4}}\!>\!T_{_{\rm 5}}$ period of minimum luminous flux unlimited time

3F Bluetooth Sensor

Fixtures available

3F Linda Sensor DALI-BLE

Components

DALI-Bluetooth regulator with a high frequency radar motion detector (HF) 5.8GHz, integrated inside the fixture. Smartphone or Tablet app to configure fixtures.

Obtainable result

The fixture switches on according to the brightness level chosen (default disabled but can be changed as needed) and the movement of people within the range of the sensor.

Preferred functions can be programmed using the APP.

It is also possible to set up a mesh network between DALI-BLE fixtures using Wireless Bluetooth communication.

The presence function can be excluded.

The corridor function can be set up with personalised times and levels.

Configure groups of fixtures (master-slave) without modifying the electrical system.

Characteristics

We have integrated a high frequency DALI radar motion detector (HF) 5.8GHz inside the fixture that operates Bluetooth with other DALI-BLE fixtures.

The onboard sensor makes it possible to regulate individual or groups of fixtures or profiles for a complete installation.

The distance between the fixtures can be up to 20 m for indoor installations. Fixtures with 3F Sensor Bluetooth technology can be managed in the following way:

Individually - every fixture turns on/off according to movement and adjusts according to programmed behaviour on the APP. Master-Slave configuration --- using the APP it is possible to create groups of fixtures to manage each area

RADAR technology goes beyond glass, wood and plasterboard, therefore for the correct functioning of the luminaire, the sensor detection field (see instruction sheet) must be adjusted according to the type of installation/room.

luminaire with movement detector

luminaire without movement detector

Advantages

It is not necessary to modify the existing electrical system, you just need to connect the fixtures to the power grid, saving on installation time.

3F Sensor DALI-BLE technology unlike 3F Sensor allows for:

Bluetooth communication between fixtures

the creation of groups of fixtures without any other physical connections different function profiles that can be easily programmed by the end user using an APP on a tablet or smartphone (available for iOS and Android) for example: • Sensitivity 10 ... 100%

- •
- Hold time 5 seconds ... 60 minutes Daylight sensor 1 Lux ... 500 Lux; ; teach in DIM level 0 ... 100 % •
- •
- Program Mode On / Off, Permanent, Corridor, •
- Soft-DIM: active / inactive •

3F DALI Sensor

Available luminaires

3F LEM LED DALI Sensor

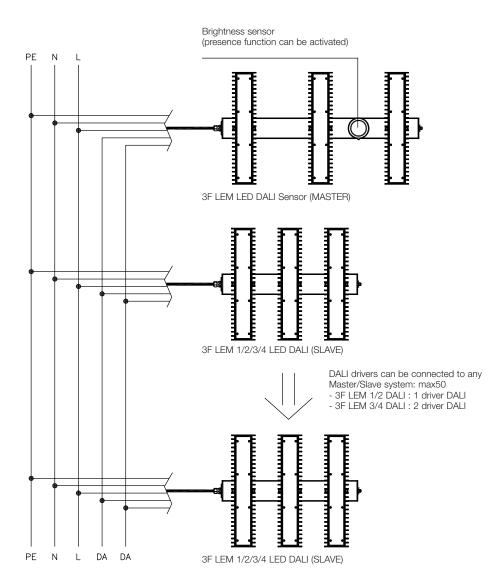
Characteristics

Luminaires with 3F DALI Sensor technology are equipped with a DALI brightness and presence sensor which allows the luminous flux to be switched on/off and regulated automatically on the basis of the natural light (the presence detection function is deactivated by default. It can be activated by removing the jumper on the sensor's R-L terminals).

Luminaires with 3F DALI Sensor technology can be installed in the two following ways:

Individually - each luminaire switches on/off and regulates its flow independently with respect to the other luminaires, and it is therefore no longer necessary to create or modify existing electrical systems, only to connect the luminaires to the mains supply, thus reducing installation times.

Master - Slave configuration – each 3F DALI Sensor luminaire can be connected to other standard 3F dimmable DALI luminaires by following the method given in the application examples. In this case, switching on/off and regulation of the luminous flux will be managed in zones/groups of luminaires, saving on the number of sensors in the field.


In both solutions, the initial programming of the sensor can be performed simply and conveniently with the use of the DALI IR programmer (code A3020).

For technical specifications and for further information, see the details in the **"3F Smart Dimming accessories"** chapter, or contact our technical department.

Typical application example for 3F LEM DALI Sensor

Connection diagram for broadcast operation, between the 3F Travetta LED DALI LS luminaire (with integrated DALI presence and brightness sensor - MASTER function) and 3F Travetta LED DALI luminaires (equipped with DALI drivers - SLAVE function). Allows the level of lighting to be kept constant between all connected luminaires, on the basis of the natural light, as well as centralised on/off commands (thus when motion is detected and with the twilight threshold set).

IMPORTANT: the DALI line of the MASTER luminaires cannot be connected to buttons! If you require manual regulation, contact our technical department.

3F Smart Dimming

Characteristics

Smart Dimming technology allows you to make savings and manage your lighting systems in an easy, low-cost and customisable manner without investing significant capital in costly systems. Products in this range have functions such as:

- Turning on and automatically regulating the luminaire on the basis of the chosen level of brightness.
 Luminaire switching on the basis of presence of persons in the radius of operation of the luminaire (the detection area can be extended using slave sensors).
- Manual regulation and ON/OFF via accessory remote controls or push-buttons.

Advantages

The advantages of this technology offer significant energy savings for the end customer, calculated as being up to 80% compared to an on-off solution with combined sensors for light and presence regulation. It is also possible to create made-to-measure lighting based on the requirements of the environment and the light level required.

Savings

The advantages are real and tangible in these aspects for the end customer:

- Quick, simple installation.
- Energy savings.
- Reduced time to see return on investment.

Installation Reference - Corridor function

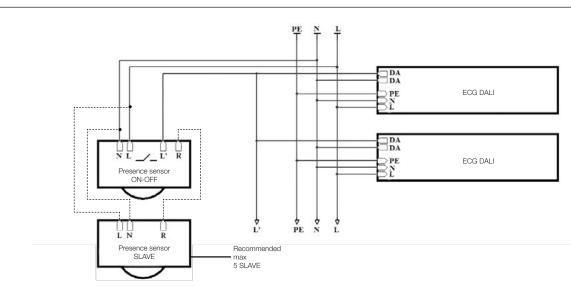
Standard position: the power output of the luminaires is dimmed to 10%, thus obtaining a minimum level of lighting.

As soon as the luminaires detect the presence of persons, or the level of natural light falls below a minimum set threshold, the CF function is activated and they switch to 100% power output for the set duration (this can be regulated during installation).

Results obtainable

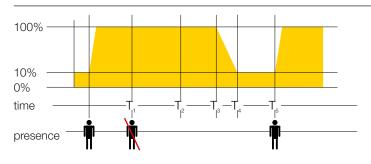
- Luminous flux of 10% at rest, 100% flux when presence is detected via relay sensor.
- Activation of 100% of luminous flux depending on the amount of natural light and/or presence of personnel.
- Extension of the presence detection area through the use of slave sensors.

Compatible luminaires


Any luminaire from the 3F Filippi range, as long as it is equipped with DALI ballast with Corridor Function (to be specified when ordering).

Components required

- Luminaire with activated DALI driver with Corridor Function.
- IR adaptor for smartphones (optional) for managing the sensor.
- ON/OFF IR programmer (optional).
- 1 on-off Sensor A or 1 on/off-ext Sensor A (range of operation 10 metres).


or

- 1 on-off Sensor B or 1 on/off-ext Sensor B (range of operation 24 metres). or
- 1 on-off CORR sensor or 1 on/off-ext CORR sensor (diameter of operation: tangential 40m, frontal 20m), can be used for installation heights up to 2.70m.
- In order to extend the presence detection area, it is possible to use: • 1 Sensor A SLAVE or 1 Sensor A SLAVE-ext.
- or • 1 Sensor B SLAVE or 1 Sensor B SLAVE-ext.
- or
- 1 Sensor CORR SLAVE or 1 Sensor CORR SLAVE-ext.

Operation graph

Wiring diagram

Legend:

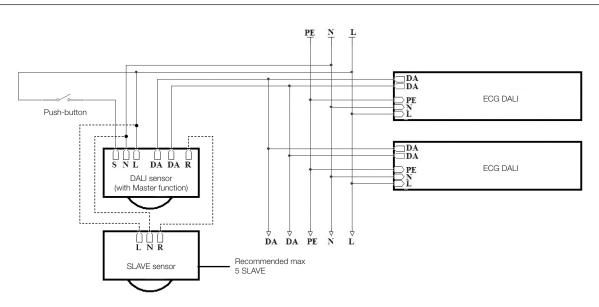
- $T_1 > T_2$ latency time managed by the sensor adjustable
- $T_2 > T_3$ latency time managed by the driver 120 seconds
- $T_3 > T_4$ luminous flux decrease time 32 seconds
- $T_4 > T_5$ period of minimum luminous flux unlimited time

3F Smart Dimming

Installation Reference - Office / Open space

Up to 50 drivers/ballasts - Installation height up to 4 metres

Results obtainable

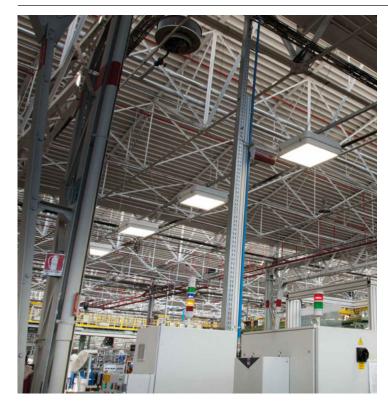

- Manual ON/OFF/regulation of the luminaire via optional remote control or push-button.
- Automatic regulation of the luminaire's light flow depending on the amount of natural light and/or presence of personnel.
- Extension of the presence detection area through the use of slave sensors.

Compatible luminaires

Any luminaire from the 3F Filippi range, as long as it is equipped with DALI ballast. On request, can also be implemented with 1-10V components (drivers and sensors).

Components required

- 1 commercially available push-button (optional).
- Luminaire with DALI driver.
- 1 DALI Sensor A (recessed) or DALI ext Sensor A (ceiling mount).
- IR adaptor for Smartphones (optional).
- DALI IR programmer (optional).
- DALI IR remote control (optional).
- 1 Sensor A SLAVE or 1 Sensor A SLAVE-ext (optional for extending the presence detection area).



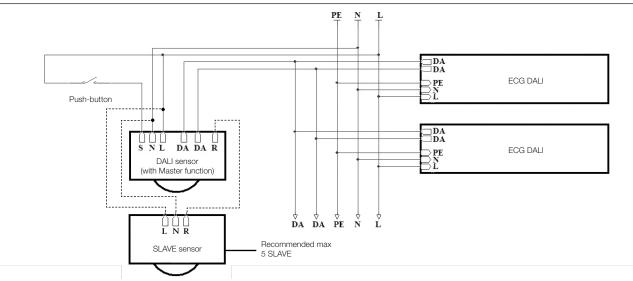
Note: to deactivate presence sensing, jump R and L directly on the sensor (with master function).

Wiring diagram

Installation Reference - Industrial / Gymnasiums

Up to 50 ballasts - Installation height between 4 and 9 metres

Results obtainable


- Manual ON/OFF/regulation of the luminaire via optional remote control or push-button.
- Automatic regulation of the luminaire's light flow depending on the amount of natural light and/or presence of personnel.
- Extension of the presence detection area through the use of slave sensors.

Compatible luminaires

Any luminaire from the 3F Filippi range, as long as it is equipped with DALI ballast. On request, can also be implemented with 1-10V components (drivers and sensors).

Components required

- 1 commercially available push-button (optional).
- Luminaire with DALI driver.
- 1 DALI Sensor B (recessed) or DALI ext Sensor B (ceiling mount).
- IR adaptor for Smartphones (optional).
- DALI IR programmer (optional).
- DALI IR remote control (optional).
- 1 Sensor B SLAVE or 1 Sensor B SLAVE-ext (optional for extending the presence detection area).

N.b.: to deactivate presence sensing, R and L must be jumped directly on the sensor.

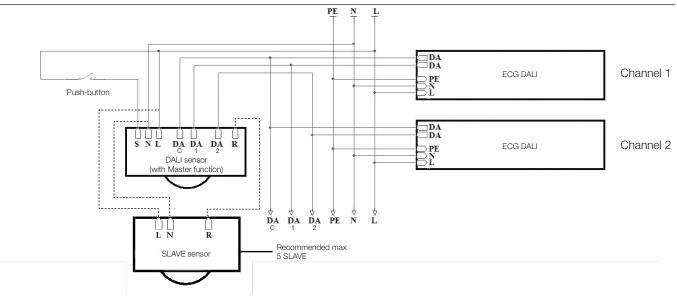
Wiring diagram

3F Smart Dimming

Installation Reference - School classroom

Up to 50 ballasts

Results obtainable

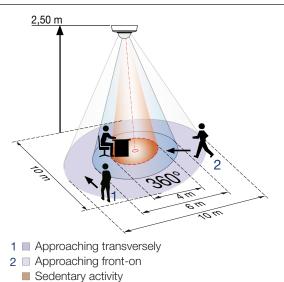

- Manual ON/OFF/regulation of the luminaire via optional remote control or push-button.
- Automatic regulation of the luminous flux of the luminaires in a differentiated manner depending on the natural light present in two different areas: the sensor measures the brightness at two points (for example, near the window and in the darkest area of the classroom), and adjusts the fluxes of the luminaires lighting those areas as a consequence.
- Extension of the presence detection area through the use of slave sensors.

Compatible luminaires

Any luminaire from the 3F Filippi range, as long as it is equipped with DALI ballast. On request, can also be implemented with 1-10V components (drivers and sensors).

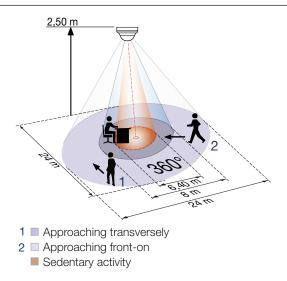
Components required

- 1 commercially available push-button (optional).
- Luminaire with DALI driver.
- 1 Dual-DALI Sensor B.
- IR adaptor for Smartphones (optional).
- DALI IR programmer (optional).
- DALI IR remote control (optional).
- 1 Sensor B SLAVE or 1 Sensor B SLAVE-ext (optional for extending the presence detection area).

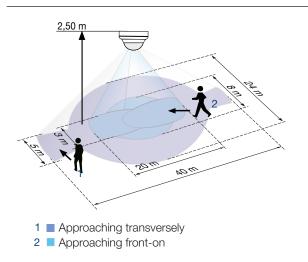


 $\ensuremath{\textbf{N.b.:}}$ to deactivate presence sensing, R and L must be jumped directly on the sensor.

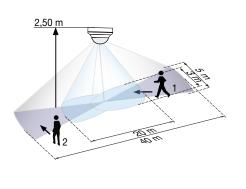
Wiring diagram


Detection field

Sensor A DALI, Sensor A ON/OFF, Sensor A SLAVE


Range	of action (circu	lar detection area	a) with T=18°
Mounting height	Fixed position	Transverse movement	Approaching the detector front-on
2.00 m	r=1.60	r=4.00	r=2.50
2.50 m	r=2.40	r=5.00	r=3.00
3.00 m	-	r=6.00	r=3.70
3.50 m	-	r=7.00	r=4.30
4.00 m	-	r=8.00	r=4.80
4.50 m		r=9.00	r=5.40
5.00 m	-	r=10.00 m	r=6.00

Sensor B DALI, Sensor B ON/OFF, Sensor B SLAVE, Sensor B Dual



Range	of action (circu	ar detection are	a) with T=18°
Mounting height	Fixed position	Transverse movement	Approaching the detector front-on
2.00 m	r=2.60	r=8.50	r=3.20
2.50 m	r=3.20	r=12.00	r=4.00
3.00 m	r=3.80	r=14.50	r=4.80
3.50 m	r=4.50	r=17.00	r=5.50
4.00 m	-	r=19.50	r=6.80
4.50 m	-	r=22.00	r=7.20
5.00 m	-	r=24.00 m	r=8.00
10.00 m	-	r=24.00 m	r=8.00

Sensor Corr ON/OFF, Sensor Corr DALI

Sensor Corr Slave

1 Approaching the detector front-on2 Approaching the detector diagonally

3F Smart Dimming

Accessories

CE

CE

CE

CE

IP20

Presence detector On/Off, recessed, single channel (normally open, potential free) with a maximum load of 2 kW (with power factor 0.9), can be controlled remotely, circular detection area Ø 10 m, with Master function. Integrated twilight sensor. IP20 protection degree.

Code	Item	
A3013	Sensor A on/off	

On request: programming with remote control code A3023 or with smartphone via accessory code A3022.

IP20

Presence detector On/Off, recessed, with one DALI interface, can be controlled remotely, circular detection area Ø 10 m, with Master function. Integrated light sensor for automatic constant light control. Drive up to 50 DALI drivers. IP20 protection degree.

Code	Item
A3011	Sensor A DALI

On request: programming/regulation with remote control code A3020 and A3021 or with Smartphone via accessory code A3022.

IP20

Recessed Slave presence detector, compatible with sensors with Master function, such as Sensor A DALI and Sensor A on/off, circular detection area Ø 10 m. IP20 protection degree.

A3025 A SLAVE - Sensor

Item

Code

IP20

IP54

Presence detector On/Off, ceiling mounted, single channel (normally open, potential free) with a maximum load of 2 kW (with power factor 0.9), can be controlled remotely, circular detection area Ø 10 m, with Master function. Integrated twilight sensor. IP20/IP54 rated (exposed part).

Code	Item	
A3014	Sensor A on/off-ext	

On request: programming with remote control code A3023 or with smartphone via accessory code A3022.

Presence detector, ceiling mounted, with one DALI interface, can be controlled remotely, circular detection area Ø 10 m, with Master function. Integrated light sensor for automatic constant light control. Drive up to 50 DALI drivers. IP20/IP54 rated (exposed part).

Code Item A3012 Sensor A DALI ext

On request: IP54 cap code A3024, to obtain total IP54 rating. On request: programming/regulation with remote control code A3020 and A3021 or with Smartphone via accessory code A3022.

IP20

IP54

CE

CE

CE

CE

Ceiling mounted Slave presence detector, compatible with sensors with Master function, such as Sensor A DALI and Sensor A on/off, circular detection area \emptyset 10 m. IP20/IP54 rated (exposed part).

Code	Item
A3026	A SLAVE-ext - Sensor
On request:	IP54 cap code A3024, to obtain total IP54 rating.

IP20

Presence detector On/Off, recessed, single channel (normally open, potential free) with a maximum load of 2 kW (with power factor 0.9), can be controlled remotely, circular detection area Ø 24 m, with Master function. Integrated twilight sensor. IP20 protection degree.

Code	Item
A3018	Sensor B on/off

On request: programming with remote control code A3023 or with smartphone via accessory code A3022.

IP20

Presence detector On/Off, recessed, with one DALI interface, can be controlled remotely, circular detection area Ø 24 m, with Master function. Integrated light sensor for automatic constant light control. Drive up to 50 DALI drivers. IP20 protection degree.

Jode	item
43017	Sensor B DALI

A

On request: programming/regulation with remote control code A3020 and A3021 or with Smartphone via accessory code A3022.

IP20

Presence detector, recessed, with two DALI interfaces, can be controlled remotely, circular detection area Ø 24 m, with Master function. Two integrated light sensors for automatic constant light control. Drive up to 50 digital electronic drivers for each channel. IP20 protection degree.

Code	Item
A3015	Sensor B Dual-DALI

On request: programming/regulation with remote control code A3020 and A3021 or with Smartphone via accessory code A3022.

Recessed Slave presence detector, compatible with sensors with Master function, such as Sensor B DALI and Sensor B on/off, circular detection area Ø 24 m. IP20 protection degree.

Code Item A3027 B SLAVE - Sensor

IP54

CE

Presence detector On/Off, ceiling mounted, single channel (normally open, potential free) with a maximum load of 2 kW (with power factor 0.9), can be controlled remotely, circular detection area Ø 24 m, with Master function. Integrated twilight sensor. IP20/IP54 rated (exposed part).

Code	Item
A3019	Sensor B on/off-ext

On request: IP54 cap code A3024, to obtain total IP54 rating. On request: programming with remote control code A3023 or with smartphone via accessory code A3022.

Presence detector, ceiling mounted, with one DALI interface, can be controlled remotely, circular detection area Ø 24 m, with Master function. Integrated light sensor for automatic constant light control. Drive up to 50 DALI drivers. IP20-54 protection degree for the exposed part.

Code	Item	
A3016	Sensor B DALI ext	

CE IP20 IP54 On request: IP54 cap code A3024, to obtain total IP54 rating. On request: programming/regulation with remote control code A3020 and A3021 or with Smartphone via accessory code A3022.

Ceiling mounted Slave presence detector, compatible with sensors with Master function, such as Sensor B DALI and Sensor B on/off, circular detection area Ø 24 m. IP54 protection degree.

Code Item A3028 B SLAVE-ext - Sensor

IP20

CE

Presence detector On/Off, recessed, special for corridors, single channel (normally open, potential free) with a maximum load of 2 kW (with power factor 0.9), can be controlled remotely, detection area tangential \emptyset 40 m, frontal \emptyset 20 m, with Master function. Maximum installation height 2.70 m. Integrated twilight sensor. IP20 protection degree.

Code	Item
A3029	Corridor on/off - Sensor

On request: programming with remote control code A3023 or with smartphone via accessory code A3022.

Presence detector with one DALI interface, recessed, special for corridors, can be controlled remotely, transverse detection area Ø 40 m, with Master function. Maximum installation height 2.70 m. Integrated light sensor for automatic constant light control. Drive up to 50 DALI drivers. IP20 protection degree.

0000	Rom
A3031	Corridor DALI - Sensor

ltom

Code

On request: programming/regulation with remote control code A3020 and A3021 or with Smartphone via accessory code A3022.

IP20

Recessed Slave presence detector, special for corridors, compatible with sensors with Master function, such as Sensor Corr DALI and Sensor Corr on/off, tangential detection area Ø 40 m, frontal Ø 20 m. IP20 protection degree. Maximum installation height 2.70 m.

Code Item A3033 Corridor SLAVE - Sensor

Presence detector On/Off, ceiling mounted, special for corridors, single channel (normally open, potential free) with a maximum load of 2 kW (with power factor 0.9), can be controlled remotely, detection area tangential Ø 40 m, frontal Ø 20 m, with Master function. Maximum installation height 2.70 m. Integrated twilight sensor. IP54 protection degree.

On request: programming with remote control code A3023 or with smartphone via accessory code A3022.

Code	Item	
A3030	Corridor on/off-ext - Sensor	

CE **P**54

IP20

IP54

CE

Presence detector with one DALI interface, ceiling mounted, special for corridors, can be controlled remotely, transverse detection area Ø 40 m, with Master function. Maximum installation height 2.70 m. Integrated light sensor for automatic constant light control. Drive up to 50 DALI drivers. IP20/IP54 rated (exposed part).

Code	Item	
A3032	Corridor DALI-ext - Sensor	

On request: IP54 cap code A3024, to obtain total IP54 rating. On request: programming/regulation with remote control code A3020 and A3021 or with Smartphone via accessory code A3022.

Ceiling mounted Slave presence detector, special for corridors, compatible with sensors with Master function, such as DALI Corr sensor and Corr sensor on/off, tangential detection area Ø 40 m, frontal Ø 20 m. IP54 protection degree. Maximum installation height 2.70 m.

Code	Item
A3034	Corridor SLAVE-ext - Sensor

CE

IR remote control for programmer, compatible with DALI sensors (incompatible with On-Off and Slave sensors).

Code Item A3020 Programmer IR DALI

IR remote control for user, compatible with DALI sensors (incompatible with On-Off and Slave sensors).

CodeItemA3021Remote controller IR DALI

CE

IR adapter for Smartphones, compatible with all programmable sensors. Free App available for Android and iOS devices.

Code	Item
A3022	IR-Adapter for Smartphone

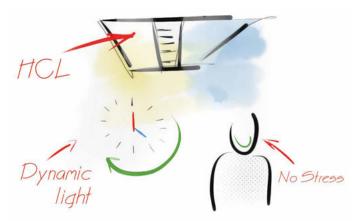

CE

IR remote control for programming on/off sensors incompatible with DALI and Slave sensors). Code Item

A3023 IR on/off programmer

CE

Cap for ceiling mounted sensors, to obtain IP54 rating (total) for H 15 mm. Compatible with the following sensors:


- Sensor A DALI ext code A3012
- Sensor A on/off ext code A3014
- Sensor B DALI ext code A3016
- Sensor B on/off ext code A3019
- Sensor A SLAVE ext code A3026
- Corr Sensor DALI ext code A3032

Code	Item
A3024	IP54 fixing

3F HCL for Tunable White fixtures

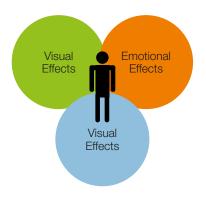
System to vary colour temperature

People and their requirements have always been at the centre of our attention when designing our products.

Thanks to the new HCL luminaires, ensuring the comfort and health of the individual finds a new point of reference thanks to a solution which can actively stimulate biorhythms.

Natural light is one of the most important sensory stimuli for our body, and it also has an enormous effect on our mental and emotional state. For this reason, HCL luminaires have been designed to replicate natural light, taking the following requirements into consideration:

- Dynamism of light over time.
- Dynamism of colour temperature over time.
- Symmetrical light diffusion.
- Freedom of use for each individual.


The latest research in the sector has shown that those who work in environments with windows and good lighting are exposed to 173% more natural light during working hours and sleep on average 46 minutes longer (each night) compared to others, as they are less affected by problems such as insomnia. The result is a general increase in well-being.

There is ever-increasing evidence to support the fact that exposure to light during the day, particularly during the morning, is beneficial to health in terms of its effects on mood, mental lucidity and the metabolism:

Individual well-being is strictly personal, and so this luminaire is managed by a control unit (external and not included with the product) which provides everyone the possibility to create "their own light cycle" which best meets their requirements.

If you require more information, do not hesitate to contact our Sales Network or our Technical Offices.

Light influences mood and can trigger both positive and negative emotions.

HCL luminaires allow users to change both intensity and temperature of the emitted light, thus improving comfort and increasing the feeling of well-being.

A third photoreceptor in the human eye was discovered in 2001, which is responsible for our light response for regulating our biological clock and circadian rhythms.

Recent studies (performed by Lighting Europe) have shown that HCL luminaires improve concentration as well as the safety and efficiency of the workplace or training and school environments. For this reason, 3F Filippi has decided to create a series of new luminaires to help people feel better by putting their requirements at the centre of the design, also from a biological point of view.

In order to take proper advantage of these luminaires, it is essential that:

- The artificial light follows the cycle of the natural light.
- The management systems can also be manually adjusted, according to each user's sensitivity.
- Right from the lighting design stage, factors such as exposure of the environment to natural light, the users' biological situations and the tasks they must perform are taken into account.
- Always consult a qualified and reliable lighting designer.

Biorhythms depend on signals which derive from the quantity and the quality of natural light and the environmental colour temperature:

	3000K	4000K	5000K	6500K	
 Stimulation	to relax			 Stimulation to be act	tive

The brain is stimulated:

By cold light present during daylight hours (6,500 K) which allows us to be more active and concentrate harder.
By warm light present in the morning and evening (2,700K) which induces a greater level of relaxation.

Thanks to HCL technology, everyone can improve their sleep cycles, mental and emotional states by themselves.

HCL technology allows for:

Comfort and well-being, particularly in environments in which a lot of time is spent.

Lighting which follows the **natural** daylight cycle.

Less **environmental stress**, which reduces physical and mental exertion.

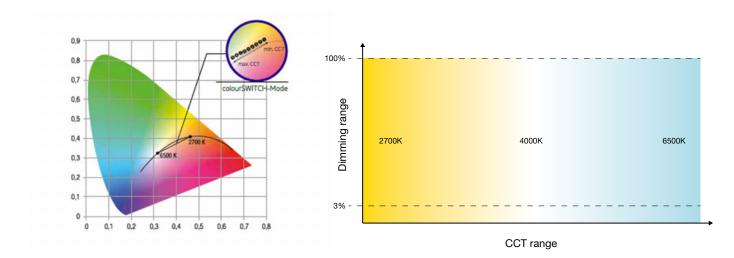
io,		6
800	13.00	20.03
-	-	-

Automatic and/or manual management of the light intensity and colour temperature.

Characteristics:

- Control of variation of the white colour temperature (Tunable-white).
- Simulated changing of daylight over the course of the day.
- Modulation of the colour temperature along the Planck curve from 2700K to 6500K.
- Colour rendering index CRI >80.
- Colour tolerance: 3 MacAdam ellipses.
- LED source luminous efficiency up to 155 lm/W.

3F HCL for Tunable White fixtures


Fixtures available

- L 323x10W LED DT8 TW LGS 596x596
- 3F Diagon 25W DT8 TW SOFT UGR 596x596
- 3F Diagon 25W DT8 TW SOFT UGR 621x621
- 3F Diagon P 25W DT8 TW SOFT UGR 596x596
- 3F Travetta LED 2x22W DT8 TW 2MG L1590

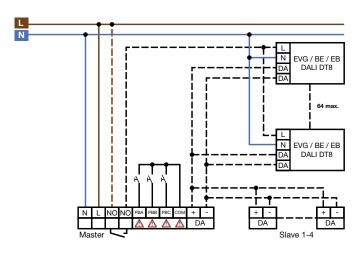
2-channel DT8 driver - constant colorimetric on all attenuation levels

Second generation drivers provide even more room for maneuver in terms of design with the advanced adjustment range from 3% to 100%.

Color temperatures are precisely controlled and with infinite variability, while the drivers reliably maintain the selected range between all attenuation levels.

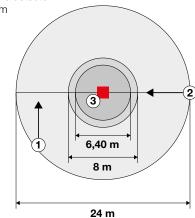
The TW Tunable White fixtures can be regulated using three different systems: Wired automatic control system 3F Bluetooth control system

Wired control system


Features

The HCL DT8 presence and light sensors allow the management of a group of Tunable White (TW) devices, up to a maximum of 64 drivers.

The sensors have the following characteristics:


- Integrated presence detector capable of controlling up to 64 DALI DT8 devices;
- Integrated brightness detected for automatic adjustment of the luminous flux of the luminaires, based on the supply of natural light;
- Integrated clock for automatically adjusting the color temperature following the circadian rhythm by programming from the free APP; • n. 3 output channels for HCL control of 3 groups of TW devices;
- n. 1 DALI output channel;
- n. 1 relay output channel (max 300W LED).
- n. 3 NO button inputs: 1 button to adjust the luminous flux of the HCL channel, 1 button for DALI channel control and 1 button for relay channel control.

Electrical connection diagram

Detection scheme

- 1. Diagonal approach to the detector
- 2. Frontal approach to the detector
- 3. Fixed position: h 2,5 m

Wired control systems

Accessories

Recessed presence detector with integrated clock for the management and control of Tunable White (TW) devices, remotely controllable, circular detection area Ø 24 m, equipped with Master function. Integrated light sensor for automatic regulation of constant light n. 3 output channels for HCL control of n. 3 groups of TW appliances, n. 1 DALI output channel, n. 1 relay output channel (max 300 W LED). Drive up to 64 DALI drivers.

Code Item A3035^{NEW} Sensore HCL DT8

IP20

Ceiling presence detector with integrated clock for the management and control of Tunable White (TW) devices, remotely controllable, circular detection area Ø 24 m, equipped with Master function. Integrated light sensor for automatic regulation of constant light n. 3 output channels for HCL control of n. 3 groups of TW appliances, n. 1 DALI output channel, n. 1 relay output channel (max 300 W LED). Drive up to 64 DALI drivers.

Code	Item
A3036 NEW	Sensore HCL DT8-ext

IR adapter for Smartphones, compatible with all programmable sensors. Free App available for Android and iOS devices.

Code	Item	
A3022	IR-Adapter for Smartphone	

Mandatory accessory for programming the HCL DT8 sensors.

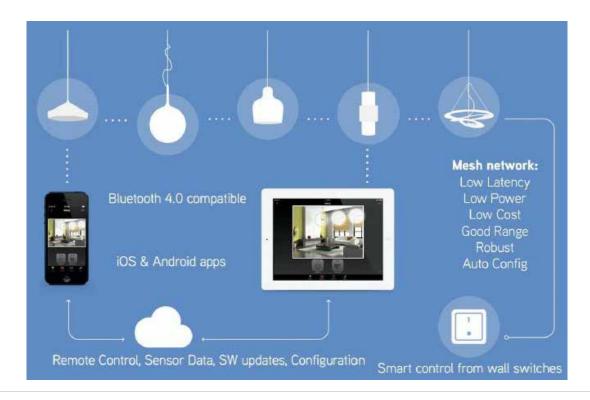
CE

CE

3F Bluetooth control system

Characteristics

3F Bluetooth is the completely wireless regulation system that can manage DALI and Tunable White DALI DT8 fixtures. Thanks to the intuitive simplicity of the application developed for iOS and Android all you need is a mobile phone or another mobile device and anyone can create and manage their own lighting system autonomously by controlling fixtures individually or in groups according to the needs and functions required.


It can also be managed through standard handsets using specific accessories.


Functions

With the 3F Bluetooth management system it is possible to create a "mesh network" of fixtures which can be managed using mobile devices or handsets:

- Turn the fixtures on/off
- Regulate luminous intensity
- Regulate colour temperature
- Configure lighting scenes
- Configure animated scenes (dynamic scenes or different sequences of scenes).
- Timer Function: set fade times between scenes and animated scenes, programme the date and duration
- Geolocation: by activating this function it is possible to programme to turn the fixtures on/off that can be associated automatically to sunrise and sunset independently of the time of year (astronomical clock).
- Cloud Function: allows to share different fixtures and access the network remotely. Remote access one fixture which acts as an access point while the others connect via the Cloud.

3F Bluetooth control system

BLE DALI IP67 1E3048 radio module to control individual fixtures externally equipped with a DALI driver. The module needs to be positioned in order to receive the radio signal. The distance from the lighting fixtures can

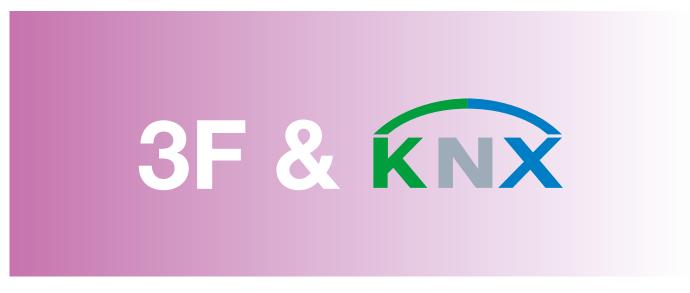
Extender IP67 1E3049, allows for Bluetooth control with DALI interface. Generates a local DALI bus with the capacity to drive up to 64 devices. Allows for control of groups of fixtures in outdoor applications.

Code	Item
A3097	EXTENDER IP67

BLE radio control, flat four button command with a 2.4 GHz radio transmitter, standard Bluetooth Low Energy, energy harvesting power supplied by the integrated electrodynamic generator, optional version with dedicated colour buttons Eikon 20506 or 20506.2, Arké 19506 or 19506.2 or Plana 14506 or 14506.2 - 2 modules.

Code Item

A3099 Radio BLE command


Arkè support kit, 2 buttons (4 switches) and a terminal panel to control the transmitter (code A3099).CodeItem

A3100 Kit Arkè support plate keys for A3099

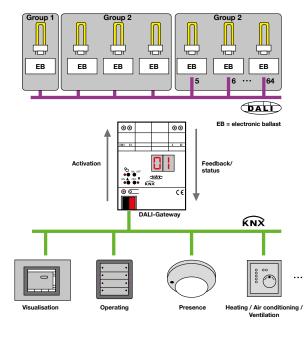
CE

3F & KNX

Building automation with KNX systems.

Characteristics

KNX is a worldwide open standard which meets the most important European and international standards and offers automated and decentralised management of technological systems for: commercial, industrial, public and office buildings, schools and many other structures besides.

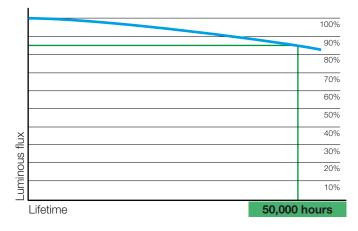

KNX can be used in all applications and for control functions in buildings: from lighting to blinds, security, HVAC supervision, control of plumbing and alarms, energy management, electricity meters, domestic appliances, audio systems etc.

KNX improves comfort and security, as well as providing a strong contribution to energy savings (up to 50% for lighting and heating management) and to reducing environmental impact.

The KNX system can be used both in new and existing buildings. KNX installations can be easily expanded and adapted to meet new requirements, quickly and with minimal financial investment (for example when new tenants enter a commercial building).

Example connection diagrams:

3F Filippi really believes in this standard, and it is for this reason that we offer a range of luminaires equipped with DALI ballasts which are able to interface with KNX systems seamlessly: the connection between the network and the luminaire occurs via gateways which allow information and commands to be transmitted via the LAN network.


3F CLO

Time passes, the light stays the same

Introduction

The initial luminous flux of light sources diminishes gradually over time.

The percentage of decay of the luminous output referred to the hours of useful operation (50,000 hours) is determined with the parameter "L". LED sources classified as L85 (*) when they reach 50,000 hours will supply 85% of the initial output.

(*) data extrapolated from LM-80 (IES - Illuminating Engineering Society of North America) tests, performed as per standards after 6,000 hours of operation and calculated on the basis of the IESNA TM-21-11 guideline "Projecting Long Term Lumen Maintenance of LED Light Sources".

The task of the lighting designer is to look at all possible systems that can achieve energy savings for the final customer. 3F Filippi has always worked alongside professionals in the industry to find and transmit knowledge for a greener future.

What is CLO?

CLO is the acronym of Constant Light Output which is a function of the most evolved drivers to allow fixtures to emit constant output, following natural decay of LED source due to ageing.

Fixtures equipped with this function initially emit, and subsequently in a constant way, a luminous output decreased by 15% in consideration of the decay of the light.

At the same time the fixture has a reduced initial energy consumption (on average 15%) and an increasing regular consumption until it reaches the declared 100%.

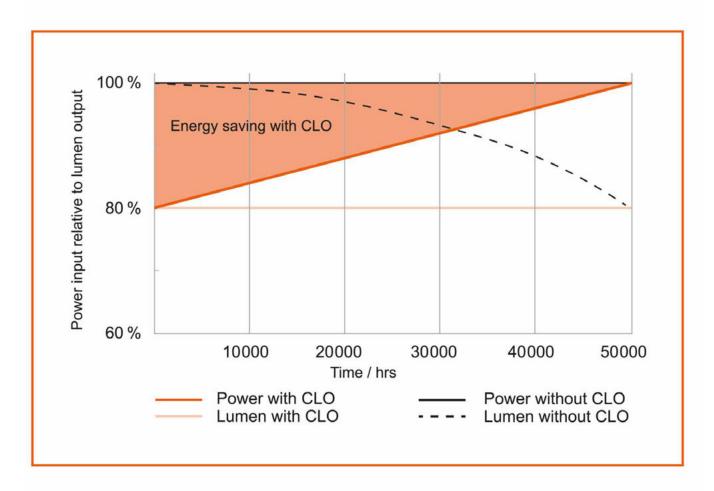
The datasheets of fixtures equipped with this technology will show the initial Power and the final Power (for normal size electrical system)

What are the advantages of CLO?

Constant L100 luminous output for the entire life of the fixture.

Thanks to this technology adopted by 3F Filippi, it is no longer necessary to oversize from the first day of use the lighting system (on average 15%) as was done in the past, with an unprovoked energy expenditure.

This makes it possible to design lighting projects with K=1.00 maintenance factors, given that the fixture considers this integrated decay factor right from the first time it is turned on.


Energy savings

The drivers are designed in the Company to feed the LED sources initially at reduced power to then increase gradually over time. Using the CLO function the energy savings that can be achieved over the life of the fixture is around 10% without any manual or system maintenance. You save simply without realising it.

CLO and lighting design

The light fixtures will be constant throughout their entire life.

Drivers with the CLO function are able to compensate for the decay in luminous output of the LED sources and avoid output peaks/ excess power at the beginning of the installation while maintaining the required luminance values constant over time. Energy consumption will increase over time to reach maximum consumption which would normally occur when first turned on, only after 50,000 operating hours.

Lighting levels required by regulations are ensured from the first to the last day without wasting any energy.

3F Wireless

Wireless management and regulation of lighting systems

Introduction

Artificial lighting involves high energy consumption, due to the power used and the number of hours the system is switched on.

Our LED luminaires, which are particularly efficient, allow existing systems to be updated, significantly reducing the power used and thus guaranteeing a fast return on investment. In order to achieve further energy savings, and therefore more significant economic advantages over the entire life cycle of the system, we recommend the use of control systems which are able to regulate the brightness of the luminaires on the basis of the natural light and presence of persons.

Replacing simply the lighting bodies without the need to run new cables for regulation of the luminaires is possible using a wireless system to let the luminaires communicate, and with appropriate sensors.

For this, 3F Filippi offers 3F Wireless technology, which allows luminaires and sensors to communicate via Radio Frequency signals using 868 MHz Mesh Network technology.

Characteristics

Thanks to the 3F Wireless control modules, it is possible to manage DALI digital dimmable luminaires and sensors directly via wireless, without running new cables for regulation of the luminaires.

The radio communication system is reliable and secure, protected against interception by robust encryption algorithms.

Advantages

3F Wireless technology is particularly suitable for retrofitting to existing networks which do not have regulation systems; by simply installing new LED luminaires with wireless kits, without modifying the existing electrical system, it is possible to obtain a management and regulation system with features such as:

• Cloud Lighting

Software allows management of the systems both via local networks (intranet) and via cloud architecture, based on a web (internet) connection.

Monitoring of consumption

The system is able to control all types of luminaire and monitor the system's power consumption. By using the various hardware and software solutions available, it is possible to incorporate the system into Building Automation systems.

Mesh Network

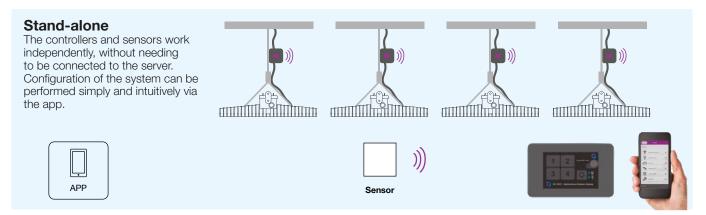
Communication between the 3F Wireless modules (luminaires, sensors, servers) uses Radio Frequency signals with 868 MHz Mesh Network technology: an extremely robust and secure solution thanks to encryption of the transmitted data. Each wireless node receives, regenerates and retransmits the commands received in order to extend the range of the entire system.

• Supervision and Control

Software allows configuration, monitoring and control of each integrated system and each connected device, both via manual operations and automatic algorithms, based on a calendar, events and conditional logic.

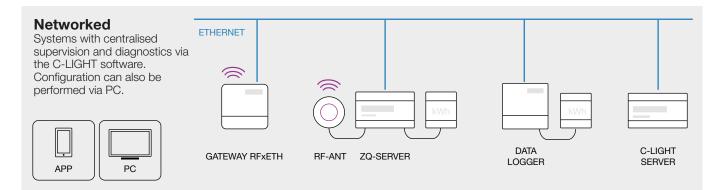
Smartphone configuration

Any mobile device (tablet or smartphone) can be used to configure and control the sensors. The integrated application (Web-App) is displayed via the device's web browser, without the need to install any app on the device.


Savings

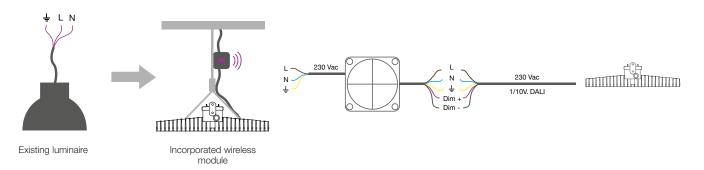
The advantages are real and tangible in these aspects for the end customer:

- Installation: the luminaires and sensors are connected via wireless, without running new cables for regulation of the luminaires; this means not spending more money for electrical supplies and installation labour.
- Integration with existing installations: the same lighting connections, using standard electrical wiring: this means not wasting money adapting the systems.
- Energy savings: the use of sensors combined with installation of analogue or digital dimmable luminaires permits significant energy savings for the end customer, calculated as being up to 80% compared to a solution with ON/OFF sensors.
- Quicker return on investment: savings in the materials and hours of labour for installation and/or updating of the existing systems, combined with the savings offered by the dimmable systems, provides a fast return on investment.


System architecture - What components are required?

Stand-alone. Each luminaire is equipped with a wireless control module which receives commands directly from the brightness and presence sensor. The entire wireless system is configured via BLE RF Gateway and Smartphone with dedicated APP.

Networked. Depending on requirements, the system can also be integrated with the servers which manage all necessary information, and the following can be connected to the system:


- Buttons/switches programmed to bring up control scenes.
- Energy meters to monitor the system's power consumption.
- Control device: a switch and/or a PC can be connected via the Ethernet interface, or even a Wifi Access Point to allow use of a mobile device (tablet, smartphone).

How to connect?

Management of the regulation system without modifying the existing system.

One of the fundamental advantages of using a wireless control system is not having to modify the existing electrical system or, in the case of a new installation, to avoid running dedicated cables for regulation of the luminaires. One-by-one replacement of the individual lighting bodies therefore does not require any additional connection beyond the power supply line.

3F Wireless Accessories

|--|

IP66 polypropylene, RAL 7035 colour box, dimensions 110x110x66 mm, to house the RFxDRIVER wireless control module.

Code Item

A3059 IP66 box for wireless module

DALI-SENSE-BMS manages a group of DALI/DALI DT8 fixtures that are cabled in automatic and manual mode using integrated brightness and movement sensors. DALI-SENSE-BMS works in an interconnected mode with all other components in the system and can therefore be used to create multi-group applications and can be centralised via Ethernet with BMS and third-party software.

CodeItemA3060DALI-SENSE-BMS sensor

SERVER to control cables DALI fixtures (max 64 drivers) and wireless 868 MHz. Includes the web-based xSERVER Setup app to configure the system. Ethernet interface. Powered DALI interface. 4 digital inputs, 4 digital outputs. RS485 interface. USB Input. SMA connector for external antenna. 24 Vdc power astronomical clock. DIN rail installation (L=105 mm).

Code Item A3062 ZQxSERVER Server

Gateway, module for centralisation of 868 MHz wireless nodes on the TCP/IP network. Ethernet interface. Integrated antenna. 230 Vac power supply. IP54.

Code	Item
A3063	RFxETH Gateway

App free to configure wireless 868 MHz ZETAQLAB devices, available for Apple (iOS) and Android smartphones and tablets.

DALI-SENSE App allows you to configure the operating parameters and working methods of the wireless multisensory DALI-SENSE and to manage the DALI fixtures connected manually. The DALISENSE App is compatible with smartphones and tablets with a Bluetooth Low Energy interface with Android or iOS operating systems and can connect directly with the DALISENSE sensors using a Bluetooth LE interface.

Software for local (intranet) and remote (internet) systems management that makes it possible to configure, monitor and control all integrated systems and all fixtures connected through manual operations and by using automatic algorithms based on calendar events and conditional logic. The software also allows to archive and export data relating to energy consumption and carry out automatic tests on Emergency devices and UPS, allowing to export the register of various activities, as prescribed by current regulations. For more information contact the headquarters or regional offices.

Infopoint

3F LED Technology
3F LED Technology
Aspects to consider when choosing an LED luminaire
Glossary
LED luminaire luminous fluxes in Emergency mode
Lighting engineering
Lighting engineering
Lighting engineering calculation software
Lighting calculations
UNI EN 12464-1 - Illumination of indoor workplaces
12464-2: 2012 standard - Outdoor environments
UGR - Unified Glare Rating: glare control
Ball throw resistance certification (DIN 18032-3)
Electrical engineering and Electronics
Electrical engineering: Marks and Standards
Mechanics
Mechanics and Design
Mechanics: Marks and Standards
Resistance to corrosive substances
Analytical guide
Standards for correct use of products
Analytical guide

3F LED Technology

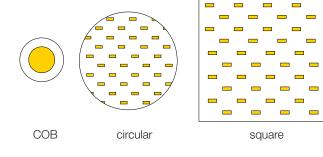
The real revolution is simplicity

Introduction

3F Filippi has put more than 60 years of experience in the field to work alongside its designers to create its new LED product line. And the difference is plain to see: in a market full of efficient light sources which is evolving and developing from one day to the next, 3F Filippi has decided to equip its luminaires with sources manufactured using the highest quality components available.

Unfortunately, one of the most common problems for lighting designers is the lack of a common standard to regulate how lighting companies advertise the performance of their products: these "tricks" hinder comprehension and comparability of products. For this reason, we have decided to shed light on the matter with this guide, by explaining LEDs and their most important characteristics simply yet exhaustively.

It is important to remember that the original technical features of LED lighting will change according to the operating conditions of each luminaire, and as such, it is incorrect to assume that every LED has the same characteristics in terms of service life, decrease of luminous flux (L) life expectancy (B), etc.

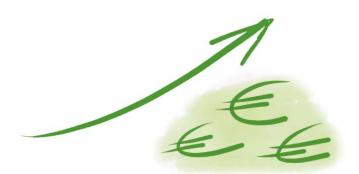

What is an LED?

LEDs are electronic components which emit light when an electrical current passes through them - the name, indeed, is an acronym for Light Emitting Diode. This is possible thanks to the optical properties of some semiconductors which emit photons when current is passed through them.

When a group of LEDs are installed on a printed circuit, this is known as an LED module. These modules can be of different shapes:

linear

What are the advantages of 3F LED technology?


Illuminotechnical

- Environmental
- High luminous efficiency LED, up to 200
- lm/W. • Immediate on.
- Control of the light flow, directed light. Absence of IR and UV components
- throughout the entire spectrum.
- Very long lifetime, > 50,000 hours (professional range).
- Lower power than traditional light sources with equal light output.
- Increased brightness.
- Adjustment of luminous flux from as low as 1%.

- Mercury free.
- Lower CO₂ emissions thanks to lower power.
- Less use of polluting materials in LED production.
- Less heat lost to the environment.

For the customer

- Reduction of energy costs.
- Reduction of maintenance costs.
- Fast return on investment.

Comparison chart between luminaires of the same length

	Total luminaire of luminaire	Total energy consumption	Annual saving
2x58W Fluorescent Wiring low-loss EEI=B2	141W	€102	0%
2x58W Fluorescent Wiring EEI A2 electronic wiring	109W	€78	24%
2x30W LED wiring ballast	70W	€50	51%
2x22W LED electronic ballast	49W	€35	66%

Table supposes electricity cost of €0.18 per kWh and total annual operation of 4,000 hours.

3F LED Technology

What are the aspects to consider when choosing an LED luminaire?

Reference standards

When studying and designing products, 3F Filippi refers to the most recent specific reference standards:

IEC 62722-2-1

Luminaire performance - Part 2-1: Particular requirements for LED luminaires

IEC 62717

LED modules for general lighting - Performance requirements

CIE 121

The Photometry and Goniophotometry of Luminaires

IEC TR 62778 Application of IEC 62471 for the assessment of blue light hazard to light sources and luminaires

IEC EN 62471 Photobiological safety of lamps and lamp systems

IEC EN 60598-1 Luminaires: General requirements and tests

REGULATION (EU) No. 1194/2012 sets out the rules for the application of European Parliament and European Council Directive 2009/125/EC on the specifics of environmentally-friendly design of directional lamps, lamps with light-emitting diodes and other relevant equipment.

Ideal operating temperature

In order for LED modules to be able to function correctly and ensure a long lifetime (>50,000 h), a limited drop in luminous flux over time (>L85) and high luminous efficiency (>140 lm/W), they must be able to correctly dissipate the heat they generate. The rated data for LEDs applies only if the junction temperature (Tj) is not exceeded. For this reason, at 3F Filippi , we perform a series of thermal and illuminotechnical tests on our LED luminaires, which allow us to achieve the best combination of heat dissipation, luminous flux and rated power.

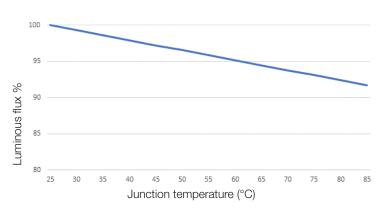
Ambient performance temperature "tq" (IEC 62722-2-1)

The "tq" value indicates the nominal ambient temperature recorded around the tested luminaire.

IEC standard 62722-2-1 "Luminaire performance - Part 2-1: Particular requirements for LED luminaires", requires the manufacturer to declare the technical performance data relating to the ambient temperature (tq) of +25°C. The luminous output, total power and the service life expectancy of fixtures indicated in official documents (web site, datasheets and photometric curves), therefore refer to the performance ambient temperature tq +25°C (according to EN13032 standard requirements by the 3F Filippi CTFs2 certified photometric laboratory).

In order for designers to evaluate the decays of different operating durations in advance and to set up maintenance programmes on the system 3F Filippi also includes the useful life (L) and life expectancy values (B) on the datasheet which refer to :

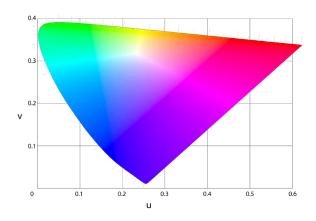
30,000 hours, at performance ambient temperature (tq+25°C);


50,000 hours, at performance ambient temperature (tq+25°C);

80,000 hours, at performance ambient temperature (tq+25°C);

100,000 hours, at performance ambient temperature (tq+25°C)

50,000 hours, at the maximum operating temperature (tmax) for luminaires with operating temperatures greater than tq + 25° C.


Thermal management

LED Junction temperature	Tj 25°C	Tj 60°C
Lumens	1000	950
System	178 lm/W	169 lm/W
Useful life (@50,000h)	L 100	L 85
Life expectancy	В0	B 10

To increase LED luminaires' reliability to the maximum, correct thermal dissipation is essential. The temperature is fundamentally important as it influences the luminosity and lifetime of the LED component. 3F Filippi pays great attention to this factor and as a result we develop luminaires which ensure optimum heat dissipation. To the left, a chart that correlates the performance values at different junction temperatures Tj (the operating temperature).

Colour rendering index (CRI)

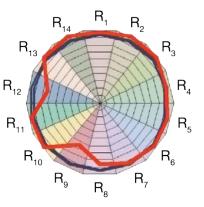
The colour rendering index is an important parameter for the performance of a light source, and evaluates the source's ability to provide an accurate perception of an object's real colours. All LEDs used by 3F Filippi have colour rendering Ra>80, with a typical average value of around 85. Where not already provided for, high colour rendering of Ra>90 can be requested on some products.

The CRI index of 100 has always been attributed to traditional incandescent sources, with a continuous spectrum but poor in shades of blue (therefore not very suitable for the enhancement of objects with dominant blue). The LED sources, despite having a continuous spectrum with peaks on specific colors, have a maximum CRI of 98. With LED technology it is also possible to combine LED sources with different colorimetric characteristics in the usual chip, in order to create a source rich in all wavelengths.

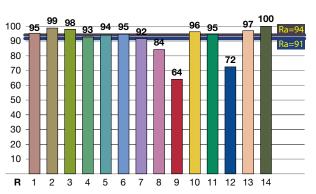
Below are the two main methods of measuring the color rendering of the light source or of what is emitted by the lighting luminaire (through its lenses, refractors or optical filters).

In the product documentation, the colorimetric characteristics are expressed both through the CRI method and through the TM30 method in order to provide the designer with all the information necessary for choosing the best light according to the specific need in the application to be illuminated.

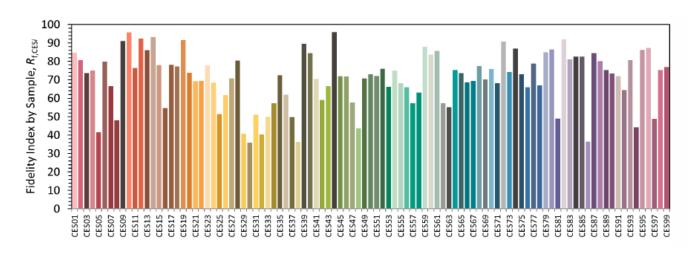
CRI method


CRI (Color Rendering Index) is a measurement method for assessing the ability to recognize a color, developed by CIE 13.3. The Ra parameter provides an average indication over the entire light spectrum and is obtained from the average of the color rendering indexes of 8 unsaturated colors (normally individually referred to as R1 to R8).

The less used parameter Re, on the other hand, provides a more precise average indication of the entire light spectrum obtained in fact from the average of the color rendering indexes of 14 colors (normally called individually from R1 to R14). The added reference colors are the 6 most common typologies in daily life.

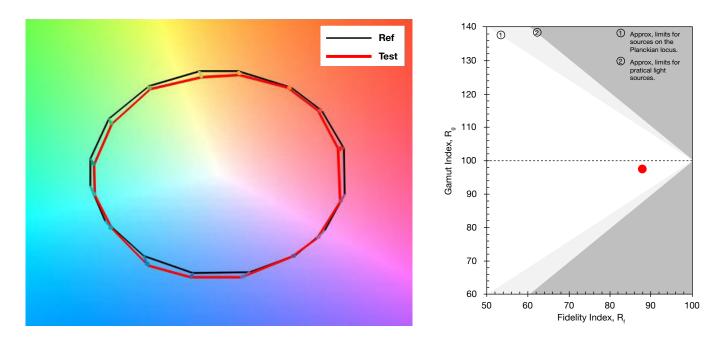

Index 100 means that the exposed color is recognized in a perfect way, as in sunlight, while lower indices indicate a greater growing difficulty in recognizing that particular color.

Auto: ref.illuminant -Planckian radiator CCT=4159 K



Auto: ref.illuminant - Planckian adiator CCT=4159 K

TM 30 method

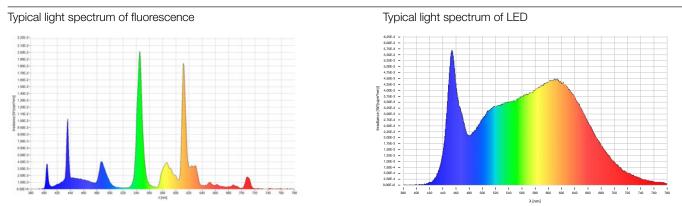

Very precise measurement method developed by the American IES (Illuminating Engineering Society), according to the TM30 as it is based on the color rendering comparison of 99 "color patches".

The spectroradiometric measurement provides the evaluation of two quantities:

- Rf Loyalty index
- Rg Saturation index (Gamut)

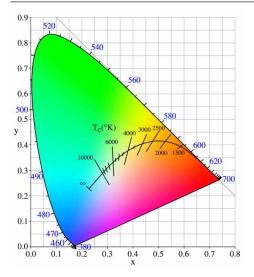
It also introduces important indications on the ability of the various sources to restore the fidelity of the materials and the color distortion diagram that represents the variations in hue and saturation of each source.

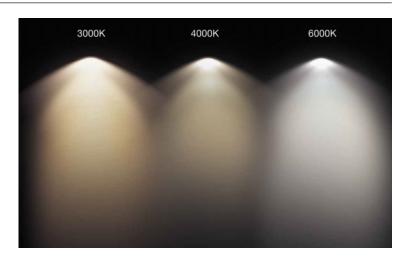
Rf (Fidelity) is similar to CRI but more precise and provides indications about the fidelity of color rendering. Its maximum value is 100.


Rg (Gamut) provides an indication of the source's ability to reproduce color saturation (amplitude of the color gamut). A value of 100 indicates that, on average, the test source does not change the hue and saturation of the ESCs, compared with the sample source.

A value> 100 indicates an increase in color saturation and therefore more vivid colors.

A value <100 indicates a decrease in saturation.


Combined with each other, "Rf" and "Rg" allow you to define the color rendering of a light source in a differentiated but more complete way.


Colorimetry and light spectrum

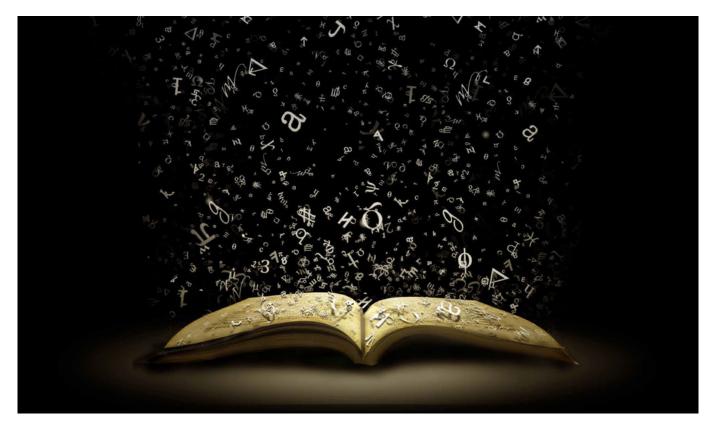
LED sources have a light spectrum with greater uniformity across the whole range of colours. Unlike traditional light sources, LEDs do not have interruptions in colour, thus ensuring complete and much-improved vision of the entire colour spectrum - very similar to that seen with natural light.

Correlated Color Temperature (CCT)

The CCT correlated color temperature is expressed in Kelvin and is defined on the basis of comparison with the light emitted by an ideal black body of reference at the different temperatures. A source will therefore have a color temperature of 4,000K, when the light emitted will have the same hue as that of the black body brought to the reference temperature of 4,000K. It is important to specify that CCT is totally independent of the color rendering of the source and does not provide any information on it.

A warm light normally hovers around 3,000K, a neutral white hovers around 4,000K while a cold white hovers around 6,000K.

Chemical compatibility


For LED luminaires, care must be taken to ensure chemical compatibility with the individual LED chips which, when exposed to given organic compounds, for example substances containing sulphur (S), chlorine (C) or other halogens (ammonia, diesel etc.) are liable to sulphuration (or oxidation) of the component.

Sulphuration can cause reductions in flow and useful lifetime, a change in chromatic co-ordinates and, in extreme cases, interruption of the electrical circuit and breaking of the junction.

Even for the LEDs inside IP65 lighting bodies, which also benefit from significant protection, this cannot be considered absolute. **On request: for particularly corrosive applications, LED modules with special protection can be used.**

3F LED Technology

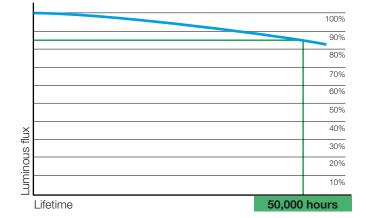
Glossary

Luminous flux

The luminous flux, or light flow, coming from the luminaire represents the quantity of light actually coming out of the device, as its value is defined having already taken into account the luminous efficiency of the luminaire.

Luminous efficacy of the luminaire

The luminous efficacy of the luminaire is the most useful parameter for the designer to determine the right lighting luminaire because provides the practical data between the light emission and the overall absorption of the lighting luminaire.


Relative humidity UR

For correct maintenance and operation of traditional LED modules over time, the maximum permissible humidity on the component is 85%.

For specific applications, UR95 LED modules may be required, guaranteeing correct operation at humidity values of up to 95%.

Lifetime (L value)

As previously mentioned, LED sources, unlike traditional lighting, do not tend to suddenly blow at the end of their lifetime; LEDs rather have a gradual reduction of their luminous output overtime before completely running out after a very long time.

The percentage decline of the luminous flux with reference to the useful number of operating hours (usually 50,000 hours) is therefore determined with the parameter "L". L85:50000h therefore means that, having reached 50,000 h of operation, the LED module still provides 85% of its initial luminous flux.

LED life expectancy (B value)

In LED ratings the value B, followed by a value normally between 10 and 50, indicates the quality of the component used as it defines the percentage of components which, after the normal 50,000 h has elapsed, maintain their rated luminous flux.

An LED with declared values of L85/B10=50,000h indicates that on reaching 50,000h, 90% (B10) of the components will have a residual luminous flux of at least 85% of the initial value (L85).

If, in the listed characteristics of the LED luminaire, the value B is not indicated, this is considered to be a B50 device - or in other words, 50% of the LEDs do not guarantee the average useful life value indicated.

We should clarify that this parameter is strongly influenced by the operating conditions of the LED inside the luminaire, and the result is therefore a combination of the quality of the component and good research.

LED failure rate (C value)

This value indicates the percentage of LEDs which are no longer operational at the end of their lifetime. This value can be indicated with two combinations:

- L85/B10/C0: 50,000 hours indicates that after 50,000 hours, the percentage of LEDs no longer working is 0%.
- L85/B10: 50,000 hours L0/C10: 200,000 hours indicates that after 200,000 hours, the percentage of LEDs no longer working is 10%.

All LEDs used by 3F Filippi have a failure rate C0 after 50,000 hours. If this value is not indicated, it should be considered C0.

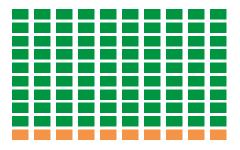
Colour tolerance (MacAdam ellipses) - SDCM

Measurement of the chromatic co-ordinates performed during production of the LED allows selection (known as Binning) to classify the LEDs on the basis of their chromatic differences.

This classification, performed via analysis of the so-called MacAdam ellipses (which express colour deviations on the XY axes), allows constant tonality to be obtained among the individual LEDs in the same group and an SDCM (Standard Deviation of Colour Matching) which can be classified as:

- With the value 1 there is no chromatic difference between the individual LEDs.
- With values 2 and 3 the difference is not visible to the human eye and the LEDs are considered of good quality.
- With a value of 4, the difference begins to become visible to the human eye.
- As the value increases, the difference is increasingly noticeable, and the type of application will dictate whether these differences in colouration in the LED group used are acceptable or not.

3F Filippi provides both the initial value and the value over time. Indeed, due to the consumption of phosphors present in the LEDs, the colour tolerance can change over time.


All LEDs used by 3F Filippi always have an initial colour tolerance value of less than 3 MacAdams SDCM, and a colour tolerance value over time of less than 3.

Energy efficiency class

The Directive EU 874/2012 regarding the energy labelling of luminaires sold directly to end users stipulates that for all LED luminaires with integrated light sources, the Energy Efficiency Class (EEC) indicated must be as follows: A / A+ / A++. Indicating a precise energy efficiency class means that the luminaire has been assessed as if it were a lamp/source.

Indicating a precise energy efficiency class means that the luminaire has been assessed as if it were a lamp/source and the luminaire has been assessed as if it were as i

As such, all 3F Filippi luminaires come with the best Energy Efficiency Class (EEC): A / A+ / A++ (EU 874/2012).

equal to or more than 85% of the initial flux

less than 85% of the initial flux

LED luminaire luminous fluxes and power in Emergency mode

Data updated as at: April 2020

The following tables show the percentages of luminous flux of LED luminaires in emergency operation (BLF). These fluxes are the minimum guaranteed during rated autonomy as required by EN 60598-2-22, and are therefore the ones to be used in the design stage. The luminous fluxes specified are REAL values, and refer to the OUTPUT of the luminaire.

LED emergency wiring characteristics

Wiring created with emergency lighting systems with the following characteristics:

- Rigid cables cross sectional area 0.50-0.75-1 mm² (0.75-1 mm² also Class II), HT heat resistant PVC 90°C, CEI 20-20.
- Protective fuse, same characteristics as starter wiring.
- 230V-50/60Hz electronic inverter with protection against excessive battery discharge.
- Sealed Nickel-Cadmium or Nickel-Metal Hydride NiMH.
- LED to signal presence of power supply and battery charging.
- Recharge time 24 hrs.
- Running time = 1h minimum under heaviest working conditions.
- 3-pole terminal block with incorporated disconnecting fuse for standard power supply live-earthing-neutral (LTN).
- 2 pole terminal block for power supply of the emergency recharging line.
- Complies with IIEC 60598-1, CEI EN 60598-1 (CEI 34-21) and CEI EN 60598-2-22 (CEI 34-22).
- Suitable for rooms with temperature from 0°C to +25°C.

On request:

- Emergency mode with 3 hours duration, 24 hours recharge, or 1.5 hours duration and 12 hours recharge (according to feasibility), maintaining the same percentage of the standard luminous flux.
- Wiring with intelligent control systems and centralised or local self-diagnostics of emergency lighting.

EP LED permanent emergency lighting

When power is on, EP luminaires operate like normal luminaires; in the event of power failure, the LED module connected to the emergency lighting system switches on or stays on automatically.

In EP luminaires with multiple LED modules, you can check how many modules remain on in emergency mode; for example, 1EP+2 indicates that on a 3x (3 LED modules) luminaire, one remains on in an emergency.

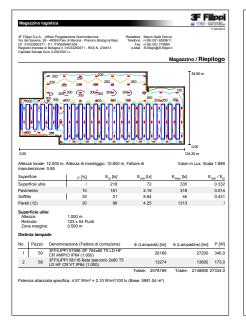
ENP non-permanent emergency LED lighting

In ENP luminaires, the LED module switches on only in emergency mode, when there is a power cut.

Code	Item	Duration	Recharge	BLF Luminaire (%)	Module BLF (%)	Number of modules in emergency mode
Surface	luminaires and suspensions			(70)	(70)	emergency mode
10607	3F Zeta L AS 40 LED EP L1489	1h	24h	10,8	10,8	1EP
10980	3F Zeta D 1x22 LED EP L1489	1h	24h	15,2	15,2	1EP
10982	3F Zeta D 2x22 LED EP L1489	1h	24h	7,6	15,2	1EP+1
10984	3F Zeta DR 1x22 LED EP L1489	1h	24h	15,2	15,2	1EP
10986	3F Zeta DR 2x22 LED EP L1489	1h	24h	7,6	15,2	1EP+1
10988	3F Zeta L 40 LED EP L1489	1h	24h	10,8	10,8	1EP
11001	3F Zeta DR UGR 2x22 LED EP L1783	1h	24h	7,6	15,2	1EP+1
11002	3F Zeta DR UGR 1x30 LED EP L1783	1h	24h	11,4	11,4	1EP
34332	3F Petra OP 380 22W LED EP	1h	24h	15,7	15,7	1EP
34409	3F Petra OP 620 50W LED EP	1h	24h	6,9	13,7	1EP+1
12128	3F Diagon P 25W/830 EP Soft UGR 596x596	51h	24h	19,2	19,2	1EP
12132	3F Diagon P 25W/840 EP Soft UGR 596x596	51h	24h	19,2	19,2	1EP
12136	3F Diagon P 39W/930 EP Soft UGR 596x596	51h	24h	12,0	12,0	1EP
12140	3F Diagon P 39W/940 EP Soft UGR 596x596	51h	24h	12,0	12,0	1EP

Code	Item	Duration	Recharge	BLF Luminaire (%)	Module BLF (%)	Number of modules in emergency mode
	d Luminaires					
21262	L 323x10W LED EP SP 596x596	1h	24h	11,4	34,3	1EP+2
21263	L 324x10W LED EP SP 596x596	1h	24h	8,6	17,2	2EP+2
21293	L 322x18W LED EP SP 296x1196	1h	24h	9,5	19	1EP+1
21589	L 323x10W LED EP LGS 596x596	1h	24h	11,4	34,3	1EP+2
21590	L 324x10W LED EP LGS 596x596	1h	24h	8,6	17,2	2EP+2
21606	L 322x18W LED EP LGS 296x1196	1h	24h	9,5	19	1EP+1
21642	L 320 32W LED EP LGS 596x596	1h	24h	13,3	13,3	1EP
21650	L 320 32W LED EP OP 596x596	1h	24h	13,3	13,3	1EP
21654	L 320 32W LED EP LGS 621x621	1h	24h	13,3	13,3	1EP
21662	L 320 32W LED EP OP 621x621	1h	24h	13,3	13,3	1EP
22705	L 323x10W/940 LED EP SP 596x596	1h	24h	11,4	34,3	1EP+2
22706	L 324x10W/940 LED EP SP 596x596	1h	24h	8,6	17,2	2EP+2
22711	L 324x10W/940 LED EP LGS 596x596	1h	24h	8,6	17,2	2EP+2
22717	L 323x10W/940 LED EP 2S 596x596	1h	24h	11,4	34,3	1EP+2
22723	L 323x10W/940 LED EP 2MG 596x596	1h	24h	11,4	34,3	1EP+2
22734	L 320 32W/940 LED EP LGS 596x596	1h	24h	13,3	13,3	1EP
22744	L 320 32W/940 LED EP OP 596x596	1h	24h	13,3	13,3	1EP
12128	3F Diagon P 25W/830 EP SOFT UGR 596x596	1h	24h	19,8	19,8	1EP
12132	3F Diagon P 25W/840 EP SOFT UGR 596x596	1h	24h	19,8	19,8	1EP
12136	3F Diagon P 39W/930 EP SOFT UGR 596x596	1h	24h	13	13	1EP
12140	3F Diagon P 39W/940 EP SOFT UGR 596x596	1h	24h	13	13	1EP
23010	3F Diagon 25W/830 EP 596x596	1h	24h	19,8	19,8	1EP
23032	3F Diagon 19W/840 EP 596x596	1h	24h	26,4	26,4	1EP
23033	3F Diagon 15W/840 EP 596x596	1h	24h	32,9	32,9	1EP
23034	3F Diagon 25W/840 EP 596x596	1h	24h	19,8	19,8	1EP
23035	3F Diagon 39W/840 EP 596x596	1h	24h	13	13	1EP
23106	3F Diagon 25W/930 EP 596x596	1h	24h	19,8	19,8	1EP
23130	3F Diagon 25W/940 EP 596x596	1h	24h	19,8	19,8	1EP
23394	3F Diagon 25W/830 EP 621x621	1h	24h	19,8	19,8	1EP
23416	3F Diagon 19W/840 EP 621x621	1h	24h	26,4	26,4	1EP
23417	3F Diagon 15W/840 EP 621x621	1h	24h	32,9	32,9	1EP
23418	3F Diagon 25W/840 EP 621x621	1h	24h	19,8	19,8	1EP
23419	3F Diagon 39W/840 EP 621x621	1h	24h	13	13	1EP
23490	3F Diagon 25W/930 EP 621x621	1h	24h	19,8	19,8	1EP
23514	3F Diagon 25W/940 EP 621x621	1h	24h	19,8	19,8	1EP
23772	3F Diagon FP 19W/840 EP 621x621	1h	24h	26,4	26,4	1EP
23772	3F Diagon FP 25W/840 EP 621x621	1h	24h	19,8	19,8	1EP
23773	3F Diagon FCL 19W/840 EP 599x599	1h	2411 24h	26,4	26,4	1EP
23789	3F Diagon FCL 25W/840 EP 599x599	1h	2411 24h	19,8	19,8	1EP
23790	3F Diagon FCH 19W/840 EP 599x599	1h	2411 24h	26,4	26,4	1EP
	-					1EP
23800	3F Diagon FCH 25W/840 EP 599x599	1h	24h	19,8	19,8	
23813	3F Diagon 25W/840 EP Soft UGR 596x596	1h	24h	19,2	19,2	1EP
23820	3F Diagon 25W/840 EP Soft UGR 621x621	1h	24h	19,2	19,2	1EP
23827	3F Diagon 25W/830 EP Soft UGR 596x596	1h	24h	19,2	19,2	1EP
23831	3F Diagon 25W/830 EP Soft UGR 621x621	1h	24h	19,2	19,2	1EP
23835	3F Diagon 39W/940 EP Soft UGR 596x596	1h	24h	12,0	12,0	1EP
23839	3F Diagon 39W/940 EP Soft UGR 621x621	1h	24h	12,0	12,0	1EP
23843	3F Diagon 39W/930 EP Soft UGR 596x596	1h	24h	12,0	12,0	1EP
23847	3F Diagon 39W/930 EP Soft UGR 621x621	1h	24h	12,0	12,0	1EP
23851	3F Diagon FP 25W/840 EP Soft UGR 621x621		24h	19,2	19,2	1EP
23813	3F Diagon 25W/840 EP SOFT UGR 596x596		24h	19,8	19,8	1EP
23820	3F Diagon 25W/840 EP SOFT UGR 621x621	1h	24h	19,8	19,8	1EP

Code	Item	Duration	Recharge	BLF Luminaire (%)	Module BLF (%)	Number of modules in emergency mode
23827	3F Diagon 25W/830 EP SOFT UGR 596x596	1h	24h	19,8	19,8	1EP
23831	3F Diagon 25W/830 EP SOFT UGR 621x621	1h	24h	19,8	19,8	1EP
23835	3F Diagon 39W/940 EP SOFT UGR 596x596	1h	24h	13	13	1EP
23839	3F Diagon 39W/940 EP SOFT UGR 621x621	1h	24h	13	13	1EP
23843	3F Diagon 39W/930 EP SOFT UGR 596x596	1h	24h	13	13	1EP
23847	3F Diagon 39W/930 EP SOFT UGR 621x621	1h	24h	13	13	1EP
23851	3F Diagon FP 25W/840 EP SOFT UGR 621x621	1h	24h	19,8	19,8	1EP
28829	L 323x10W LED EP 2S 596x596	1h	24h	11,4	34,3	1EP+2
28831	L 322x18W LED EP 2S 296x1196	1h	24h	9,5	19	1EP+1
28847	L 323x10W LED EP 2MG 596x596	1h	24h	11,4	34,3	1EP+2
28849	L 322x18W LED EP 2MG 296x1196	1h	24h	9,5	19	1EP+1
30018	3F Reno 100 WH 1000/840 EP SPOT	1h	24h	28,6	28,6	1EP
30022	3F Reno 100 WH 1000/930 EP SPOT	1h	24h	28,6	28,6	1EP
30026	3F Reno 100 WH 2000/840 EP SPOT	1h	24h	20	20	1EP
30030	3F Reno 100 WH 2000/930 EP SPOT	1h	24h	16,7	16,7	1EP
30086	3F Reno 100 WH 1000/840 EP WIDE	1h	24h	28,6	28,6	1EP
30090	3F Reno 100 WH 1000/930 EP WIDE	1h	24h	28,6		1EP
30094	3F Reno 100 WH 2000/840 EP WIDE	1h	24h	20		1EP
30098	3F Reno 100 WH 2000/930 EP WIDE	1h	24h	16,7		1EP
30222	3F Reno 100 WH 1000/840 EP ELL	1h	24h	28,6		1EP
30226	3F Reno 100 WH 1000/930 EP ELL	1h	24h	28,6		1EP
30230	3F Reno 100 WH 2000/840 EP ELL	1h	24h	20		1EP
30234	3F Reno 100 WH 2000/930 EP ELL	1h	24h	16,7		1EP
30290	3F Reno 150 WH 2000/840 EP SPOT	1h	24h	20		1EP
30294	3F Reno 150 WH 2000/930 EP SPOT	1h	24h	16,7		1EP
30298	3F Reno 150 WH 3000/840 EP SPOT	1h	24h	14,3		1EP
30302	3F Reno 150 WH 3000/930 EP SPOT	1h	2411 24h	11,1		1EP
30358	3F Reno 150 WH 2000/840 EP WIDE	1h	24h	20	20	1EP
30362	3F Reno 150 WH 2000/930 EP WIDE	1h	2411 24h	16,7		1EP
30366	3F Reno 150 WH 2000/930 EF WIDE	1h	2411 24h	14,3		1EP
30300	3F Reno 150 WH 3000/930 EP WIDE	1h	2411 24h	14,3	14,3	1EP
30419	3F Reno 150 WH 1500/840 EP UGR	1h	2411 24h	28,6	28,6	1EP
	3F Reno 150 WH 2000/840 EP UGR	1h				1EP
30420	3F Reno 150 WH 2000/840 EP ELL	1h	24h 24h	20 20		1EP
30470	3F Reno 150 WH 2000/930 EP ELL 3F Reno 150 WH 2000/930 EP ELL					
30474		1h	24h	16,7		1EP
30478	3F Reno 150 WH 3000/840 EP ELL	1h	24h	14,3		1EP
30482	3F Reno 150 WH 3000/930 EP ELL	1h	24h	11,1	,	1EP
30546	3F Reno 200 WH 2000/840 EP SPOT	1h	24h	20	20	1EP
30550	3F Reno 200 WH 2000/930 EP SPOT	1h	24h	16,7		1EP
30554	3F Reno 200 WH 3000/840 EP SPOT	1h	24h	14,3		1EP
30558	3F Reno 200 WH 3000/930 EP SPOT	1h	24h	11,1		1EP
30562	3F Reno 200 WH 4000/840 EP SPOT	1h	24h	11,1		1EP
30566	3F Reno 200 WH 4000/930 EP SPOT	1h	24h	9,5		1EP
30646	3F Reno 200 WH 2000/840 EP WIDE	1h	24h	20	20	1EP
30650	3F Reno 200 WH 2000/930 EP WIDE	1h	24h	16,7		1EP
30654	3F Reno 200 WH 3000/840 EP WIDE	1h	24h	14,3	14,3	1EP
30658	3F Reno 200 WH 3000/930 EP WIDE	1h	24h	11,1	,	1EP
30662	3F Reno 200 WH 4000/840 EP WIDE	1h	24h	11,1	11,1	1EP
30666	3F Reno 200 WH 4000/930 EP WIDE	1h	24h	9,5		1EP
30737	3F Reno 200 WH 2000/840 EP UGR	1h	24h	20	20	1EP
30741	3F Reno 200 WH 2000/930 EP UGR	1h	24h	16,7	16,7	1EP
30742	3F Reno 200 WH 3000/840 EP UGR	1h	24h	14,3	14,3	1EP
30746	3F Reno 200 WH 2500/930 EP UGR	1h	24h	14,3	14,3	1EP
30810	3F Reno 200 WH 2000/840 EP ELL	1h	24h	20	20	1EP


Code	Item	Duration	Recharge	BLF Luminaire (%)	Module BLF (%)	Number of modules in emergency mode
30814	3F Reno 200 WH 2000/930 EP ELL	1h	24h	16,7	16,7	1EP
30818	3F Reno 200 WH 3000/840 EP ELL	1h	24h	14,3	14,3	1EP
30822	3F Reno 200 WH 3000/930 EP ELL	1h	24h	11,1	11,1	1EP
30826	3F Reno 200 WH 4000/840 EP ELL	1h	24h	11,1	11,1	1EP
30830	3F Reno 200 WH 4000/930 EP ELL	1h	24h	9,5	9,5	1EP
36576	Lucequadro LED 2000 EP VS	1h	24h	20	20	1EP
36579	Lucequadro LED 3000 EP VS	1h	24h	14,3	14,3	1EP
36582	Lucequadro LED 2000 EP VOP	1h	24h	20	20	1EP
36585	Lucequadro LED 3000 EP VOP	1h	24h	14,3	14,3	1EP
36588	Lucequadro LED 2000 EP SOP	1h	24h	20	20	1EP
36591	Lucequadro LED 3000 EP SOP	1h	24h	14,3	14,3	1EP
37544	Galassia 220 LED AB 2000 EP VOP	1h	24h	20	20 20	1EP 1EP
37553 37580	Galassia 220 LED AB 2000 EP VS Galassia 220 LED AB 3000 EP VOP	1h 1h	24h 24h	20 14,3	20 14,3	1EP
37589	Galassia 220 LED AB 3000 EP VOP	1h	2411 24h	14,3	14,3	1EP
37752	Galassia 220 LED AB 3000 EF V3 Galassia 220 LED 2000 EP	1h	2411 24h	20	20	1EP
37761	Galassia 220 LED 2000 EP VT	1h	24h	20	20	1EP
37770	Galassia 220 LED 2000 EP VOP	1h	24h	20	20	1EP
37779	Galassia 220 LED 2000 EP VS	1h	24h	20	20	1EP
37795	Galassia 220 LED 3000 EP	1h	24h	14,3	14,3	1EP
37804	Galassia 220 LED 3000 EP VT	1h	24h	14,3	14,3	1EP
37813	Galassia 220 LED 3000 EP VOP	1h	24h	14,3	14,3	1EP
37822	Galassia 220 LED 3000 EP VS	1h	24h	14,3	14,3	1EP
	oof and corrosion-proof					
55017	i3F LED 752x30W EP CONC L1565	1h	24h	5,7	11,4	1EP+1
55083	i3F LED 762x30W EP AMPIO VT L1565	1h	24h	5,7	11,4	1EP+1
55145	i3F LED 762x12W EP AMPIO VS L655	1h	24h	14,3	14,3	2EP
55147	i3F LED 762x24W EP AMPIO VS L1265	1h	24h	7,1	14,3	1EP+1
55149	i3F LED 762x30W EP AMPIO VS L1565	1h	24h	5,7	11,4	1EP+1
55607	i3F LED 752x12W EP AMPIO L655	1h	24h	14,3	14,3	2EP
55609	i3F LED 752x24W EP AMPIO L1265	1h	24h	7,1	14,3	1EP+1
55611	i3F LED 752x30W EP AMPIO L1565	1h	24h	5,7	11,4	1EP+1
55677	i3F LED 762x30W EP CONC VT L1565	1h	24h	5,7	11,4	1EP+1
58567	3F Linda LED 1x12W EP LA L660	1h	24h	28,6	28,6	1EP
58569	3F Linda LED 1x6W EP LA L660	1h	24h	57,1	57,1	1EP
58589	3F Linda LED 1x24W EP L1270	1h	24h	14,3	14,3	1EP
58590	3F Linda LED 1x24W/865 EP L1270	1h	24h	14,3	14,3	1EP
58591	3F Linda LED 1x24W/830 EP L1270	1h	24h	14,3	14,3	1EP
58600	3F Linda LED 2x24W EP L1270	1h	24h	7,1	14,3	1EP+1
58601	3F Linda LED 2x24W/865 EP L1270	1h	24h	7,1	14,3	1EP+1
58602	3F Linda LED 2x24W/830 EP L1270	1h	24h		14,3	1EP+1
58611	3F Linda LED 2x24W/830 EF L1270 3F Linda LED 1x30W EP L1570			7,1		1EP
		1h	24h	11,4	11,4	
58612	3F Linda LED 1x30W/865 EP L1570	1h	24h	11,4	11,4	1EP
58613	3F Linda LED 1x30W/830 EP L1570	1h	24h	11,4	11,4	1EP
58623	3F Linda LED 2x30W EP L1570	1h	24h	5,7	11,4	1EP+1
58624	3F Linda LED 2x30W/865 EP L1570	1h	24h	5,7	11,4	1EP+1
58625	3F Linda LED 2x30W/830 EP L1570	1h	24h	5,7	11,4	1EP+1
58705	3F Linda LED 1x12W ENP LA L660	1h	24h	28,6	28,6	1ENP
58713	3F Linda LED 1x24W ENP L1270	1h	24h	14,3	14,3	1ENP
5794	3F Linda Compatta LED 1x5W EP 160x300	1h	24h	68,6	68,6	1EP

Lighting engineering

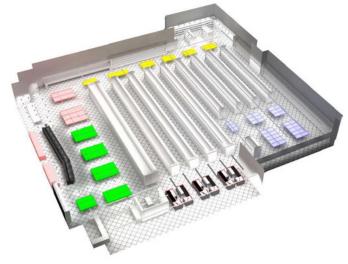
Professional lighting engineering design and free consultancy

3F Filippi supplies its customers with a free lighting engineering design service thanks to the Dialux software which allows them to:

- Consult the photometric characteristics of the luminaire in order to establish the correct application.
- Calculate and check the level of illumination, luminance, as well as the uniformity over horizontal work surfaces (such as work tops and ceiling), vertical work surfaces (such as walls or inclined virtual planes, vertical walls in the room, etc.) and to perform calculation for irregular layouts. With these results, data sheets can be produced with the values shown in point-by-point, isolux, tables, room surfaces, as well as 2D and 3D views of the environment.

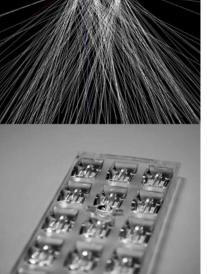
Medium and point-by-point illumination on all surfaces of the environment.

Graphical representations on the surfaces of the environment with the following documents: graph of values, rendering with staggered colours, isolines, tables, etc.. Product datasheet with indication of the lighting, mechanical and electrical characteristics.


Tolerarcza 10%, tensione 230V-30Hz - ta.25°C, fluxes ummous sampaoa nominali. 3F Filippi si assume la responsabilità progettasile del presente progetto sulla base dei dati imputati, decinando ogni responsabilità in cas **Filippi**

• To make the calculations more precise and create very realistic environments, architectural and furnishing elements can be placed inside the program's simulation environment.

Area 1 / Service


3F Filippi 58583 3F Linda LED 1x24W L1270 1x24W 1xLED

- The software and the 3F Filippi plug-in are available free to designers, installers and electrical distributors.
- Updates of photometric files and of the lighting engineering software can be downloaded free of charge from our website.
- For further information, contact our technical consultants.

Rendering of a calculation environment

3F Filippi is UNI EN ISO 9001 certified for lighting engineering design too.

3F Filippi guarantees photometric data sheets, according to the latest European and international recommendations and standards, thanks to the support of the photometric laboratory, in line with official European laboratories.

The photometric tests are performed by procedures in accordance with the UNI EN 13032 and CIE 121 standards.

3F Filippi has the most advanced computer programs for research and optimisation of louvres and flow recuperators in order to achieve maximum efficiency and suitable light distribution for the most widely varying applications.

This commitment has been recognised and certified by the CSQ (Italian Company Quality Systems Certification) also for the entire phase of lighting engineering design, thus allowing operation under a Quality Assurance system that also covers interior lighting design in accordance with good engineering practice.

Our ISO 9001 certification, awarded by CSQ (certificate no. 9130.3FFI) can be viewed on our website in the "Certifications and Guarantees" section.

3F Filippi, as further guarantee of the quality of its products and care to meet the strictest standards, is a sustainer of the most lighting engineering associations in the world:

AIDI (The Italian Illumination Association) carries out incisive and constant scientific, cultural and technical reporting to spread knowledge of lighting issues.

www.aidiluce.it

Associazione Nazionale Produttori Illuminazione

ASSIL (Italian Lighting Producers' Association) provides technical and normative support for quality and performance improvements of lighting technology on the market, while helping respect people's visual comfort, energyefficiency requirements and environmental protection.

www.assil.it

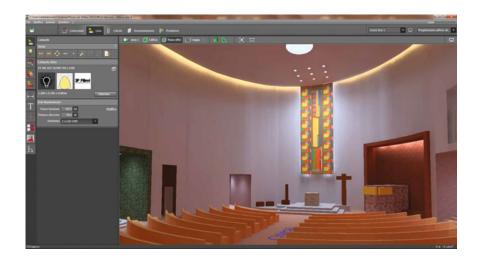
IESNA (Illuminating Engineering Society of North America) is the American lighting body which promulgates lighting engineering standards on the American market for designers, producers and professionals in the sector.

www.iesna.org

565

Lighting engineering calculation software

Don't trust in words. Make your own calculations.


On our website we provide data sheets, product updates and specifications for our products - all of which are freely available and free of charge.

The Eulumdat files which you can find online can be used in any lighting engineering program, allowing you to continue using the software you prefer (e.g. DIALux, LITESTAR 4D Litecalc, AGi32 or 3D Studio Max).

In particular, 3F Filippi has decided to collaborate more closely with the software-houses Relux and DIAL to create plug-ins for their lighting engineering calculation programs:

DIAL - DIALux evo

For particular requirements or to make a comparison, contact our Sales Network.

Lighting engineering

Reflection coefficients to use for lighting calculations

Reflections in % of painted surfaces and materials (ceiling max 85%; walls max 50%; floor max 30%).

White	75 ÷ 85
Light cream	70 ÷ 80
Yellow	60 ÷ 70
Light grey	45 ÷ 65
Pink	45 ÷ 55
Light red	20 ÷ 30
Medium grey	20 ÷ 40
Light blue, green	35 ÷ 55
Dark grey, green, red	10 ÷ 20
Black	03 ÷ 05

Panels in light-coloured mineral fibre	75 ÷ 85
Panels in light-coloured wood	50 ÷ 60
Plaster	70 ÷ 80
White paper	70 ÷ 80
Window panes	06 ÷ 08
Light-coloured curtains with narrow mesh	65 ÷ 70
Light-coloured curtains with wide mesh	35 ÷ 40
Cement, rough concrete	20 ÷ 30
Light-coloured marble	40 ÷ 60
Granite	15 ÷ 20

Maintenance factors to use for lighting calculations

The lighting of a room is the result of the interaction between the luminaires, their condition of use, the aging of the sources and the environment in which they are installed.

The reference standard is certainly ISO/CIE TS 22012 "Light and lighting - Maintenance factor determination - Way of working" which provides the designer with various information attachments with examples and reference values to be considered during the design phase.

The maintenance factor f_m is determined by the following formula:

 $f_M = f_{LF} \cdot f_S \cdot f_{LM} \cdot f_{SM}$

f_{LF} (Luminous flux factor) is the decay factor of the luminous flux of the source over time (for LEDs it is the declared factor Lx). The luminous flux (lumen) of an operating source gradually decreases over time.

This reduction depends on the type of light source and on the operating conditions related to the thermal management of the lighting luminaire.

This factor is defined on the basis of the drop in luminous flux before performing maintenance (changing the lamp or luminaire). In the case of CLO (Constant light output) drivers the factor to be considered is 1.

 $f_{\rm S}$ (Survival factor) represents the mortality rate of the light sources.

After a certain period of time the light sources can go out. This phenomenon suddenly reduces the level of lighting inside the rooms. In the case of sources that do not have mortality due to their technology (for example the LED), this factor must be considered equal to 1.

 f_{LM} (Luminaire maintenance factor) represents the reduction of the luminous flux of the luminaire due to dirt. Dirt and dust present in almost all environments accumulate on the lamp, considerably reducing the amount of light emitted. When they accumulate on the surfaces of the luminaire, the amount of light reflected or transmitted by these surfaces is also reduced. This factor depends on the environment where the lighting luminaire is located, on the type of construction characteristics (for example: luminaire with or without screen, indirect lighting with greater dust deposit, degree of protection, any chimney effect that removes dust from the surfaces reflective), expected cleaning cycle (every 1-2-3-... years).

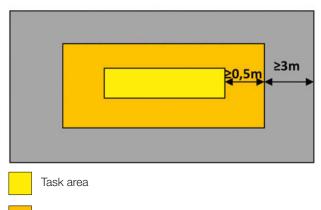
 f_{SM} (Surface maintenance factor) represents the reduction of reflections on the surfaces of the room due to dirt.

Dirt on the surfaces of rooms tends to reduce the amount of reflected light.

Clean surfaces maintain the ambient lighting level more.

This factor depends on the type of activity carried out and the type of processing, for example in an office with weekly cleaning and repainting at regular intervals, this maintenance factor will be higher than in a factory with monthly cleaning intervals and repainting to be carried out only in case of real need.

Standards - Indoor lighting


EN 12464-1: 2011

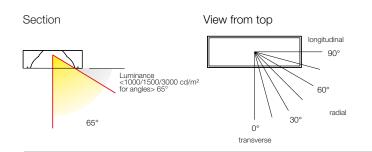
Illumination of interior workplaces

This European standard for illumination of interior workplaces replaces the previous one from 2004, with an increase in the importance of illumination to allow workers to perform their visual tasks efficiently and accurately.

Three calculation areas are defined:

- Task-area, determination of the visual task area. If this cannot be determined, the whole surface of the environment is considered.
- Immediately surrounding area, at least 50 cm around the task area.
- Background area, at least 3 m around the immediately surrounding area.

Immediately surrounding area


Background area

Illumination of the immediately surrounding area may be lower than that of the task area but must not be lower than the values given below:

Task area	Immediately surrounding area
\geq 750 lx	500 lx
500 lx	300 lx
300 lx	200 lx
200 lx	150 lx
150 lx	Etask
100 lx	Etask
\leq 50 lx	Etask

Lighting values are unchanged: the design must include calculation of a maintenance factor that considers both decrease of luminous flux of lamps and level of dust accumulation in the room.

Glare check for rooms with VDTs

For good visual communication and recognition of objects, two requirements gain importance:

- Cylindrical illuminance.
- Modelling.

Cylindrical illuminance is calculated by the average of the vertical illuminances around the measuring point. The standard requires the following:

Average cylindrical illuminances in interior

Seated persons 1.2m	Ez > 50 lx
Standing persons 1.7m	Ez > 50 lx
Good visual communication, e.g. offices, meeting rooms, teaching spaces, etc.	Ez > 50 lx
Uniformity	Uo ≥ 0,10

Modelling represents the equilibrium between diffuse and directional light and is calculated as the relationship between the cylindrical and

horizontal illuminance at the measurement point. Good modelling is obtained with a value between 0.3 and 0.6.

EN 12464-1: 2011 introduced new limits of average luminance for lighting devices which reflect on computer screens:

Luminaire average luminance limits for radial angles >65°				
Screen luminance	High luminance screen L > 200 cd·m ⁻²	screen		
case A positive polarity and normal requirements regarding colours and details of information viewed, for example offices, schools etc.	≤ 3000 cd.m ⁻²	≤ 1500 cd·m-2		
case B negative polarity with greater requirements regarding colours and details of information viewed, for example for CAD, colour inspections etc.	≤ 1500 cd·m ⁻²	≤ 1000 cd·m ⁻²		

Lighting engineering

Average illuminations maintained by EN 12464-1: 2011 (indoor environments)

Type of interior, task and activity	Em (lx)	Glare UGR _L	CRI
OFFICES			
Writing and data processing	500	19	80
CAD stations	500	19	80
Technical drawing	750	16	80
Conference and meeting rooms	500	19	80
Filing and copying	300	19	80
Archives	200	25	80
Reception	300	22	80
SCHOOLS			
Playrooms in nursery schools	300	19	80
Handicraft rooms	500	19	80
Classrooms in secondary schools	300	19	80
Classrooms in evening and adult education schools, art education	500	19	80
Technical drawing rooms	750	16	80
Music practice rooms, language labs	300	19	80
Common rooms and main hall	200	22	80
Preparation rooms and workshops	500	22	80
Computer labs	300	19	80
Vertical illumination of blackboards	500	19	80
Entrances	200	22	80
Teachers' rooms	300	19	80
Storage rooms for teaching material	100	25	80
Sports facilities, swimming pools (general use)	300	22	80
Canteen	200	22	80
Kitchen	500	22	80
LIBRARIES			
Reading areas	500	19	80
Vertical illumination of shelves	200	19	80
Public service areas	500	19	80
CANTEENS, RESTAURANTS AND SELF-SERVICE	222	22	22
General lighting	200	22	80
Conference rooms	500	19	80
Wardrobe	200	25	
		-	80
Buffet, reception, cash desk and porter	300	22	80
Buffet, reception, cash desk and porter Kitchen	300 500	22 22	80 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants	300 500 200	22 22 22	80 80 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors	300 500	22 22	80 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS	300 500 200 100	22 22 22 25	80 80 80 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting)	300 500 200 100 100	22 22 22 25 28	80 80 80 80 40
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators	300 500 200 100 100 150	22 22 25 28 25	80 80 80 80 40 40
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms	300 500 200 100 100 150 100	22 22 25 28 25 28 25 22	80 80 80 80 40 40 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms Infirmary	300 500 200 100 100 150 100 500	22 22 25 28 25 22 25 22 19	80 80 80 80 40 40 80 80 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms Infirmary Technical rooms, control panels	300 500 200 100 150 100 500 200	22 22 25 28 25 22 25 22 19 25	80 80 80 80 40 40 80 80 80 80 60
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms Infirmary Technical rooms, control panels Baths, toilets, wardrobe	300 500 200 100 150 100 500 200 200	22 22 25 28 25 22 25 22 19	80 80 80 80 40 40 80 80 80 60 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms Infirmary Technical rooms, control panels Baths, toilets, wardrobe Minimum general emergency lighting (EN 1838)	300 500 200 100 150 100 500 200 200 200 min. 0.5	22 22 25 28 25 22 25 22 19 25	80 80 80 80 40 40 80 80 80 60 80 80 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms Infirmary Technical rooms, control panels Baths, toilets, wardrobe	300 500 200 100 150 100 500 200 200	22 22 25 28 25 22 25 22 19 25	80 80 80 80 40 40 80 80 80 60 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms Infirmary Technical rooms, control panels Baths, toilets, wardrobe Minimum general emergency lighting (EN 1838) Minimum emergency lighting in exit routes (EN 1838)	300 500 200 100 150 100 500 200 200 200 min. 0.5	22 22 25 28 25 22 19 25 25 25	80 80 80 80 40 40 80 80 80 60 80 80 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms Infirmary Technical rooms, control panels Baths, toilets, wardrobe Minimum general emergency lighting (EN 1838) Minimum emergency lighting in exit routes (EN 1838) COMMERCIAL AND/OR EXHIBITION AREAS	300 500 200 100 150 150 100 500 200 200 min. 0.5 min. 1	22 22 25 28 25 22 25 22 19 25	80 80 80 80 40 40 80 80 80 80 80 80 80 80 80
Buffet, reception, cash desk and porter Kitchen Self-service restaurants Corridors TRANSIT AREAS AND ROOMS FOR GENERAL USE IN BUILDINGS Circulation areas and corridors (floor lighting) Stairs, lifts, escalators Rest rooms Infirmary Technical rooms, control panels Baths, toilets, wardrobe Minimum general emergency lighting (EN 1838) Minimum emergency lighting in exit routes (EN 1838) COMMERCIAL AND/OR EXHIBITION AREAS Sales areas	300 500 200 100 150 150 100 500 200 200 min. 0.5 min. 1 300 (1)	22 22 25 25 28 25 22 19 25 25 25 22 25	80 80 80 80 40 40 80 80 80 80 80 80 80 80 80 80

Notes:

(1) Lighting and UGR depend on the type of shop.

Average illuminations maintained by EN 12464-1: 2011 (indoor environments)

Type of interior, task and activity	Em (lx)	Glare UGR _L	CRI
INDUSTRIAL AND ARTISANAL ENVIRONMENTS			
Agriculture			
- Loading and handling of goods, moving equipment	200	25	80
- Livestock buildings	50		40
- Preparation of fodder, dairies, tool washing, delivery rooms	200	25	80
Chemical, plastic, rubber industry	200	05	20
 Workplaces with continuous presence of personnel Rooms for precision measurement, laboratories 	300 500	25 19	80 80
- Pharmaceutical production, tyres	500	22	80
- Colour inspection	1000	16	90
- Cutting, finishing, inspection	750	19	80
Food industries			
- Beer breweries, jam/chocolate/sugar production plants	200	25	80
 Product selection and washing, packaging 	300	25	80
- Work zones in slaughterhouses, dairies, mills	500	25	80
 Inspection of glass and bottles, product check 	500	22	80
- Food production, kitchen work, cigarette manufacture	500	22	80
- Laboratories	500	19	80
- Colour inspection	1000	16	90
Metal working and transformation	1000	10	00
- Rough and medium machining	300	22	60
- Fine machining	500	19	60
- Marking off, inspection	750	19	60
- Manufacture of tools and cutting equipment	750	19	60
- Rough assembly	200	25	80
- Medium assembly	300	25	80
 Fine assembly Precision assembly 	500 750	22 19	80 80
Power plants	750	19	00
- Fuel supply facilities	50		20
- Boiler rooms	100	28	40
- Machine shop	200	25	80
- Pump rooms, condenser rooms, switching systems	200	25	60
- Control stations	500	16	80
- Outside control devices	20		20
- Workplace in vicinity of baths	200	25	60
- Washing, ironing, spinning	300	22	80
- Spinning, twining, spooling	500	22	80
- Finishing, dying, weaving	500	22	80
 Sewing, fine-gauge knitting, mending 	750	22	80
- Colour inspection, quality control	1000	16	90
Automotive	500	00	00
 Body and assembly Painting, polishing booth 	500 750	22 22	80 80
- Painting: retouching, inspection	1000	19	90
- Upholstery, final inspection	1000	19	80
Woodworking and wood processing			
- Automatic processing	50	28	40
- Steaming beds	150	28	40
- Saw frame	300	25	60
 Bench work, assembly Smoothing, painting 	300 750	25 22	80 80
- Machine work	500	19	80
- Wood selection, inlay	750	22	90
- Quality control, inspection	1000	19	90
WAREHOUSES AND COLD STORAGE ROOMS			
Storage areas	100	25	60
Handling, packing, shipping areas	300	25	60
Warehouses with racking – corridor without personnel (lighting at floor)	20		40
Warehouses with racking – corridor with personnel (lighting at floor)	150	22	60
Control stations	150	22	60

571

Lighting engineering

Average illuminations maintained by EN 12464-1: 2011 (indoor environments)

Type of interior, task and activity	Em (lx)	Glare UGR _L	CRI
HEALTHCARE STRUCTURES			
Recovery rooms (general lighting, at floor)	100	19	80
Recovery rooms (lighting for reading and simple examination)	300	19	80
Corridors (day)	200	22	80
Corridors (night)	50	22	80
Public rooms	200	22	80
Diagnosis rooms (general lighting)	500	19	90
Diagnosis rooms (examination and treatment)	1000	19	90
Pre-operating rooms	500	19	90
Operating rooms	1000	19	90
Laboratory, pharmacy (general lighting)	500	19	80
Massage, radiotherapy, endoscopy, simple examinations	300	19	80
Examinations and intensive care	1000	19	90
Treatment, dialysis, plaster rooms	500	19	80
Dentists (general lighting)	500	19	90
Sterilisation and disinfection rooms	300	22	80
INDOOR SPORTS FACILITIES (2) - Standard EN 12193			
Physical exercise rooms	300		
Track and field	200-300-500		
Lawn bowling	200-300-500		
Swimming pool	200-300-500		
Wrestling, weight-lifting, judo	300-500		
Basketball, volleyball	300-500-750		
Boxing	300-500		
Tennis	200-300-750		
Table tennis	300-500-700		
Target-shooting (spring-board - target)	300-500		
Archery	150-300-400		
INDOOR PARKING			
Lanes and parking areas (floor lighting)	75	25	20
Entrance/exit ramps (day) (lighting at floor)	300	25	20
Entrance/exit ramps (night) (lighting at floor)	75	25	20
Ticket office	300	19	80
OUTDOOR AREAS (CIE 129)			
Parking areas for shops, schools, condominiums	5		
Very rough work, loading and unloading	20		
Rough work, transport and storage	50		
Pedestrian walkways	5		

KEY

Em Average lighting level, generally referring to a height of 0.85 m from the floor for work zones and at floor level for transit zones.

UGR_L Unified glare rating in room based on characteristics of observation and lay-out of luminaires, developed by IEC and required by European standard EN 12464-1 (see page 574).

CRI Minimum colour rendering index of sources (see pages 555 et 556).

Notes: Indoor sports facilities provide for 3 levels of lighting based on their use, specifically: Non-competitive sports, Competitive sports at local level, Competitive sports at national and international level.

Lighting engineering

Average illuminations maintained by EN 12464-2: 2012 (outdoor environments)

Outdoor activities, task and activities	Em (lx)	Uo	Glare RGL	CRI
GENERAL AREAS AND CLEANING OF WORKPLACES				
Pavements Circulation areas with slow vehicles (max. 10 km/h) Movement of vehicles (max 40 km/h)	5 10 20	0,25 0,25 0,40	50 50 45	20 20 20
Pedestrian crossings and loading/unloading from vehicles AIRPORTS	50	0,40	50	20
Hangar parking Terminal parking Loading Zone	20 20 20	0,10 0,25 0,25	55 50 50	20 20 20
Aircraft maintenance area	200	0,50	45	60
INDUSTRIAL SITES AND WAREHOUSES				
Loading and unloading of large solid goods Loading and unloading of goods, lifting and descending areas for cranes Covered loading areas, information reading, use of tools Demanding installations and inspections	20 50 100 200	0,25 0,40 0,50 0,50	55 50 45 45	20 20 20 60
PARKING AREAS				
Light traffic (parking of shops and homes, bicycle parks) Medium traffic (parking of supermarkets, offices, industrial plants, sports and multipurpose complexes)	5 10	0,25 0,25	56 50	20 20
Heavy traffic (parking in large shopping centers and complexes of sports and multipurpose buildings)	20	0,25	50	20
RAILWAYS AND TRAMWAYS				
Open areas, train stops Open areas, small number of passengers (e.g. rural and local trains) Open areas, average number of passengers (e.g. suburban or regional trains or	5 10 20	0,20 0,25 0,30	55 50 45	20 20 20
intercity services) Open areas, large number of passengers (e.g. intercity services) Open areas, freight areas	50 20	0,40 0,40	45 50	20 20
Covered areas, small number of passengers (e.g. suburban or regional trains or intercity services)	50	0,40	45	40
Covered areas, large number of passengers (e.g. intercity services) Covered areas, goods areas, short-term service Covered areas, goods areas, continuous service Tracks in passenger station areas, including parking areas	100 50 100 10	0,50 0,40 0,50 0,25	45 45 45 50	40 20 40 20
Sidewalks in railway areas, open pedestrian bridges Level crossings Maintenance areas for trains and locomotives	10 20 20	0,25 0,40 0,40	50 50 45 50	20 20 20 40
Maintenance areas for railway yards Stairways, small number of passengers Stairways, large number of passengers	30 50 100	0,40 0,40 0,50	50 45 45	20 40 40
Inspection pit	100	0,50	40	40

LEGEND

Em Average horizontal illuminances maintained referring to the reference surface of the application.

Uo Minimum uniformity of illumination on the reference plane.

RGL Limit value of the glare Rg (Glare Rating) based on the observation characteristics and the layout of the luminaires, developed by the CIE and required by the European standard EN 12464-2.

CRI: Minimum color rendering indexes for sources (see pages 555 and 556).

573

U.G.R. - Unified Glare Rating

UGR is a unified international index developed by CIE (Commission Internationale de l'Eclairage) in publication 117 of 1995, to **evaluate direct glare** in every specific application based on the position of luminaires, room characteristics (dimensions, reflections), and on the observation point of workers.

UGR reference values on CIE tables range between 10 and 30 in steps of 3 units (10, 13, 16, 19, 22, 25 and 28) and apply to both directions of view (transverse and longitudinal) to the luminaire: the lower the value, the less direct glare.

European standard EN 12464-1 for the lighting of indoor workplaces requires a UGR value for every application. Respecting the UGR value in workplaces with VDTs is a necessary but not sufficient condition because the average luminance requirement for luminaires (1000-3000 cd/m²) is still in effect (see the tables on the previous pages for specific values).

UGR tables are supplied for each luminaire, but are valid only for normal workplaces.

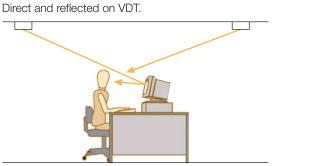
Example of calculation

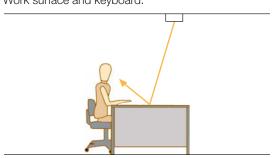
office with 15W OCW luminaire EN 12464-1 requires a UGR value of \leq 19 for this application. Data for room and installation:

• Room height: 3.2 m

Glare

- Height from worker's eye to luminaire H: 3.2-1.2= 2 m
- Transverse distance $8.0 \text{ m} \div 2 \text{ m} = 4 \text{H}$
- Longitudinal distance $16.0 \text{ m} \div 2 \text{ m} = 8 \text{H}$
- Reflection index: Ceiling 70%; Walls 50%; Floor 20%.


Calculations


 Transverse UGR: 	15.2	Value in direction of observation
	11.0	transverse to luminaires.
 Longitudinal UGR: 	0.11	Value in direction of observation
		longitudinal to luminaires.

UGR Table - office luminaire 15W OCW

Ceilin	g	70	70	50	50	30	70	70	50	50	30
Walls		50	30	50	30	30	50	30	50	30	30
Floor		20	20	20	20	20	20	20	20	20	20
Enviro	nment		Trans	sverse	view			Lonai	tudina	al view	,
X	Y		of I	umina	aire				umina		
2H	2H	15.6	16.6	15.8	16.8	17.1	16.1	17.2	16.4	17.4	17.6
	ЗH	15.4	16.4	15.7	16.6	16.9	16.0	16.9	16.3	17.2	17.4
	4H	15.3	16.2	15.7	16.5	16.8	15.9	16.8	16.2	17.0	17.3
	6H	15.3	16.1	15.6	16.4	16.7	15.8	16.6	16.1	16.9	17.2
	8H	15.2	16.0	15.6	16.3	16.6	15.8	16.6	16.1	16.8	17.2
	12H	15.2	16.0	15.6	16.3	16.6	15.7	16.5	16.1	16.8	17.1
4H	2H 3H 4H 6H 8H 12H	15.5 15.4 15.3 15.2 15.2 15.1	15.8 15.7	15.7 15.7	16.4 16.3 16.1 16.1	16.7 16.6 16.5 16.5	15.9 15.8 15.7 15.6 15.6 15.6	16.1	16.3 16.2 16.1 16.0 16.0 16.0	17.1 16.9 16.7 16.6 16.5 16.4	17.4 17.2 17.1 17.0 16.9 16.9
8H	4H 6H 8H 12H	15.2 15.1 15.0 15.0		15.6 15.5 15.5 15.5	15.9 15.9	16.4 16.3	15.6 15.5 15.5 15.4	16.1 16.0 15.9 15.8	16.0 16.0 15.9 15.9	16.5 16.4 16.3 16.2	16.9 16.8 16.8 16.7
12H	4H 6H 8H		15.4		15.9	16.3			15.9	16.4 16.3 16.2	

Work surface and keyboard.

Electrical engineering and electronics

Marks and standards

The single European mark ENEC (European Norms Electrical Certification) certifies that a luminaire conforms to EN European standards. IMQ is one of the European certification bodies belonging to ENEC. Luminaires approved by IMQ on the basis of European standards are therefore ENECcertified.

All 3F Filippi luminaires bear the CE marking. This marking attests to be fact that the luminaires conform to the requirements set out in Community Directives for electrical materials and that they may be freely marketed throughout the European Union.

Directives applicable to lighting products are:

- the 2014/35/UE low-voltage directive
- the 2014/30/UE electromagnetic compatibility directive
- the Ecodesign directive 2009/125/EC
- the RoHS 2011/65/EU directive

The acronym EN refers to the European standards issued by CENELEC (European Committee for Electrotechnical Standardisation). These must be adopted by all EU member states by means of national regulatory bodies (in Italy, the CEI). For luminaires, the reference standards are IEC EN 60598-1 (CEI 34-21) and IEC EN 60598-2-22 (CEI 34-22, luminaires for emergency lighting). Compliance with these standards ensures that the luminaires are properly manufactured and can be used to build electrical systems that conform to the requirements stipulated by the applicable legislation (for example, Italian Decree Law no. 37 of 22 January 2008).

Protection against electric shock

Standard IEC EN 60598-1 (CEI 34-21).

Luminaires are divided into four classes according to the type of protection provided against electric shock.

	Main features of the material	Safety precautions voltage	Symbols
Class 0	No earthing protection device	Environment without earth	
Class I	Earthing protection device provided	Connection to protective earth	
Class II	Additional insulation but no earthing protection device	No precaution necessary	
Class III	Intended for very low safety voltage	Connection to very low safety voltage	

Electrical engineering and electronics

Electronic wiring

The wiring of the Halogen Free LED luminaires are made with leading brand electronic drivers, which ensure extremely high levels of reliability and efficiency.

The main technical specifications of the typical LED drivers:

- 230Vac, 50-60Hz power supply, with tolerance+/- 10% of line voltage.
- 230Vdc power supply, with tolerance +/- 10%.
- Power factor greater than 0.95 (in general, with exceptions).
- Efficiency > 90%.
- Suitable for centralised emergency lighting pursuant to EN 50172 and EN 60598-2-22.
- ENEC certification.
 Thermal and short-circuit protection against overloads and voltage surges.
- Protection against excess temperatures.
- Suitable for environments with temperatures from -20° C to $+30^{\circ}$ C.
- Suitable for environments with max RH 85% (driver + LED).
- Protection class I; on request, we can check if it is possible to manufacture the luminaires with protection class II.
- Constant current LED power supply.
- Very low FLICKER value <4%: this value is not consciously perceivable to humans and does not interfere with video filming.

LED driver types:

3F Filippi uses two constant current driver types, depending on the type of luminaire:

• SELV Safety Extra Low Voltage output, below 60Vdc.

- SELV Driver/LED devices can be used in total safety.
- NON SELV without output voltages greater than 60Vdc, which may represent a hazard if touched.
- NON SELV Driver/LED luminaires may only be opened by a qualified electrician with special tools.

Installation notes:

For correct choice of the protective circuit breakers, check the inrush current and instructions provided by the manufacturers of the LED drivers. To assist in this task, when requested 3F Filippi will provide the technical data sheets for the drivers used and specify the quantity for each luminaire. These indications relate to the bill of materials at the time of communication and thus may be subject to changes due to technical developments and/or provisioning and production requirements; data should therefore be checked before proceeding with the order.

For use at low temperatures (down to -30°C) and/or high humidity environments, we recommend use of ICE series luminaires which provide protection against RH of up to 95% for the entire wiring system (driver + LED).

For applications in environments in which disturbances on the power network may be present and/or involve use at low temperatures, surge protection devices should be fitted on the power supply and any causes of undervoltages eliminated.

For further information on use in harsh conditions, for instance with the presence of corrosive chemicals, extreme temperatures, high humidity (e.g. composting systems, cold stores, mushroom beds, greenhouses, swimming pools, saunas, spas etc.), contact our Technical department.

Dimmable electronic wiring

Dimmable electronic drivers allow manually or automatically controlled "dynamic light systems" to be designed, in which the light level can be adapted to the visual task and/or to variation of natural light entering from the outside (see chapter on "Light Management"). In addition to the advantages of electronic wiring, dimmable drivers allow the light level to be adjusted over an extremely wide range, optimising the lighting system for energy savings and visual comfort.

The lamps are dimmed by a control signal carried by wires directly to the ballast from devices such as potentiometers, buttons, light and/ or presence sensors, used individually or managed by control units.

Dimmable electronic wiring can be implemented with:

Drivers with 1-10V interface, with dimming by means of an analogue signal ranging from 1V DC (minimum light) to 10V (maximum light).
Drivers with DALI interface, with digital dimming according to the new standard Digital Addressable Lighting Interface protocol.
Dimmable electronic wiring, particularly DALI type, also allows creation of appropriate lighting systems for applications in plants managed by intelligent (Bus) systems.

For further information on use in harsh conditions, for instance with the presence of corrosive chemicals, extreme temperatures, high humidity (e.g. composting systems, cold stores, mushroom beds, greenhouses, swimming pools, saunas, spas etc.), contact our Technical department.

General information for luminaires with DALI drivers

Devices with DALI drivers can be used in systems without a control system (centralized and/or stand-alone) with provided that a "bridge" is made on the DA-DA terminals of the luminaire.

3F Filippi however recommends connecting DALI devices to control systems (centralized/stand-alone/DALI repeater).

3F Filippi shall therefore bear no responsibility for any "malfunctions" of DALI luminaires installed in systems without a regulation system, or with a poorly programmed one.

Assessing compatibility between regulation systems and drivers, as well as finding the technical data required for lighting design, are the sole responsibility of the designer of the electrical system.

To assist in this task, when requested 3F Filippi will provide the technical data sheets for the drivers used and specify the quantity for each luminaire. These indications relate to the bill of materials at the time of communication and thus may be subject to changes due to technical developments and/or provisioning and production requirements; data should therefore be checked before proceeding with the order.

Luminaires powered by a centralised safety source.

Luminaires equipped with EN 50171 and/or EN60598-2-22 compliant, and/or EL marked drivers can be powered by a centralised emergency system not contained within the luminaire (e.g. auxiliary power units).

Centralised 230Vdc power supply

Normally, when the centralized source is in direct voltage 230Vdc (nominal), the following occurs in an emergency:

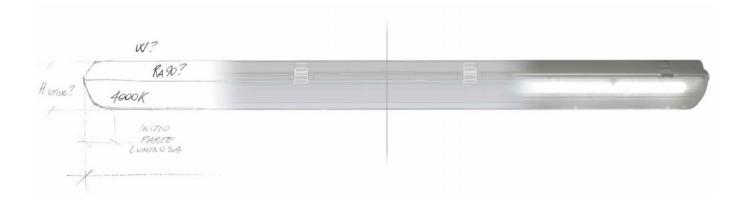
- Luminaires equipped with DALI drivers will reduce their power and thus their output flux by 15%.
- Luminaires equipped with NON-DIMMABLE drivers will maintain their power and thus their output flux at maximum level.
- For the 3F LEM range of luminaires, contact our sales or technical department.

Centralised 230Vac power supply

When the centralised source is 230Vac alternating current, the following operation will occur in emergency mode:

- Luminaires equipped with DALI drivers will increase (when the DALI system is offline), by default, their power and thus their output flux to the maximum level (100%).
- Luminaires equipped with NON-DIMMABLE drivers will maintain their power and thus their output flux at maximum level.

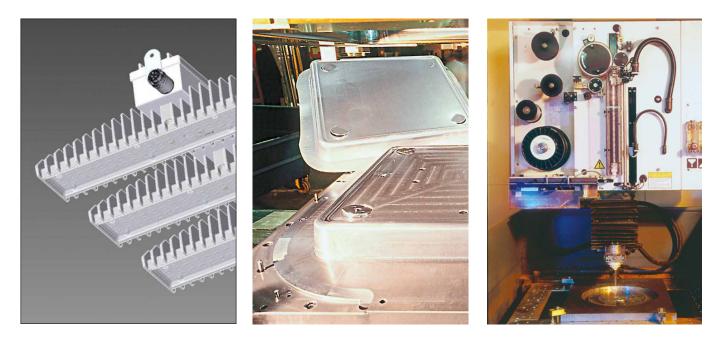
Assessing compatibility between the centralised source and the drivers, as well as that the communication times between the normal power supply and the emergency one and the duration, are the sole responsibility of the designer of the electrical system. To check the conformity of the drivers with the EN 60598-2-22 standard and the AC/DC functions, consult the technical data sheets downloadable from website.


Mechanics and Design

From the design to the finished product

For 3F Filippi, attention to detail, the quality of the light and the reliability of our products are the starting point on the path we travel alongside our customers.

Efficiency is the culmination of our journey – we create a light that can show and give emotion, while hiding its technical soul, able to highlight what it illuminates.


The right product starts first with a discussion, to gain an understanding of the customer's needs and expectations.

Our products are made with a craftsman's passion and constant innovation, research and attention to design and details: they combine aesthetics and functionality, elements of precision and new technologies, maintenance and reliability facilities, and are excellent value for money.

3F Filippi's entire production is performed inside the headquarters in Pian di Macina (province of Bologna, Italy), from moulding of plastics and metals to machining and soldering and painting, all totally automated.

The thoroughness and precision of the checks throughout every phase of the company's processes guarantee constant quality of all our products over time.

3D modelling

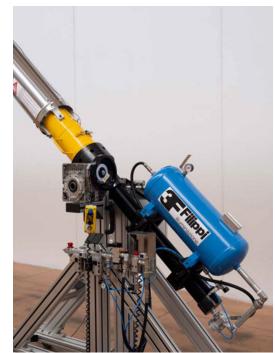
Mould

EDM tool

Our care for the environment goes hand-in-hand with our 0-mile production, whereby all our products are assembled in the same Bologna plant where they are produced.

Ball throw resistance certification (DIN 18032-3)

This certification ensures the suitability of the device in gyms, environments with gymnastic and sports activities.


The 3F LEM SPORT devices in the catalog are certified "Resistant to throwing the ball according to DIN 18032-3" CSI certification (IMQ group).

3F Filippi for the luminaires deriving from the standards issues an appropriate declaration of conformity and suitability following scrupulous tests laboratory.

The tests are performed in the 3F Filippi laboratories using a handball ball-gun.

The speed and launch angle of the gun is adjustable to meet the requirements of DIN 18032-3

Test for ceiling luminaires

The device is hit 36 times by a handball (almost half a kilo) at a speed of $16.5 \pm 0.8 \text{ m/s}$ (~ 60 km/h). 12 times the ball must be thrown perpendicularly against the device and 12 times from two different directions (transversal and longitudinal) at an angle of 60° .

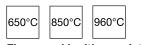
Test for wall luminaires

The device is hit 54 times by a handball (almost half a kilo) at a speed of 23.5 ± 1.2 m/s (~ 85 km/h). For 30 times the ball must be thrown at 90° perpendicularly against the device and for 12 times from two different directions (transverse and longitudinal) at an angle of 45°.

At the end of the tests, the luminaire must not show any alterations that limit its solidity, operation and safety.

Infopoin

Mechanics


Marks and standards

Luminaires with electronic wiring

bearing this mark are versions with **limited surface**

(EN 60598-2-24 and IEC 34-38), and therefore suitable for installation in environments with greater risk in case of fire as per variant V3 of IEC 64-8.

Flame and ignition resistance 650°C, 850°C, 960°C. The materials in luminaires bearing this mark have passed the glowwire test at these temperatures in compliance with EN 60598-1 (IEC 34-21).

Temperature class

Standard 50014 defines the temperature classes as the maximum temperature of the external surface of the housing of the luminaire in the case of abnormal operation (EN 60598-1 Appendix C): T1 max 450°C, T2 max 300°C, T3 max 200°C, T4 max 135°C, T5 max 100°C, T6 max 85°C. Luminaires not suitable for direct installation on normally flammable surfaces (suitable only for installation on non-flammable surfaces).

Note: the symbol is present in edition 9 of IEC EN 60598-1. Unless otherwise indicated by the above symbol, luminaires are suitable for installation on normally flammable surfaces. A surface is considered normally flammable if its ignition temperature is at least 200°C and if it does not deform or soften at such a temperature.

Mechanical strength

5J Luminaires must have adequate mechanical strength and be built to sustain stress deriving from any unprotected treatment during normal use. Luminaires with a closing diffuser must pass a test with impact energy of 6.5J; impact is produced by letting a 50 mm diameter, 0.51 kg steel ball fall from a height of 1.3 metres, in compliance with IEC EN 60598-1 (CEI 34-21).

The IK Code designates the level of protection of electrical equipment housings against mechanical impact (EN 62262 and IEC 70-4).

Coating and standard colours

Polyester-based paint, **white** or **grey Ral 9006**, UV stabilised, on hot galvanised steel sheet. Salt spray resistance over 500hrs and damp resistance equal to 700hrs.

Epoxy-polyester powder-coated in **white Ral 9010**, or **grey Ral 9006**, UV stabilised, applied with triboelectric system for constant and uniform thickness, oven polymerised at 180°C, with phosphate degreasing pretreatment using heavy iron salts. Salt spray resistance of 500h. IP

Ingress protection of housing (IP rating) As per EN 60598-1 (IEC 34-21).

1st number: protection against penetration by solid objects and against contact with live parts.

- 0 No special protection.
- 1 Protected against solid objects larger than 50 mm. E.g. hands.
- 2 Protected against solid objects larger than 12 mm. E.g. fingers.
- 3 Protected against solid objects larger than 2.5 mm. E.g. tools.
- 4 Protected against solid objects larger than 1 mm. E.g. threads or tapes.
- 5 Protected against dust penetration that could damage the luminaire.
- 6 Fully protected against dust.

2nd number: protection against penetration by liquids.

- 0 No special protection.
- 1 Protected against vertical water drips.
- 2 Protected against vertical water drips when tilted up to 15°.
- 3 Protected against rain when tilted up to 60°.
- 4 Protected against splashes of water from any direction.
- 5 Protected against jets of water coming from any direction.
- 6 Totally protected against sea waves or powerful jets of water.

Protection of housing from impacts (IK rating)

Requirements as per IEC 34-139. Luminaires - application of code IEC 62262 IK

Resistance to a blow from an object weighing 200 g IK02 0.2 J dropped from a height of 10 cm. Resistance to a blow from an object weighing 250 g 0.5 J IK04 dropped from a height of 20 cm. Resistance to a blow from an object weighing 500 g 2 J IK07 dropped from a height of 40 cm. Resistance to a blow from an object weighing 1.7 kg 5 J IK08 dropped from a height of 30 cm. Resistance to a blow from an object weighing 5 kg 10 J IK09 dropped from a height of 20 cm. Resistance to a blow from an object weighing 5 kg 20 J IK10 dropped from a height of 40 cm.

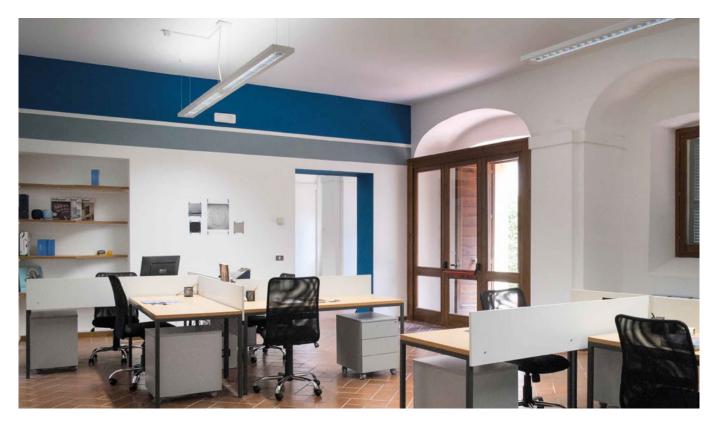
Resistance to corrosive substances

Acetion e - - - - - - A Areanic acid up to 10% - - A - - A Areanic acid up to 20% - - A A A Formic acid up to 20% - - - - - - Formic acid up to 20% A A A A A A Formic acid up to 20% A A A A A A Formic acid up to 20% A A A A A A Staphurc acid up to 20% A A A A A A Staphurc acid up to 20% A A A A A A Staphurc acid up to 20% A A A A A A A Staphurc acid up to 20% A	Chemical substance	Methacrylate	Polycarbonate	Glass	Aluminium	Steel	Stainless steel
Arsenic acid up to 20% • <td></td> <td>-</td> <td>-</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td>		-	-	•	•	•	•
Chric acid up to 10% • ·	Acetic acid up to 10%	_	Δ	•	-	Δ	•
Hydrochloric acid up to 20% • • • - <td< td=""><td></td><td>•</td><td>•</td><td>Δ</td><td>-</td><td>Δ</td><td></td></td<>		•	•	Δ	-	Δ	
Chromic acid Δ <		•	•	•	Δ	Δ	Δ
Formic acid up to 30% Δ - - Δ Δ Nitria acid up to 20% Δ Δ - - Δ Seawater • Δ Δ Δ Δ Δ Seawater • Δ Δ Δ Δ Δ Stoppropylatohol Δ - • Δ Δ Δ Anmonia - - Δ Δ Δ Δ Δ Aniline - - Δ Δ Δ Δ Δ Δ Petrol • Δ - · Δ Δ Δ Δ Benzole - - Δ Δ Δ Δ Δ Δ Benzole - - - ·	Hydrochloric acid up to 20%	•	•	Δ	-	_	_
Nitric acid up 1o 20% Λ Λ Λ Λ - - - Λ Subpurie acid up to 30% • Λ <td></td> <td>Δ</td> <td>Δ</td> <td>Δ</td> <td>Δ</td> <td>Δ</td> <td>Δ</td>		Δ	Δ	Δ	Δ	Δ	Δ
Sulphuric acid up to 30% • Λ Λ Λ Λ Seawater • Λ Λ Λ Λ Steptorol Λ - Λ Λ Λ Isopropyl alcohol Λ - Λ Λ Λ Ammonia - - Λ Λ Λ Aniline - - Λ Λ Λ Petrol Λ Λ Λ Λ Λ Benzole - - Λ Λ Λ Λ Bronine - Λ Λ Λ Λ Λ Bronine - Λ Λ Λ Λ Λ Sea climate · Λ Λ Λ Λ Λ Chloroform - - - - - - - Chloroform - - · Λ Λ Λ Λ Calcium chloride · · · · · - - Ether <		Δ	-	_	-	Δ	Δ
Seiwater Λ		Δ	Δ	Δ	-	-	Δ
Ethyl alcohol Δ - Δ Δ Δ Isopropyl alcohol Δ - Δ Δ Δ Ammonia - - Δ Δ Δ Anilline - - Δ Δ Δ Anilline - - Δ Δ Δ Benzole - - Δ Δ Δ Bromine - Δ Δ Δ Δ White line • Δ Δ Δ Δ Dissel clinate • Δ Δ Δ Δ Liquid chlorine (fumes) - - - - - Calcium chloride • Δ Δ Δ Δ Hexane Δ • • Δ Δ Δ Petroleum ether • - • • • • Phetroleum ether • - • • • • • Ethyl ether - - • • • <td>Sulphuric acid up to 30%</td> <td>•</td> <td>•</td> <td>Δ</td> <td>-</td> <td></td> <td></td>	Sulphuric acid up to 30%	•	•	Δ	-		
Isogropyl alcohol A mmonia · · A A A A A A A A A A A A A A A A A		•	•	\triangle	Δ	Δ	Δ
AmmoniaΔA•Aniline•••••Aniline••• </td <td></td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td>Δ</td>			•	•	•		Δ
Aniline·· </td <td>Isopropyl alcohol</td> <td>Δ</td> <td>-</td> <td>•</td> <td>Δ</td> <td>Δ</td> <td>Δ</td>	Isopropyl alcohol	Δ	-	•	Δ	Δ	Δ
PetrolΔ····BenzoleΔΔBromine-ΔΔΔWhite lime·Δ-·Diesel oils·Δ-·Sea climate··ΔΔΔLiquid chlorine (fumes)····ΔCalcium chloride···ΔFerric chloride···ΔHexane····Petroleum ether····Ethyl ether····Phonols-···Hydrocarbons-···Food oils and fats····Mineral oils····Vegetable oils····Ozone·····PVC with plasticizers····PVC with plasticizers····PVC with plasticizers····PVC with plasticizers····Caustic soda·····Corper sulphate·····Corper sulphate·····Corper sulphate·····Caustic soda·· <td>Ammonia</td> <td>•</td> <td>-</td> <td>Δ</td> <td>•</td> <td>Δ</td> <td>•</td>	Ammonia	•	-	Δ	•	Δ	•
Benzole - - ·<	Aniline	-	-	•	•	•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•	\triangle	•			
White line Δ - • • Diesel oils Δ Δ Δ Δ Liquid chlorine (fumes) - - - - Liquid chlorine (fumes) - - - - Chloroform - - - - - Calcium chloride • • Δ Δ Δ Ferric chloride • Δ • Δ Δ Hexane • Δ • • Δ Ether - - • • • Phenols - - • • • Phenols - - • • • Hydrocarbons - - • • • Silicone oils Δ • • • • • Silicone oils Δ • • • • • • Silicone oils Δ • • • • • • •		-		•	Δ	Δ	Δ
Diesel oilsΔ••••Sea climate•ΔΔΔΔΔLiquid chlorine (fumes)ChloroformΔΔΔCalcium chloride•ΔΔΔΔFerric chloride•ΔΔΔΔHexane•Δ••ΔΔEther••••Petroleum ether•-••••Ethyl ether••••Phenols••••Glycerine•Δ••••Hydrocarbons••••Silicone oilsΔ-••••Solia and fatsΔ•••••Vegetable oilsΔ-••••Ozone•Δ•••Potassium permanganate•••••••PVC with plasticizersCaubin turk turk turk turk turk turk turk turk	Bromine	-		•	\triangle		
Sea climate • Δ Δ Δ Δ Liquid chlorine (turnes) - - - - - Chloroform - - • Δ Δ Δ Calcium chloride • • • Δ Δ Δ Ferric chloride • Δ Δ Δ Δ Δ Hexane • Δ • • Δ Δ Δ Petroleum ether • Δ •		•			-	•	•
Liquid chlorine (fumes)Chloroform Δ Δ Δ Calcium chloride• Δ Δ Δ Δ Ferric chloride• Δ Δ Δ Δ Hexane• Δ ••••Ether••••Petroleum ether• Δ ••••Ethyl ether••••Phenols••••Glycerine• Δ ••••Hydrocarbons••••Food oils and fats• Δ ••••Vegetable oils Δ •••••Ozone•••••Potassium permanganate•-••••Voluti plasticizers••••Soda••••Caustic soda•••••Zinc sulphate•••••••Carbon tetrachloride-••••••Carbon tetrachloride•••••Coper sulphate••	Diesel oils	•	\triangle		•	•	•
Chloroform··ΛCalcium chloride···ΛΛFerric chloride·ΛΛΛHexane·Λ··ΛEther-····Petroleum ether·····Ethyl ether·-···Phenols····Glycerine·Λ····Hydrocarbons····Hordal fats······Nineral oils·-····Vegetable oilsΛ·····Ozone·-·····PVC with plasticizers-·····Soda·-·····Caustic soda·-·····Aluminium sulphate········Carbon tetrachloride-········Carbon tetrachloride··········Hydrocarbons················· <td></td> <td>•</td> <td>•</td> <td>Δ</td> <td>Δ</td> <td>Δ</td> <td>Δ</td>		•	•	Δ	Δ	Δ	Δ
Calcium chloride••·ΔΔFerric chloride•ΔΔΔHexane·Δ·ΔΔHexane···ΔΔEther··•Petroleum ether····•Ethyl ether·-···Phenols···Glycerine·Δ···Hydrocarbons···Silicone oilsΔ····Koto oils and fats·····Vegetable oilsΔ····Diesel oil - naphtha···Potassium permanganate·-···PVC with plasticizers···Soda·-····Caustic soda·-····Chuminum sulphate·······Carbon tetrachloride-·····Carbon tetrachloride-·····For oil plate·······Corbon tetrachloride·······Carbon tetrachloride···	Liquid chlorine (fumes)	-	-	-	•	-	-
Ferric chloride·ΛΛΛHexane·Λ·ΛΛEther-····Petroleum ether·Λ···Ethyl ether·-···Phenols···Glycerine·Λ···Hydrocarbons···Methanol···Silicone oilsΛ····Sold fats·····Vegetable oilsΛ····Ozone······PVC with plasticizers-····Soda······Caustic soda······Aluminium sulphate······Carbon tetrachloride······Ocone·······Oto of tetrachloride······Oto of tetrachloride······Oto of tetrachloride······Oto of tetrachloride······Oto of tetrachloride·····<	Chloroform	-	-	•	•	•	Δ
Hexane Δ \bullet Δ Δ Δ EtherPetroleum ether \bullet Δ \bullet -Ethyl ether \bullet \bullet -Phenols Δ \bullet -Glycerine \bullet Δ \bullet \bullet -Hydrocarbons \bullet \bullet -Silicone oils Δ \bullet \bullet Food oils and fats \bullet \bullet \bullet -Mineral oils \bullet \bullet \bullet Vegetable oils Δ Diesel oil - naphtha \bullet \bullet -PVC with plasticizers \bullet -Soda Δ Δ Caustic soda Δ Δ Aluminium sulphate Δ Δ Corone Δ Δ Corone Δ Caustic soda Δ Corone Δ CoroneCaustic sodaCarbon tetrachlorideCarbon tetrachloride<	Calcium chloride	•	•	•	•	Δ	Δ
Ether···Petroleum ether Δ ···Ethyl ether···Phenols Δ ··Glycerine Δ ···Hydrocarbons···Methanol···Silicone oils Δ ····Solicone oils Δ ····Silicone oils Δ ····Mineral oils·-···Vegetable oils Δ ····Diesel oil - naphtha···Potassium permanganate·····PVC with plasticizers···Soda···Caustic soda·-····Aluminium sulphate······Carbon tetrachloride-·····Carbon tetrachloride-·····Diplane-······	Ferric chloride	•	Δ		Δ	Δ	
Petroleum ether·Δ··Ethyl ether··Phenols···Glycerine·Δ···Hydrocarbons···Methanol···Silicone oilsΔ····Food oils and fats·····Mineral oils·-···Vegetable oilsΔ····Diesel oil - naphtha···Ozone·-····PVC with plasticizers-····Soda····Zinc sulphate······Copper sulphate······Toluene-······	Hexane	•	\triangle	•	•	Δ	Δ
Ethyl ether••PhenolsΔ••Glycerine•Δ•••Hydrocarbons•••MethanolΔ••Silicone oilsΔ••••Food oils and fats•Δ•••Mineral oils•••Vegetable oilsΔ••••Diesel oil - naphtha•••Ozone•-•Δ••PVC with plasticizers•••Soda•ΔΔAluminium sulphate••••••Carbon tetrachloride-•••••Toluene•••••Output-••••••Output••••Ozone••••PVC with plasticizers•••••••••••••••••••••••••••••••	Ether	-	-		•	•	•
PhenolsΔ•Glycerine·Δ···Hydrocarbons···Methanol·Δ··Silicone oilsΔ·····Silicone oilsΔ·····Food oils and fats······Vegetable oilsΔ·····Diesel oil - naphtha····Ozone·-·····Potassium permanganate······PVC with plasticizers····Soda·······Zinc sulphate·······Copper sulphate·······Toluene-·······		•			•	•	•
Glycerine·Δ···Hydrocarbons···Methanol···Silicone oilsΔ····Food oils and fats·Δ···Mineral oils·-···Vegetable oilsΔ····Diesel oil - naphtha···Ozone····PVC with plasticizers···Soda···Caustic soda···Aluminium sulphate······Copper sulphate······Toluene-······		•	-	•	•	•	
Hydrocarbons••••MethanolΔ••<		_		•		•	•
Methanol·Δ••Silicone oilsΔ•••••Food oils and fats•Δ••••Mineral oils•-••••Vegetable oilsΔ•••••Diesel oil - naphtha••••Ozone•-•Δ•••PvC with plasticizers•Δ••Soda•ΔΔ•Caustic soda•ΔΔZinc sulphate•••ΔΔΔCopper sulphate•••ΔΔΔCarbon tetrachloride••••Toluene•••••		•	\triangle	•	•	•	•
Silicone oilsΔ•••Food oils and fatsΔΔ••Mineral oils••Vegetable oilsΔ•••Diesel oil - naphtha••Ozone•-••Potassium permanganate•••PVC with plasticizers•Soda•Caustic soda•Zinc sulphate••ΔAluminium sulphate••ΔCarbon tetrachlorideΔToluene•		_	-	•		•	•
Food oils and fatsΔ••Mineral oils––••Vegetable oilsΔ•••Diesel oil - naphtha––••Ozone––•Δ•Potassium permanganate••Δ•PVC with plasticizers––•ΦSoda•–––Caustic soda–––ΔZinc sulphate•••ΔAluminium sulphate•••ΔCarbon tetrachloride––••Toluene––••		-	-	•	Δ	•	•
Mineral oils•••Vegetable oilsΔ••••Diesel oil - naphtha•••Ozone•Δ•Potassium permanganate•••Δ•PVC with plasticizers•••Soda•ΔΔCaustic soda••Zinc sulphate•••ΔΔAluminium sulphate•••ΔΔCarbon tetrachloride•••Toluene••••				•		•	
Vegetable oils Δ •••Diesel oil - naphtha•••Ozone• Δ •Potassium permanganate••• Δ •PVC with plasticizers•••Soda• Δ Δ Caustic soda• Δ Δ Zinc sulphate••• Δ Δ Aluminium sulphate••• Δ Δ Carbon tetrachloride•••Toluene- Δ Δ ••		•	\triangle	•	•	•	
Diesel oil - naphtha•••OzoneΔ•Potassium permanganate••Δ•PVC with plasticizersΔ•Soda•ΔCaustic sodaZinc sulphate•••ΔAluminium sulphate•••ΔCopper sulphate•••ΔCarbon tetrachloride••Toluene-ΔΔ				•	•	•	•
Ozone-·ΔPotassium permanganate··Δ·PVC with plasticizers··Soda·ΔCaustic soda·ΔCaustic soda·ΔZinc sulphate···ΔΔAluminium sulphate···ΔΔCopper sulphate···ΔΔCarbon tetrachloride···Toluene-Δ····		Δ	•	•			•
Potassium permanganate••Δ•PVC with plasticizers••Soda•ΔCaustic soda•Zinc sulphate•••ΔΔAluminium sulphate•••ΔΔCopper sulphate•••ΔΔCarbon tetrachloride•••Toluene-ΔΔ•••			_	•			•
PVC with plasticizers••Soda•ΔCaustic soda•Zinc sulphate•••ΔAluminium sulphate•••ΔCopper sulphate•••ΔCarbon tetrachloride••Toluene-Δ••		•	-	•	•	Δ	•
Soda•ΔCaustic soda•Zinc sulphate•••ΔΔAluminium sulphate•••ΔΔCopper sulphate•••ΔΔCarbon tetrachloride•••Toluene-Δ••••	Potassium permanganate	•	•	•	Δ	•	•
Caustic sodaZinc sulphate••ΔΔAluminium sulphate•••ΔΔCopper sulphate•••ΔΔCarbon tetrachloride•••Toluene-Δ•••		_	-	•	•	•	
Zinc sulphate••ΔΔAluminium sulphate•••ΔΔCopper sulphate•••ΔΔCarbon tetrachloride•••Toluene-Δ•••			•	_	_	_	
Aluminium sulphate••ΔΔCopper sulphate•••ΔΔCarbon tetrachloride•••Toluene-Δ•••		•	-	-	-		
Copper sulphate•••ΔΔCarbon tetrachloride•••Toluene-Δ•••			-				
Carbon tetrachloride••Toluene-Δ••		•	•	•	•		
Toluene – Δ • •		•	•	•	•		
		-	-	•	•	•	•
Trichloroethylene – – • Δ		-	\triangle		•	•	•
	Trichloroethylene	-	-		•	Δ	Δ

The table only provides a rough indication of the maximum amount of various chemical agents in different compositions.

When using these data, bear in mind that they are the results of laboratory tests and are therefore only valid under the same conditions in which the tests were performed; the data should therefore be considered indicative, and it is advisable to perform tests in their actual usage conditions if practical experience is not available.

It is not possible to talk about "compatibility" in general terms, since this depends on:


- Concentration.
- Temperature.
- Contact type.
- Contact duration.
- Mechanical action during contact.
- Simultaneous presence of multiple chemical compounds.
- The function of the potentially attacked material, mechanical stress to which it is exposed and numerous other factors, which are highly variable, making the indications given in this table truthful but general, and therefore not exhaustive.

Some versions of 3F luminaires are also proposed with laminated glass which, in addition to being resistant to the substances listed above, allows for these to be used in environments with food products or with machines with moving parts, with sudden temperature changes and, in general, in all environments requiring total protection against falling fragments.

- = resistant
- $\Delta \qquad = {\rm relatively\ resistant,\ suitability\ to\ be\ evaluated\ on\ basis} \\ {\rm of\ application}$
- = not resistant

Get the best from 3F Filippi

How to use our products correctly

3F Filippi take the utmost care when designing and manufacturing our luminaires so that they stand the test of time. Below are some important indications on how to use our products correctly: following these will allow you to enjoy our products for as long as possible.

- 3F Filippi can only guarantee products exclusively when they are installed according to the installation instructions provided with the luminaires. We therefore recommend you do not install our products in any other way than those indicated. In the event that you have differing requirements, please contact our Sales Network or the 3F Filippi Headquarters to request a technical assessment.
- As with installation, maintenance of 3F Filippi products must also be performed according to the instructions: we therefore recommend keeping these safe so that you can consult them before performing any kind of work on the luminaire.
- 3F Filippi products must only be installed on supports which are not subject to vibrations and mechanical stress this is critical for their correct operation. In the event that it is not possible to avoid this kind of installation, you are invited to contact our Sales Network or the 3F Filippi Headquarters to request a technical assessment.
- Turning on a luminaire leads to an environmental "load" which is often not justified. Despite 3F Filippi's commitment to offering our customers the best energy-saving systems, using lighting only when strictly necessary is still the best way to save money and respect the environment.
- Correct and sensible lighting design can help save more money than you might think: 3F Filippi recommends that lighting projects are carried out by professional, reliable designers who can recommend the best solutions both for you and the environment. Lighting should only be used when necessary.
- 3F Filippi strongly believe in reusing raw materials, and for this reason we are constantly optimising our products to make them more environmentally-friendly. For example, we use a high percentage of recycled board in our packaging, and our luminaires are all produced in a single plant powered by solar panels: these simple measures allow us to limit transport and optimise resources. 3F Filippi invites users to do the same by recycling packaging after installation and correctly disposing of luminaires at the end of their life-cycle.

April 2020

General conditions of sale

The acceptance of orders is always subject to the following conditions:

- The delivery terms are not binding and due to force majeure, they can be changed at any time without recognizing any damage or requests for penalties.
- Goods are delivered ex-works.
- Samples are always supplied carriage forward and invoiced.
- Goods travel at the customer's risk with any means of shipment, both carriage forward and carriage paid.
- The purchaser may not demand the partial or total cancellation of orders nor indemnification for delays and reductions of supply caused by force majeure.
- Payments will be valid if made directly to our headquarters.
- VAT is payable by the customer.
- The Court in whose district the seller has its headquarters will have exclusive jurisdiction in the event of any and all disputes.

Articles on request

Articles marked **On Request** are not normally in our warehouse. Where not specified, delivery dates and prices are to be arranged from time to time based on quantity, production availability, and material procurement times.

Because we are constantly improving our products, the luminaires supplied may differ in details, dimensions, equipment, and accessories from the dimensions and illustrations shown in this catalogue. Therefore, quantities, volumes, and indicated weights are not binding.

Sale through electrical distributors

Code	Item		F	Pack	Page
		Pcs	m³	Gross weight in kg	
A0006	Fil 180 CP620 Structure	1		2.000	186
A0008	Fil 180 CP1240 Structure	1		3.820	186
A0009	Fil 180 CP1550 Structure	1		4.650	186
A0016	32 IF (PVC closing top Fil 180-620)	1		0.230	188
A0018	32 MH (PVC closing top Fil 180-1240)	1		0.430	188
A0019	32 HA (PVC closing top Fil 180-1550)	1		0.530	188
A0021	Fil 180 AB620 (steel closing top)	1		0.250	188
A0023	Fil 180 AB1240 (steel closing top)	1		0.860	188
A0024	Fil 180 AB1550 (steel closing top)	1		1.030	188
A0030	Fil 180 CC (continuous channel kit)	1		0.044	186
A0033	Fil 180 DT (element for branch)	1		0.113	186
A0034	Pair of white cylinders	1		0.057	186
A0035	Aluminium tube 1.5 m white	1		0.500	186
A0036	Fil 180 BL (box for branch)	1		2.350	186
A0038	White articulated connecting element	1		0.150	186
A0039	Pair of white end caps Fil 180	1		0.150	187
A0042	Fil 180 SS (sliding bracket)	1		0.150	187
A0045	Adjustable suspension for channel 1m	1		0.290	187
A0046	Adjustable suspension for channel 1.5m	1		0.300	187
A0047	Adjustable suspension for channel 2m	1		0.340	187
A0052	Fil 15 FP (wall-mounting bracket Fil 180)	1		0.340	188
A0053	Fil 19 BF (cable clip)	1		0.110	188
A0066	Strength. Brack.+Connect. Kit - Fil 180	1		0.500	186
A0090	Bracket/5-pole terminal block	1		0.100	169
A0114	Rose 110 (Adjust. susp.1m wired with 5-pole cable)	1		0.490	187
A0124	Rose 110 (Adjust. susp.1m unwired)	1		0.170	187
A0125	Rose 110 (Adjust. susp.1m wired with 4-pole cable)	1		0.480	187
A0160	Inox clips 3F Linda L660-4pcs	1		0.050	439
A0161	Inox clips 3F Linda L1270-8pcs	1		0.100	439
A0162	Inox clips 3F Linda L1570-10pcs	1		0.150	439
A0170	15BS - L320-L400-L560	1		0.123	267, 282
A0173	15HI - L320-L350-L450	1		0.120	266, 272
A0174	15DP - L560	1		0.125	282
A0175	15GF - L560	1		0.125	282
A0176	15XB - L560	1		0.120	282
A0177	15ZH - L320-L350-L560	1		0.125	267, 272, 282
A0179	15LB - L320-350 pann.met.	1		0.090	267, 272
A0187	Anti-condensation cable gland	1		0.020	290, 440, 462, 473
A0189	Reinforcing bracket Lucequadro for pan./plast.	1		0.480	298
A0202	False ceiling bracket - for luminaire D.220	1		0.800	306
A0204	Grid bracket h40mm - for luminaire D.220	1		0.750	306
A0210	Wireguard 3F Cub	1		5.500	487
A0213	Ceiling-mounted bracket	1		0.820	487
A0214	Metal pan. reinforcing bracket D.220	1		1.200	306
A0242	100m galvanized steel cable coil	1		1.720	415
A0243	500m galvanized steel cable coil	1		8.900	415
A0324	Couple fixed brackets for ceiling - Beta 235	1		0.100	462
A0325	Mounting kit on busbar - Beta 235	1		0.150	463
A0439	Pole mounting diameter 60mm	1		1.250	502
A0440	Pole mounting diameter 76mm	1		1.250	502
A0445	Safety wire H55	1		0.050	266
A0447	3F Linda though line L1570	. 1		0.200	439
A0449	15 GZI (w/brack. Linda L300)	1		0.150	439
A0450	15 RIT (w/brack.+ hooks Linda L660-1270-1570)	1		0.125	439
A0451	15 MBI (w/brack. Linda L300)	1		0.1250	439
A0451	15 FBR (w/brack.+ hooks Linda L660-1270-1570)	1		0.250	439
A0455	Wire guard 180x1330 03F/Linda	1		3.500	439
A0455	Wire guard 180x1330 03F/Linda	1		4.000	439
A0450 A0457	Wire guard 760x1330 03F/Linda/Beta	1		4.000	439, 462, 473
A0457	Wire guard 280x1630 03F/Linda/Beta	1		4.500	439, 462, 473
, 10-100	The gala 2000 too oor / Linda Dela	I		4.000	-100, 402, 470

Code	Item		F	Page	
		Pcs	m³	Gross weight in kg	
A0462	13 GSI (pair of susp. hooks Linda L300)	1		0.060	439
A0463	13 TRM (pair of susp. hooks Linda L660-1270-1570)	1		0.070	439
A0464	26 CSG (pictogram P1 Linda L300)	1		0.025	440
A0465	26 MTH (pictogram P1 Linda L660)	1		0.025	440
A0466	26 DVI (pictogram P2 Linda L300)	1		0.025	440
A0467	26 MVL (pictogram P2 Linda L660)	1		0.025	440
A0468	26 GZM (pictogram P3 Linda L300)	1		0.025	440
A0469	26 PXN (pictogram P3 Linda L660)	1		0.025	440
A0471	Security screws - Beta 235	1		0.080	462
A0477	Safety wire	1		0.050	250, 266, 272
A0483	Sliding bracket Barraluce L	1		0.040	295
A0490	Connection to the earth	1		0.003	356
A0500	13 DH (pair of susp. galvanised steel hooks i3F)	1		0.110	473
A0501	13 HC (pair of susp. stainless steel hooks A3F)	1		0.110	473
A0503	15 CD (pair of bracket and hooks A3F)	1		0.290	473
A0508	20 TKA (casc. conn. line i3F/A3F 1265)	1		0.200	473
A0509	20 ZFE (casc. conn. line i3F/A3F 1565)	1		0.200	473
A0521	Reducing sealing ring – diam.8mm	1		0.025	290, 415, 440, 462, 473, 480, 487
A0528	Wireguard Beta 430 L1251	1		6.500	480
A0529	Wireguard Beta 430 L1551	1		8.000	480
A0620	Spool with stainless steel cable diam. 1,25mm 100 m	1		0.800	181, 187
A0622	Clamp 1 hole - 100 pcs	1		0.350	181, 187
A0632	Couple of brackets for ceiling installation - 3F LEM	1		0.350	414
A0651	3F LEM bracket rotation support	1		0.350	414
A0652	Couple of brackets for ceiling installation - 3F LEM	1		0.100	414
A0653	Couple of fixing carabiniers for chain installation	1		0.150	415, 462, 473
A0654	Pair of wall brackets - 3F LEM	1		3.200	414
A0659	Adjustable clamp 2 holes - 10 pcs	1		0.100	158, 279, 353
A0660	Suspension with adjustment - 1m	1		0.120	157
A0661	Suspension with adjustment - 2 m	1		0.125	157
A0662	Suspension with adjustment - 3 m	1		0.130	157
A0663	Suspension with adjustment - 4 m	1		0.135	157
A0664	Suspension with adjustment - 5 m	1		0.140	157
A0665	Suspension with adjustment - 6 m	1		0.145	157
A0679	5-pole rectangular rose (no cable)	1		0.140	76, 158, 181, 203
A0686	596x596 Diagon frame for Ceiling installation	1		3.000	250
A0693	Suspension with adjustment for Barraluce P - 1m	1		0.130	203
A0694	Suspension with adjustment for Barraluce P - 2 m	1		0.135	203
A0695	Suspension with adjustment for Barraluce P - 3 m	1		0.140	203
A0696	Suspension with adjustment for Barraluce P - 4 m	1		0.145	203
A0697	Suspension with adjustment for Barraluce P - 5 m	1		0.150	203
A0698	Suspension with adjustment for Barraluce P - 6 m	1		0.160	203
A0702	Suction cup for Diagon maintenance	1		0.100	250
A0714	Clamp 2 holes - 100 pcs	1		0.400	76, 157, 279, 353, 415
A0716	Coil galvanized cable diam. 1.5mm - 100m	1		1.000	76, 157, 279, 353
A0717	Coil galvanized cable diam. 1.5mm - 500m	1		7.200	76, 157, 279, 353
A0718	Coil galvanized cable diam. 1.5mm - 1000m	1		12.200	76, 157, 279, 353
A0720	Wieland (white plug)	1		0.100	266, 272
A0721	Wago (white plug)	1		0.100	266, 272
A0722	Ensto (white plug+ adapter)	1		0.100	266, 272
A0725	Wieland (black plug)	1		0.100	266, 272
A0726	Wago (black plug)	1		0.100	266, 272
A0727	Ensto (black plug+ adapter)	1		0.100	266, 272
A0728	Cover for food applications - for 3F LEM 1	1		0.900	414
A0733	Cover for food applications - for 3F LEM 2-3-4-5 (one for each module)	1		0.900	414
A0762	Adjustable suspension for channel 3m	1		0.400	187
A0766	Adjustable suspension for channel 4m	1		0.520	187
A0770	Adjustable suspension for channel 6m	1		0.610	187
A0776	Horizontal rotation bracket 90° 3F LEM 1-2	1		1.000	414
A0777	Horizontal rotating bracket 90° 3F LEM 3 - 3F LEM 2 Sensor	1		1.600	414

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
A0778	Horizontal Rotating Bracket 90° 3F LEM 4	1		2.000	414
A0798	621x621 frame + brackets	1		1.600	266, 272
A0800	Cable locker - 10 pcs	1		0.050	267
A0801	Electric extension with 3F Linux plug DALI-EP	1		0.180	357
A0802	Electric extension with 3F Linux plug	1		0.150	357
A0804	SF 3F Reno 150	1		0.850	226
A0805	SF 3F Reno 200	1		0.850	226
A0806	SM 3F Reno 150	1		1.350	226
A0807	SM 3F Reno 200	1		1.350	226
A0811	Transparent glass with gasket (10pcs)	1		5.000	415
A0812	Printed glass with gasket (10pcs)	1		5.000	415
A0828	Trittico fixing 60x60 metal panels	1		1.400	112
A0829	Trittico Fixing Mineral fiber panels 60x60	1		1.900	112
A0830	Fixing Trittico plasterboard WH	1		0.800	112
A0831	Fixing Trittico plasterboard BK	1		0.800	112
A0835	Couple brackets and hooks for wall - Beta 235	1		0.290	462
A0836	Pair of galvanized hooks for suspension - Beta 235	1		0.110	463
A0837	Pair of stainless steel hooks for suspension - Beta 235	1		0.110	463
A0838	Pair of S-hooks for chain - Beta 235	1		0.100	463
A0870	White connecting element with boss for luminaires	1		0.350	180
A0872	White connecting element to wall with boss for luminaires	1		0.340	180
A0875	Connecting bracket for linear channels or branches	1		0.090	180
A0877	Bracket for T-branch for 3F Travetta	1		0.110	180
A0878	Bracket for X-branch for 3F Travetta	1		0.110	180
A0892	White connecting element 190x190 3F Travetta GR	1		0.930	180
A0894	White connecting element 190x210 3F Travetta GR	1		0.800	180
A0895	White connecting element 190x510 3F Travetta GR	1		1.900	180
A0896	White connecting element 190x810 3F Travetta GR	1		3.080	180
A0897	White connecting element 190x1110 3F Travetta GR	1		4.200	180
A0941	White connecting element lum/wall 810 3F Travetta	. 1		2.850	180
A0942	White connecting element lum/wall 1110 3F Travetta	1		3.950	180
A0951	White branches elem. 190x310 3F Travetta	1		1.100	180
A0952	White branches elem. 190x460 3F Travetta	1		1.650	180
A3007	DALI PCU push button interface	1		0.040	512
A3008	Repeater DALI ext	1		0.100	512
A3009	Repeater DALI DIN	1		0.200	512
A3010	Box for Repeater DALI	1		0.130	512
A3010	Sensor A DALI	1		0.250	526
A3012	Sensor A DALI ext	1		0.250	526
A3012	Sensor A on/off	1		0.250	526
	Sensor A on/off-ext	1			
A3014 A3015	Sensor B Dual-DALI	1		0.250	526 527
	Sensor B Dual-DALI Sensor B DALI ext	1		0.280	528
A3016				0.280	
A3017	Sensor B DALI	1		0.280	527
A3018	Sensor B on/off	1		0.280	527
A3019	Sensor B on/off-ext	1		0.280	528
A3020	Programmer IR DALI	1		0.080	416, 529
A3021	Remote controller IR DALI	1		0.100	415, 530
A3022	IR-Adapter for Smartphone	1		0.080	416, 530, 536
A3023	IR on/off programmer	1		0.100	530
A3024	IP54 fixing	1		0.200	530
A3025	A SLAVE - Sensor	1		0.300	526
A3026	A SLAVE-ext - Sensor	1		0.300	527
A3027	B SLAVE - Sensor	1		0.350	527
A3028	B SLAVE-ext - Sensor	1		0.350	528
A3029	Corridor on/off - Sensor	1		0.300	528
A3030	Corridor on/off-ext - Sensor	1		0.350	529
A3031	Corridor DALI - Sensor	1		0.300	528
A3032	Corridor DALI-ext - Sensor	1		0.350	529
A3032					

Code	Item		F	Pack	Page
		Pcs	m³	Gross weight in kg	
A3034	Corridor SLAVE-ext - Sensor	1		0.350	529
A3035	Sensore HCL DT8	1		0.450	536
A3036	Sensore HCL DT8-ext	1		0.490	536
A3052	Gateway RF BLE	1		0.250	546
A3055	RFxNODE IP54 module	1		0.250	546
A3056	RFxSENSOR IP54 Sensor	1		0.250	546
A3057	DALI-SENSE-HB IP54 Sensor	1		0.250	546
A3058	RFxDRIVER IP20 module	1		0.030	546
A3059	IP66 box for wireless module	1		0.150	547
A3060	DALI-SENSE-BMS sensor	1		0.060	547
A3062	ZQxSERVER Server	1		0.250	547
A3063	RFxETH Gateway	1		0.250	547
A3090	BLE DALI Radio Module	1		0.250	539
A3091	Radio BLE plate keys	1		0.030	539
A3095	EXTENDER IP20	1		0.130	539
A3096	IP67 BLE Radio Module	1		0.150	539
A3097	EXTENDER IP67	1		0.400	539
A3099	Radio BLE command	1		0.030	540
A3100	Kit Arkè support plate keys for A3099	1		0.060	540
A4144	Binario 3F - L1000 - BK	1		1.100	379
A4145	Binario 3F - L2000 - BK	1		2.200	379
A4146	Binario 3F - L3000 - BK	1		3.300	379
A4147	Binario 3F - L4000 - BK	1		4.400	379
A4151	Binario 3F - L1000 - WH	1		1.100	379
A4152	Binario 3F - L2000 - WH	1		2.200	379
A4153	Binario 3F - L3000 - WH	1		3.300	379
A4154	Binario 3F - L4000 - WH	1		4.400	379
A4158	Binario 3F - L1000 - GR	1		1.100	379
A4159	Binario 3F - L2000 - GR	1		2.200	379
A4160	Binario 3F - L3000 - GR	1		3.300	379
A4161	Binario 3F - L4000 - GR	1		4.400	379
A4166	Feeding head DX - GR	1		0.100	379
A4167	Central feeding - GR	1		0.200	380
A4168	Flexible connecting element - GR	1		0.210	381
A4169	L-joint - EXT - GR	1		0.200	381
A4170	T-joint - EXT + SX - GR	1		0.290	382
A4171	Cross joint - GR	1		0.390	382
A4172	End cap - GR	1		0.010	380
A4173	PVC closing top - L1000 - GR	1		0.070	383
A4174	Feeding head DX - WH	1		0.100	379
A4175	Central feeding - WH	1		0.200	380
A4176	Flexible connecting element - WH	1		0.210	381
A4177	L-joint - EXT - WH	1		0.200	381
A4178	T-joint - EXT + SX - WH	1		0.290	382
A4179	Cross joint - WH	1		0.390	382
A4179		1		0.010	380
A4180 A4181	End cap - WH	1		0.070	383
A4181	PVC closing top - L1000 - WH			0.050	380
	Linear connecting element - GR	1			
A4183	Steel bracket for ceiling mounting	1		0.020	383
A4188	Linear connecting element - WH			0.050	380
A4190	Feeding head SX - GR	1		0.100	379
A4191	L-joint - INT - GR	1		0.200	381
A4192	T-joint - EXT + DX - GR	1		0.290	382
A4193	T-joint - INT + SX - GR	1		0.290	382
A4194	T-joint - INT + DX - GR	1		0.290	382
A4196	feeding head SX - WH	1		0.100	379
A4197	L-joint - INT - WH	1		0.200	381
A4198	T-joint - EXT + DX - WH	1		0.200	382
A4199	T-joint - INT + SX - WH	1		0.290	382
A4200	T-joint - INT + DX - WH	1		0.200	382

Code	Item		Pack			
		Pcs	m³	Gross weight in kg		
A4204	Adjustable suspension boss + 1.5m bracket	1		0.080	383	
A4205	Adjustable suspension boss + 3m bracket	1		0.100	383	
A4206	Adjustable suspension boss + 5m bracket	1		0.160	383	
A4209	Feeding head DX - BK	1		0.100	379	
A4210	Central feeding - BK	1		0.200	380	
A4211	Flexible connecting element - BK	1		0.210	381	
A4212	L-joint - EXT - BK	1		0.200	381	
A4213	T-joint - EXT + SX - BK	1		0.290	382	
A4214	Cross joint - BK	1		0.390	382	
A4215	End cap - BK	1		0.010	380	
A4216	PVC closing top - L1000 - BK	1		0.070	383	
A4217	Linear connecting element - BK	1		0.050	380	
A4218	Feeding head SX - BK	1		0.100	379	
A4219	L-joint - INT - BK	1		0.200	381	
A4220	T-joint - EXT + DX - BK	1		0.290	382	
A4221	T-joint - INT + SX - BK	1		0.290	382	
A4222	T-joint - INT + DX - BK	1		0.290	382	
A5013	Kit LED I3F75,A3F 90,A3F 92-L1565-2X22W CONC+PC	1	0.039	3.000	471	
A5026	KIT LED i3F 75, A3F 90-L1565 - 2x30W+PC	1	0.039	2.300	471	
A5027	Kit LED I3F 75, A3F 90, A3F 92-L1565 - 2X22W+PC	1	0.039	2.300	471	
A5057	Kit LED i3F 75,A3F 90-92 L1265 2x18W +PC	1	0.039	2.600	471	
A5104	Kit LED I3F 76, A3F 91, A3F 93-L1565-2X22W CONC	1	0.039	2.700	472	
A5117	KIT LED i3F 76, A3F 91 - L1565-2x30W	1	0.018	2.000	472	
A5118	Kit LED I3F 76, A3F 91, A3F 93 - L1565-2X22W	1	0.018	2.000	472	
A5148	KIT LED i3F 76,A3F 91,A3F 93-L1265-2x18W	1	0.018	1.600	472	
A5184	Printed glass Beta 2x i3F 76 - L1565	1		4.800	474	
A5185	Printed glass Beta 2x i3F 76 - L1265	1		4.000	474	
A5210	Kit LED i3F 76,A3F 91 - L1565 - L 2x40W AMPIO	1	0.018	3.200	472	
A5212	Kit LED i3F 76,A3F 91 - L1565 - L 2x40W CONC	1	0.018	3.200	472	
A5215	Kit LED i3F 75,A3F 90 - L1565 - L 2x40W AMPIO + PC	1	0.018	4.200	471	
A5217	Kit LED i3F 75,A3F 90 - L1565 - L 2x40W CONC + PC	1	0.018	4.200	471	
A5308	Kit LED Beta 430 - L1551- 2X65W AMPIO	1	0.073	8.000	479	
A5309	Kit LED Beta 430 - L1551- 2X65W CONC	1	0.073	8.000	479	
A5311	Kit LED Beta 430 - L1551- 3X65W AMPIO	1	0.073	8.000	479	
A5312	Kit LED Beta 430 - L1551- 3X65W CONC	1	0.073	8.000	479	
A5322	Printed glass with Beta 430 frame - L1551	1		7.900	480	
A01023	VT 3F RENO WH 150	1		0.160	225	
A01024	VT 3F RENO BK 150	1		0.160	225	
A01025	VT 3F RENO WH 200	1		0.300	225	
A01026	VT 3F RENO BK 200	1		0.300	225	
A01035	VS 3F RENO WH 150	1		0.160	225	
A01036	VS 3F RENO BK 150	1		0.160	225	
A01037	VS 3F RENO WH 200	1		0.300	225	
A01038	VS 3F RENO BK 200	1		0.300	225	
A01046	SMP 3F RENO WH 150	1		0.100	225	
A01047	SMP 3F RENO BK 150	1		0.100	226	
A01048	SMP 3F RENO WH 200	1		0.240	225	
A01049	SMP 3F RENO BK 200	1		0.240	226	
A01314	White rectangular case suspension- fixed 0,3m	1		0.110	181	
A01315	White rectangular case suspension- fixed 0,5m	1		0.120	181	
A01317	White rectangular case suspension- fixed 1m	1		0.140	181	
A01318	White rectangular case suspension-adj. 1 m	1		0.150	181	
A01321	Wired susp. 5P white rectangular case-fixed 0,3m	1		0.390	181	
A01322	Wired susp. 5P white rectangular case-fixed 0,5m	1		0.410	181	
A01324	Wired suspension 5P white rectangular case-fixed 1m	1		0.530	181	
A01325	Wired suspension 5P white rectangular case-adj.1 m	1		0.550	181	
A01368	Travetta B joint closing cap	1		0.400	180	
A01417	Pair end caps Barraluce L channel diffuser	1		0.100	295	
A01420	Couple brackets for Barraluce L	1		0.400	295	
		1		0.200	203, 295	

Code	Item		Page		
		Pcs	m³	Gross weight in kg	
A01429	Sliding bracket for Barraluce P	1		0.100	203
A01434	Pair of end caps for Barraluce L channels with diffuser	1		0.100	203
A01479	Wall bracket 15° diam 60mm				502
A01480	Fixed position wall bracket				502
A01481	Corner wall bracket 15° diam 60mm				502
A01523	Grid bracket h50mm - for luminaire D.220	1		0.800	306
A01528	Sliding bracket with regulator for suspension installation 3F HD100DI	1		0.080	75
A01530	Ceiling/recessed sliding bracket 3F HD50	1		0.040	75
A01531	Ceiling/recessed sliding bracket 3F HD100	1		0.040	75
A01532	Sliding bracket with regulator for suspension installation 3F HD50DI	1		0.080	75
A01536	Channels diffusers 3F HD50 - FDP - 6m	1		0.850	74
A01537	Channels diffusers 3F HD50 - FDP - 9m	1		1.100	74
A01538	Channels diffusers 3F HD50 - FDP - 15m	1		1.600	74
A01540	Channels diffusers 3F HD50 - FDO - 6m	1		0.750	74
A01541	Channels diffusers 3F HD50 - FDO - 9m	1		1.000	74
A01542	Channels diffusers 3F HD50 - FDO - 15m	1		1.500	74
A01544	Channels diffusers 3F HD100 - FDP - 6m	1		1.800	74
A01545	Channels diffusers 3F HD100 - FDP - 9m	1		2.500	74
A01546	Channels diffusers 3F HD100 - FDP - 15m	1		4.100	74
A01548	Channels diffusers 3F HD100 - FDO - 6m	1		1.600	74
A01549	Channels diffusers 3F HD100 - FDO - 9m	1		2.300	74
A01550	Channels diffusers 3F HD100 - FDO - 15m	1		3.900	74
A01552	Pair of end caps for 3F HD50 WH channel	1		0.110	74
A01553	Pair of end caps for 3F HD50 BK channel	1		0.110	74
A01554	Pair of end caps for 3F HD50 AL channel	1		0.110	74
A01555	Pair of end caps for 3F HD100 WH channel	1		0.140	74
A01556	Pair of end caps for 3F HD100 BK channel	1		0.140	74
A01557	Pair of end caps for 3F HD100 AL channel	1		0.140	74
A01558	Pair of end caps for 3F HD50 WH OC channel	1		0.110	75
A01559	Pair of end caps for 3F HD50 BK OC channel	1		0.110	75
A01560	Pair of end caps for 3F HD50 AL OC channel	1		0.110	75
A01561	Pair of end caps for 3F HD50R WH channel FDP/FDO	1		0.080	75
A01562	Pair of end caps for 3F HD100R WH channel FDP/FDO	1		0.120	75
A01563	Dilator joint FD channles>15m - HD50 WH	1		0.090	74
A01564	Dilator joint FD channles>15m - HD100 WH	1		0.130	74
A01565	Couple fixed brackets for plasterboard 3F HD50R	1		0.800	75
A01566	Couple fixed brackets for plasterboard 3F HD100R	1		0.950	75
A01567	3F HD - 5P socket/plug terminal block	1		0.045	76
A01568	Dilator joint FD channles>15m - HD50 BK	1		0.090	74
A01569	Dilator joint FD channles>15m - HD100 BK	1		0.130	74
A01570	Dilator joint FD channles>15m - HD50 AL	1		0.090	74
A01571	Dilator joint FD channles>15m - HD100 AL	1		0.130	74
A01572	Pair of end caps for 3F HD50R WH channel GSP	1		0.080	75
A01573	Pair of end caps for 3F HD100R WH channel GSP	1		0.120	75
A01574	Pair of end caps for 3F HD50R WH channel OCW	1		0.080	75
A02484	5P socket/plug terminal block Beginning/End Channel	1		0.040	203, 295
A02562	Caddy for exposed profiles of 24 mm	1	0.000	0.050	157, 353
A20011	3F Linux S NL L3556	1	0.022	3.500	331
A20012	3F Linux S NL L1778	1	0.011	1.700	331
A20017	3F Linux S 5P L3556	1	0.022	4.000	331
A20019	3F Linux S 5P L1778	1	0.011	2.000	331
A20024	3F Linux S 7P L3556	1	0.022	4.200	331
A20026	3F Linux S 7P L1778	1	0.011	2.200	331
A20083	3F Linux L 60 LED BAT L1778	1	0.009	2.650	338
A20084	3F Linux L 50 LED BAT L1778	1	0.009	2.650	338
A20085	3F Linux L 40 LED BAT L1778	1	0.009	2.650	338
A20097	3F Linux L 60 LED DALI BAT L1778	1	0.009	2.700	338
A20098	3F Linux L 50 LED DALI BAT L1778	1	0.009	2.700	338
A20099	3F Linux L 40 LED DALI BAT L1778	1	0.009	2.700	338
A20124	3F Linux L 85 LED AMPIO L1778	1	0.009	2.650	335

Code	Item		F	Pack	Page	
		Pcs	m³	Gross weight in kg		
A20125	3F Linux L 60 LED AMPIO L1778	1	0.009	2.650	335	
A20126	3F Linux L 50 LED AMPIO L1778	1	0.009	2.650	335	
A20127	3F Linux L 40 LED AMPIO L1778	1	0.009	2.650	335	
A20138	3F Linux L 85 LED DALI AMPIO L1778	1	0.009	2.700	335	
A20139	3F Linux L 60 LED DALI AMPIO L1778	1	0.009	2.700	335	
A20140	3F Linux L 50 LED DALI AMPIO L1778	1	0.009	2.700	335	
A20141	3F Linux L 40 LED DALI AMPIO L1778	1	0.009	2.700	335	
A20166	3F Linux L 85 LED CONC L1778	1	0.009	2.650	339	
A20167	3F Linux L 60 LED CONC L1778	1	0.009	2.650	339	
A20180	3F Linux L 85 LED DALI CONC L1778	1	0.009	2.700	339	
A20181	3F Linux L 60 LED DALI CONC L1778	1	0.009	2.700	339	
A20335	3F Linux D 2x30 LED L1778	1	0.018	3.000	345	
A20336	3F Linux D 2x22 LED L1778	1	0.018	3.000	345	
A20349	3F Linux D 2x30 LED DALI L1778	1	0.018	3.000	345	
A20350	3F Linux D 2x22 LED DALI L1778	1	0.018	3.000	345	
A20424	3F Linux TK L1778	1	0.018	2.800	351	
A20428	Closing Top LOW - L1778	1		0.350	355	
A20433	Linear connecting element for 3F Linux	1		0.200	157, 353	
A20434	T-Connecting element for 3F Linux	1		0.400	354	
A20436	L-Connecting element 3F L Linux	1		0.300	354	
A20442	Closing Top HIGH - L1778	1		0.400	354	
A20448	Pair of closing end 3F Linux	1		0.060	354	
A20450	Sliding bracket with regulator for suspension installation	1		0.052	352	
A20451	Sliding bracket for ceiling installation	1		0.040	352	
A20452	Stainless steel hook for chain	1		0.010	157, 352	
A20453	S-shaped chain hook with sliding bracket 3F Linux	1		0.120	352	
A20454	5-poles socket-pin terminal block 3F Linux S	1		0.150	356	
A20455	7-poles socket-pin terminal block 3F Linux S	1		0.200	356	
A20459	5-poles socket-pin branch (L-shaped) 3F Linux S	1		0.150	356	
A20460	7-poles socket-pin branch (L-shaped) 3F Linux S	1		0.200	356	
A20464	5-poles socket-pin branch (T-shaped) 3F Linux S	1		0.250	356	
A20465	7-poles socket-pin branch (T-shaped) 3F Linux S	1		0.300	356	
A20470	Pair of mounting brackets 3F devices on Linux S	1		0.190	355	
A20474	Safety screw for locking the sliding bracket	1		0.010	352	
A20475	3F Linux Cable Support (10 pcs)	1		0.300	355	
A20476	Single contact pin	1		0.250	357	
A20478	Anti-slip terminal for inclined 3F Linux installation	1		0.060	158, 354	
A20479	Power cable for luminaires, 3-pole	1		0.150	357	
A20480	Power cable for luminaires, 5-pole	1		0.180	357	
A20485	Susp. without adjustment for Linux/HD - 0,5 m	1		0.070	76, 279, 352	
A20486	Susp. without adjustment for Linux/HD - 1 m	1		0.080	76, 279, 352	
A20487	Susp. without adjustment for Linux/HD - 2 m	1		0.090	76, 279, 352	
A20488	Susp. without adjustment for Linux/HD - 3 m	1		0.100	76, 279, 352	
A20489	Susp. without adjustment for Linux/HD - 4 m	1		0.110	76, 279, 352	
A20490	Susp. without adjustment for Linux/HD - 5 m	1		0.120	76, 279, 352	
A20491	Susp. without adjustment for Linux/HD - 6 m	1		0.130	76, 279, 352	
A20498	Couple of brackets for 3F Linda installation - 3F Linux S	1		0.200	355	
A20500	Central feeding 5-poles socket-pin terminal block 3F Linux S	1		0.200	356	
A20501	Central feeding 7-poles socket-pin terminal block 3F Linux S	1		0.250	356	
A20511	3F Linux DR 2x30 LED L1778	1	0.018	3.000	347	
A20512	3F Linux DR 2x22 LED L1778	1	0.018	3.000	347	
A20525	3F Linux DR 2x30 LED DALI L1778	1	0.018	3.000	347	
A20526	3F Linux DR 2x22 LED DALI L1778	1	0.018	3.000	347	
A20595	3F Linux DR 1x30 LED UGR L1778	1	0.018	3.700	347	
A20596	3F Linux DR 2x22 LED UGR L1778	1	0.018	3.800	347	
A20599	3F Linux DR 1x30 LED DALI UGR L1778	1	0.018	3.800	347	
A20600	3F Linux DR 2x22 LED DALI UGR L1778	1	0.018	3.900	347	
A20608	3F Linux L 60 LED BAT WD L1778	1	0.009	2.650	339	
A20609	3F Linux L 50 LED BAT WD L1778	1	0.009	2.650	339	
A20610	3F Linux L 40 LED BAT WD L1778	1	0.009	2.650	339	

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
A20622	3F Linux L 60 LED DALI BAT WD L1778	1	0.009	2.700	339
A20623	3F Linux L 50 LED DALI BAT WD L1778	1	0.009	2.700	339
A20624	3F Linux L 40 LED DALI BAT WD L1778	1	0.009	2.700	339
A20661	3F Linux L 50 LED UGR L1778	1	0.009	2.650	336
A20667	3F Linux L 50 LED DALI UGR L1778	1	0.009	2.700	336
A20674	3F Linux DR 2x30 LED AS L1778	1	0.018	3.200	348
A20679	3F Linux DR 2x30 LED DALI AS L1778	1	0.018	3.200	348
A20684	3F Linux L 85 LED IPERCONC L1778	1	0.009	2.650	340
A20685	3F Linux L 60 LED IPERCONC L1778	1	0.009	2.650	340
A20698	3F Linux L 85 LED DALI IPERCONC L1778	1	0.009	2.650	340
A20699	3F Linux L 60 LED DALI IPERCONC L1778	1	0.009	2.650	340
A20723	3F Linux system 7P IP54 L3556	1	0.022	5.800	333
A20724	3F Linux system 7P IP54 L1778	1	0.011	2.900	333
A20725	3F Linux system 5P IP54 L3556	1	0.022	5.600	333
A20726	3F Linux system 5P IP54 L1778	1	0.011	2.800	333
A20740	IP54 3F Linux end terminal	1		0.150	355
A20741	IP54 3F Linux end terminal with 1 hole	1		0.150	355
A20742	IP54 3F Linux end terminal with 2 holes	1		0.180	356
A20743 A20744	Closing Top IP54 - L1778	1	0.009	0.250	354
A20744 A20745	3F Linux L 85 LED AS L1778	1		2.650	337
A20745 A20746	3F Linux L 60 LED AS L1778 3F Linux L 50 LED AS L1778	1	0.009	2.650 2.650	337 337
A20740 A20747	3F Linux L 30 LED AS L1778 3F Linux L 40 LED AS L1778	1	0.009	2.650	337
A20747	3F Linux L 85 LED DALI AS L1778	1	0.009	2.700	337
A20749	3F Linux L 60 LED DALI AS L1778	1	0.009	2.700	337
A20751	3F Linux L 50 LED DALI AS L1778	1	0.009	2.700	337
A20752	3F Linux L 40 LED DALI AS L1778	1	0.009	2.700	337
A20754	3F Linux L 85 LED MEDIO L1778	1	0.009	2.650	336
A20755	3F Linux L 60 LED MEDIO L1778	1	0.009	2.650	336
A20756	3F Linux L 50 LED MEDIO L1778	1	0.009	2.650	336
A20757	3F Linux L 40 LED MEDIO L1778	1	0.009	2.650	336
A20759	3F Linux L 85 LED DALI MEDIO L1778	1	0.009	2.700	336
A20760	3F Linux L 60 LED DALI MEDIO L1778	1	0.009	2.700	336
A20761	3F Linux L 50 LED DALI MEDIO L1778	1	0.009	2.700	336
A20762	3F Linux L 40 LED DALI MEDIO L1778	1	0.009	2.700	336
1959	MIRA PAR LED 4x12W IND L675	1	0.013	3.700	169
1961	MIRA PAR LED DE 4x12W L675	1	0.013	3.600	169
5790	3F Linda Compatta LED 1x5W 100x300	1	0.004	0.900	428
5791	3F Linda Compatta LED 1x5W 160x300	1	0.006	1.000	428
5794	3F Linda Compatta LED 1x5W EP 160x300	1	0.006	1.500	428
6001	3F Sound Lux 450 RE 35/930 DALI	1	0.073	8.500	133
6005	3F Sound Lux 450 RS 35/930 DALI	1	0.073	8.500	133
6007	3F Sound Lux 900 RE 70/930 DALI	1	0.138	16.500	133
6011	3F Sound Lux 900 RS 70/930 DALI	1	0.138	16.500	133
6013	3F Sound Lux 450 RE DI 35+8/930 DALI	1	0.073	9.500	135
6017	3F Sound Lux 450 RS DI 35+8/930 DALI	1	0.073	9.500	135
6019	3F Sound Lux 900 RE DI 70+16/930 DALI	1	0.138	17.500	135
6023	3F Sound Lux 900 RS DI 70+16/930 DALI	1	0.138	17.500	135
6090	3F Emilio Table WH 1000/930 PCD	1		5.500	147
6094	3F Filoluce WH 16+23W/835 Touch DALI	1		16.000	123
6095	3F Filoluce BK 16+23W/835 Touch DALI	1		16.000	123
6096	3F Filoluce AN 16+23W/835 Touch DALI	1		16.000	123
6097	3F Filoluce RD 16+23W/835 Touch DALI	1		16.000	123
6098	3F Filoluce WH 16+23W/840 Touch DALI	1		16.000	123
6099	3F Filoluce BK 16+23W/840 Touch DALI	1		16.000	123
6100	3F Filoluce AN 16+23W/840 Touch DALI	1		16.000	123
6101	3F Filoluce RD 16+23W/840 Touch DALI	1		16.000	123
6104	3F Trittico WH 12+12+15/835 DALI H300	1	0.038	3.400	111
6105	3F Trittico BK 12+12+15/835 DALI H300	1	0.038	3.400	111
6107	3F Trittico WH 12+12+15/835 DALI H500	1	0.038	3.700	111

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
6108	3F Trittico BK 12+12+15/835 DALI H500	1	0.038	3.700	111
6110	3F Trittico WH 12+12+15/835 DALI H800	1	0.038	4.000	111
6111	3F Trittico BK 12+12+15/835 DALI H800	1	0.038	4.000	111
6128	3F C8 WH 30 DALI GSP L1480	1		4.500	139
6130	3F C8 WH DI 30+8 DALI GSP L1480	1		4.800	141
6136	3F C8 BK 30 DALI GSP L1480	1		4.500	139
6138	3F C8 BK DI 30+8 DALI GSP L1480	1		4.800	141
6140	3F C8 WH HO 44 DALI GSP L1480	1		4.500	139
6142	3F C8 WH DI HO 44+8 DALI GSP L1480	1		4.800	141
6148	3F C8 BK HO 44 DALI GSP L1480	1		4.500	139
6150	3F C8 BK DI HO 44+8 DALI GSP L1480	1		4.800	141
6200	3F HD50 WH 13/840 DALI FDP L1214	1	0.006	5.000	42
6201	3F HD50 WH 16/840 DALI FDP L1508	1	0.007	5.500	42
6202	3F HD50 WH 32/840 DALI FDP L2975	1	0.014	10.200	42
6204	3F HD50 WH 13/840 DALL FD0 L1214	1	0.006	5.000	44
6205	3F HD50 WH 16/840 DALI FD0 L1508	1	0.007	5.500	44
6206	3F HD50 WH 32/840 DALI FDO L2975	1	0.014	10.200	44
6208	3F HD50 WH 13/840 DALL GSP L1214	1	0.006	5.000	40
6209	3F HD50 WH 16/840 DALI GSP L1508 3F HD50 WH 32/840 DALI GSP L2975	1	0.007	5.500	40
6210		1	0.014	10.200	40
6212 6213	3F HD50 WH 12/835 DALI OCW L1214 3F HD50 WH 15/835 DALI OCW L1508	1	0.006	3.800 4.200	39 39
6214	3F HD50 WH 30/835 DALI OCW L1508 3F HD50 WH 30/835 DALI OCW L2975	1	0.007	4.200 8.400	39
6219	3F HD30 WH 32/840 DALI FDP L1214	1	0.014	5.800	42
6220	3F HD100 WH 26/840 DALI FDP L1214	1	0.012	6.300	42
6221	3F HD100 WH 22/840 DALI FDP L2975	1	0.012	11.000	42
6223	3F HD100 WH 22/840 DALI FDI L2373	1	0.024	5.800	42
6224	3F HD100 WH 26/840 DALI FDO L1508	1	0.012	6.300	44
6225	3F HD100 WH 52/840 DALI FDO L2975	1	0.024	11.000	44
6227	3F HD100 WH 22/840 DALI GSP L1214	. 1	0.010	5.800	40
6228	3F HD100 WH 26/840 DALI GSP L1508	1	0.012	6.300	40
6229	3F HD100 WH 52/840 DALI GSP L2975	1	0.024	11.000	40
6236	3F HD50 WH 13/840 DALI 5P FD L1174	1	0.006	5.200	49
6237	3F HD50 WH 16/840 DALI 5P FD L1468	1	0.007	5.700	49
6241	3F HD50 WH 32/840 DALI 5P FD L2935	1	0.014	10.600	49
6245	3F HD50 WH 13/840 DALI 5P GSP L1174	1	0.006	5.400	48
6246	3F HD50 WH 16/840 DALI 5P GSP L1468	1	0.007	5.900	48
6250	3F HD50 WH 32/840 DALI 5P GSP L2935	1	0.014	10.800	48
6254	3F HD50 WH 12/835 DALI 5P OCW L1174	1	0.006	4.000	47
6255	3F HD50 WH 15/835 DALI 5P OCW L1468	1	0.007	4.400	47
6259	3F HD50 WH 30/835 DALI 5P OCW L2935	1	0.014	8.800	47
6266	3F HD100 WH 22/840 DALI 5P FD L1174	1	0.010	6.000	49
6267	3F HD100 WH 26/840 DALI 5P FD L1468	1	0.012	6.500	49
6271	3F HD100 WH 52/840 DALI 5P FD L2935	1	0.024	11.200	49
6275	3F HD100 WH 22/840 DALI 5P GSP L1174	1	0.010	6.200	48
6276	3F HD100 WH 26/840 DALI 5P GSP L1468	1	0.012	6.700	48
6280	3F HD100 WH 52/840 DALI 5P GSP L2935	1	0.024	11.600	48
6285	3F HD50 BK 13/840 DALI FDP L1214	1	0.006	5.000	42
6286	3F HD50 BK 16/840 DALI FDP L1508	1	0.007	5.500	42
6287	3F HD50 BK 32/840 DALI FDP L2975	1	0.014	10.200	42
6289	3F HD50 BK 13/840 DALI FDO L1214	1	0.006	5.000	44
6290	3F HD50 BK 16/840 DALI FDO L1508	1	0.007	5.500	44
6291	3F HD50 BK 32/840 DALI FDO L2975	1	0.014	10.200	44
6293	3F HD50 BK 13/840 DALI GSP L1214	1	0.006	5.000	40
6294	3F HD50 BK 16/840 DALI GSP L1508	1	0.007	5.500	40
6295	3F HD50 BK 32/840 DALI GSP L2975	1	0.014	10.200	40
6297	3F HD50 BK 12/835 DALI OCB L1214	1	0.006	3.800	39
6298	3F HD50 BK 15/835 DALI OCB L1508	1	0.007	4.200	39
6299	3F HD50 BK 30/835 DALI OCB L2975	1	0.014	8.400	39
6304	3F HD100 BK 22/840 DALI FDP L1214	1	0.010	5.800	42

Code	Item		F	Pack		
		Pcs	m³	Gross weight in kg		
6305	3F HD100 BK 26/840 DALI FDP L1508	1	0.012	6.300	42	
6306	3F HD100 BK 52/840 DALI FDP L2975	1	0.024	11.000	42	
6308	3F HD100 BK 22/840 DALI FDO L1214	1	0.010	5.800	44	
6309	3F HD100 BK 26/840 DALI FDO L1508	1	0.012	6.300	44	
6310	3F HD100 BK 52/840 DALI FDO L2975	1	0.024	11.000	44	
6312	3F HD100 BK 22/840 DALI GSP L1214	1	0.010	5.800	40	
6313	3F HD100 BK 26/840 DALI GSP L1508	1	0.012	6.300	40	
6314	3F HD100 BK 52/840 DALI GSP L2975	1	0.024	11.000	40	
6321	3F HD50 BK 13/840 DALI 5P FD L1174	1	0.006	5.200	49	
6322	3F HD50 BK 16/840 DALI 5P FD L1468	1	0.007	5.700	49	
6326 6330	3F HD50 BK 32/840 DALI 5P FD L2935 3F HD50 BK 13/840 DALI 5P GSP L1174	1	0.014	10.600 5.400	49 48	
6331	3F HD50 BK 16/840 DALI 5P GSP L1174 3F HD50 BK 16/840 DALI 5P GSP L1468	1	0.000	5.900	48	
6335	3F HD50 BK 10/640 DALI 5P GSP L1408 3F HD50 BK 32/840 DALI 5P GSP L2935	1	0.007	10.800	48	
6339	3F HD50 BK 12/835 DALI 5P OCB L1174	1	0.006	4.000	40	
6340	3F HD50 BK 15/835 DALI 5P OCB L1468	1	0.007	4.400	47	
6344	3F HD50 BK 30/835 DALI 5P OCB L2935	1	0.014	8.800	47	
6351	3F HD100 BK 22/840 DALI 5P FD L1174	1	0.010	6.000	49	
6352	3F HD100 BK 26/840 DALI 5P FD L1468	1	0.012	6.500	49	
6356	3F HD100 BK 52/840 DALI 5P FD L2935	1	0.024	11.200	49	
6360	3F HD100 BK 22/840 DALI 5P GSP L1174	1	0.010	6.200	48	
6361	3F HD100 BK 26/840 DALI 5P GSP L1468	1	0.012	6.700	48	
6365	3F HD100 BK 52/840 DALI 5P GSP L2935	1	0.024	11.600	48	
6370	3F HD50 AL 13/840 DALI FDP L1214	1	0.006	5.000	42	
6371	3F HD50 AL 16/840 DALI FDP L1508	1	0.007	5.500	42	
6372	3F HD50 AL 32/840 DALI FDP L2975	1	0.014	10.200	42	
6374	3F HD50 AL 13/840 DALI FDO L1214	1	0.006	5.000	44	
6375	3F HD50 AL 16/840 DALI FDO L1508	1	0.007	5.500	44	
6376	3F HD50 AL 32/840 DALI FDO L2975	1	0.014	10.200	44	
6378	3F HD50 AL 13/840 DALI GSP L1214	1	0.006	5.000	40	
6379	3F HD50 AL 16/840 DALI GSP L1508	1	0.007	5.500	40	
6380	3F HD50 AL 32/840 DALI GSP L2975	1	0.014	10.200	40	
6382	3F HD50 AL 12/835 DALI OCB L1214	1	0.006	3.800	39	
6383	3F HD50 AL 15/835 DALI OCB L1508	1	0.007	4.200	39	
6384	3F HD50 AL 30/835 DALI OCB L2975	1	0.014	8.400	39	
6389	3F HD100 AL 22/840 DALI FDP L1214	1	0.010	5.800	42	
6390	3F HD100 AL 26/840 DALI FDP L1508	1	0.012	6.300	42	
6391	3F HD100 AL 52/840 DALI FDP L2975	1	0.024	11.000	42	
6393	3F HD100 AL 22/840 DALI FDO L1214	1	0.010	5.800	44	
6394	3F HD100 AL 26/840 DALI FDO L1508	1	0.012	6.300	44	
6395	3F HD100 AL 52/840 DALI FDO L2975	1	0.024	11.000	44	
6397	3F HD100 AL 22/840 DALI GSP L1214	1	0.010	5.800	40	
6398	3F HD100 AL 26/840 DALI GSP L1508 3F HD100 AL 52/840 DALI GSP L2975	1	0.012	6.300	40	
6399			0.024	11.000	40	
6406 6407	3F HD50 AL 13/840 DALI 5P FD L1174 3F HD50 AL 16/840 DALI 5P FD L1468	1	0.006	5.200 5.700	49 49	
6411	3F HD50 AL 32/840 DALI 5P FD L1408 3F HD50 AL 32/840 DALI 5P FD L2935	1	0.007	10.600	49 49	
6415	3F HD50 AL 32/840 DALI 5P GSP L1174	1	0.006	5.400	49 48	
6416	3F HD50 AL 16/840 DALI 5P GSP L1468	1	0.007	5.900	48	
6420	3F HD50 AL 32/840 DALI 5P GSP L2935	1	0.014	10.800	48	
6424	3F HD50 AL 12/835 DALI 5P OCB L1174	1	0.006	4.000	47	
6425	3F HD50 AL 15/835 DALI 5P OCB L1468	1	0.007	4.400	47	
6429	3F HD50 AL 30/835 DALI 5P OCB L2935	1	0.014	8.800	47	
6436	3F HD100 AL 22/840 DALI 5P FD L1174	1	0.010	6.000	49	
6437	3F HD100 AL 26/840 DALI 5P FD L1468	1	0.012	6.500	49	
6441	3F HD100 AL 52/840 DALI 5P FD L2935	1	0.024	11.200	49	
6445	3F HD100 AL 22/840 DALI 5P GSP L1174	1	0.010	6.200	48	
6446	3F HD100 AL 26/840 DALI 5P GSP L1468	1	0.012	6.700	48	
6450	3F HD100 AL 52/840 DALI 5P GSP L2935	1	0.024	11.600	48	

Code	Item		F	Pack	Page
		Pcs	m³	Gross weight in kg	
6456	3F HD50DI WH 16+26/840 DALI FDP L1508	1	0.007	5.800	53
6457	3F HD50DI WH 32+52/840 DALI FDP L2975	1	0.014	10.700	53
6459	3F HD50DI WH 13+20/840 DALI FDO L1214	1	0.006	5.200	54
6460	3F HD50DI WH 16+26/840 DALI FDO L1508	1	0.007	5.800	54
6461	3F HD50DI WH 32+52/840 DALI FDO L2975	1	0.014	10.700	54
6463	3F HD50DI WH 13+20/840 DALI GSP L1214	1	0.006	5.200	52
6464	3F HD50DI WH 16+26/840 DALI GSP L1508	1	0.007	5.800	52
6465	3F HD50DI WH 32+52/840 DALI GSP L2975	1	0.014	10.700	52
6467	3F HD50DI WH 12+20/835 DALI OCW L1214	1	0.006	4.000	51
6468	3F HD50DI WH 15+26/835 DALLOCW L1508	1	0.007	4.500	51
6469	3F HD50DI WH 30+52/835 DALLOCW L2975	1	0.014	8.900	51
6474	3F HD100DI WH 22+20/840 DALL FDP L1214	1	0.010	6.000	53
6475 6476	3F HD100DI WH 26+26/840 DALI FDP L1508 3F HD100DI WH 52+52/840 DALI FDP L2975	1	0.012	6.600 11.500	53 53
6478	3F HD100DI WH 22+20/840 DALI FDP L2973 3F HD100DI WH 22+20/840 DALI FDO L1214	1	0.024	6.000	54
6479	3F HD100DI WH 26+26/840 DALI FD0 L1508	1	0.012	6.600	54
6480	3F HD100DI WH 52+52/840 DALI FD0 L2975	1	0.024	11.500	54
6482	3F HD100DI WH 22+20/840 DALI GSP L1214	1	0.010	6.000	52
6483	3F HD100DI WH 26+26/840 DALI GSP L1508	1	0.012	6.600	52
6484	3F HD100DI WH 52+52/840 DALI GSP L2975	1	0.024	11.500	52
6491	3F HD50DI WH 13+20/840 DALI 5P FD L1174	1	0.006	5.400	59
6492	3F HD50DI WH 16+26/840 DALI 5P FD L1468	1	0.007	6.000	59
6496	3F HD50DI WH 32+52/840 DALI 5P FD L2935	1	0.014	11.100	59
6500	3F HD50DI WH 13+20/840 DALI 5P GSP L1174	1	0.006	5.600	58
6501	3F HD50DI WH 16+26/840 DALI 5P GSP L1468	1	0.007	6.200	58
6505	3F HD50DI WH 32+52/840 DALI 5P GSP L2935	1	0.014	11.300	58
6509	3F HD50DI WH 12+20/835 DALI 5P OCW L1174	1	0.006	4.200	57
6510	3F HD50DI WH 15+26/835 DALI 5P OCW L1468	1	0.007	4.700	57
6514	3F HD50DI WH 30+52/835 DALI 5P OCW L2935	1	0.014	9.300	57
6521	3F HD100DI WH 22+20/840 DALI 5P FD L1174	1	0.010	6.200	59
6522	3F HD100DI WH 26+26/840 DALI 5P FD L1468	1	0.012	6.800	59
6526	3F HD100DI WH 52+52/840 DALI 5P FD L2935	1	0.024	11.700	59
6530	3F HD100DI WH 22+20/840 DALI 5P GSP L1174	1	0.010	6.400	58
6531	3F HD100DI WH 26+26/840 DALI 5P GSP L1468	1	0.012	7.000	58
6535	3F HD100DI WH 52+52/840 DALI 5P GSP L2935	1	0.024	12.100	58
6540	3F HD50DI BK 13+20/840 DALI FDP L1214	1	0.006	5.200	53
6541	3F HD50DI BK 16+26/840 DALI FDP L1508	1	0.007	5.800	53
6542	3F HD50DI BK 32+52/840 DALI FDP L2975	1	0.014	10.700	53
6544	3F HD50DI BK 13+20/840 DALI FDO L1214	1	0.006	5.200	54
6545	3F HD50DI BK 16+26/840 DALI FDO L1508	1	0.007	5.800	54
6546 6548	3F HD50DI BK 32+52/840 DALI FDO L2975 3F HD50DI BK 13+20/840 DALI GSP L1214	1	0.014	10.700	54 52
6549	3F HD50DI BK 16+26/840 DALI GSP L1214 3F HD50DI BK 16+26/840 DALI GSP L1508	1	0.006	5.200 5.800	52
6550	3F HD50DI BK 32+52/840 DALI GSP L1908	1	0.007	10.700	52
6552	3F HD50DI BK 12+20/835 DALI OCB L1214	1	0.006	4.000	51
6553	3F HD50DI BK 15+26/835 DALI OCB L1508	1	0.007	4.500	51
6554	3F HD50DI BK 30+52/835 DALI OCB L2975	1	0.001	8.900	51
6559	3F HD100DI BK 22+20/840 DALI FDP L1214	1	0.010	6.000	53
6560	3F HD100DI BK 26+26/840 DALI FDP L1508	1	0.012	6.600	53
6561	3F HD100DI BK 52+52/840 DALI FDP L2975	1	0.024	11.500	53
6563	3F HD100DI BK 22+20/840 DALI FDO L1214	1	0.010	6.000	54
6564	3F HD100DI BK 26+26/840 DALI FDO L1508	1	0.012	6.600	54
6565	3F HD100DI BK 52+52/840 DALI FDO L2975	1	0.024	11.500	54
6567	3F HD100DI BK 22+20/840 DALI GSP L1214	1	0.010	6.000	52
6568	3F HD100DI BK 26+26/840 DALI GSP L1508	1	0.012	6.600	52
6569	3F HD100DI BK 52+52/840 DALI GSP L2975	1	0.024	11.500	52
6576	3F HD50DI BK 13+20/840 DALI 5P FD L1174	1	0.006	5.400	59
6577	3F HD50DI BK 16+26/840 DALI 5P FD L1468	1	0.007	6.000	59
6581	3F HD50DI BK 32+52/840 DALI 5P FD L2935	1	0.014	11.100	59
6585	3F HD50DI BK 13+20/840 DALI 5P GSP L1174	1	0.006	5.600	58

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
6586	3F HD50DI BK 16+26/840 DALI 5P GSP L1468	1	0.007	6.200	58
6590	3F HD50DI BK 32+52/840 DALI 5P GSP L2935	1	0.014	11.300	58
6594	3F HD50DI BK 12+20/835 DALI 5P OCB L1174	1	0.006	4.200	57
6595	3F HD50DI BK 15+26/835 DALI 5P OCB L1468	1	0.007	4.700	57
6599	3F HD50DI BK 30+52/835 DALI 5P OCB L2935	1	0.014	9.300	57
6606	3F HD100DI BK 22+20/840 DALI 5P FD L1174	1	0.010	6.200	59
6607	3F HD100DI BK 26+26/840 DALI 5P FD L1468	1	0.012	6.800	59
6611	3F HD100DI BK 52+52/840 DALI 5P FD L2935	1	0.024	11.700	59
6615	3F HD100DI BK 22+20/840 DALI 5P GSP L1174	1	0.010	6.400	58
6616	3F HD100DI BK 26+26/840 DALI 5P GSP L1468	1	0.012	7.000	58
6620	3F HD100DI BK 52+52/840 DALI 5P GSP L2935	1	0.024	12.100	58
6625	3F HD50DI AL 13+20/840 DALI FDP L1214	1	0.006	5.200	53
6626	3F HD50DI AL 16+26/840 DALI FDP L1508	1	0.007	5.800	53
6627	3F HD50DI AL 32+52/840 DALI FDP L2975	1	0.014	10.700	53
6629	3F HD50DI AL 13+20/840 DALI FDO L1214	1	0.006	5.200	54
6630	3F HD50DI AL 16+26/840 DALI FDO L1508	1	0.007	5.800	54
6631	3F HD50DI AL 32+52/840 DALI FDO L2975	1	0.014	10.700	54
6633	3F HD50DI AL 13+20/840 DALI GSP L1214	1	0.006	5.200	52
6634	3F HD50DI AL 16+26/840 DALI GSP L1508	1	0.007	5.800	52
6635	3F HD50DI AL 32+52/840 DALI GSP L2975	1	0.014	10.700	52
6637	3F HD50DI AL 12+20/835 DALI OCB L1214	1	0.006	4.000	51
6638	3F HD50DI AL 15+26/835 DALI OCB L1508	1	0.007	4.500	51
6639	3F HD50DI AL 30+52/835 DALI OCB L2975	1	0.014	8.900	51
6644	3F HD100DI AL 22+20/840 DALI FDP L1214	1	0.010	6.000	53
6645	3F HD100DI AL 26+26/840 DALI FDP L1508	1	0.012	6.600	53
6646	3F HD100DI AL 52+52/840 DALI FDP L2975	1	0.024	11.500	53
6648	3F HD100DI AL 22+20/840 DALI FD0 L1214	1	0.010	6.000	54
6649 6650	3F HD100DI AL 26+26/840 DALI FDO L1508 3F HD100DI AL 52+52/840 DALI FDO L2975	1	0.012	6.600 11.500	54
6652	3F HD100DI AL 32+32/840 DALI FD0 L2973 3F HD100DI AL 22+20/840 DALI GSP L1214	1	0.024	6.000	54
6653	3F HD100DI AL 22+20/840 DALI GSP L1214 3F HD100DI AL 26+26/840 DALI GSP L1508	1	0.010	6.600	52
6654	3F HD100DI AL 52+52/840 DALI GSP L2975	1	0.012	11.500	52
6661	3F HD50DI AL 13+20/840 DALI 5P FD L1174	1	0.0024	5.400	59
6662	3F HD50DI AL 16+26/840 DALI 5F FD L1468	1	0.007	6.000	59
6666	3F HD50DI AL 32+52/840 DALI 5P FD L2935	1	0.014	11.100	59
6670	3F HD50DI AL 13+20/840 DALI 5P GSP L1174	1	0.006	5.600	58
6671	3F HD50DI AL 16+26/840 DALI 5P GSP L1468	1	0.007	6.200	58
6675	3F HD50DI AL 32+52/840 DALI 5P GSP L2935	1	0.014	11.300	58
6679	3F HD50DI AL 12+20/835 DALI 5P OCB L1174	1	0.006	4.200	57
6680	3F HD50DI AL 15+26/835 DALI 5P OCB L1468	1	0.007	4.700	57
6684	3F HD50DI AL 30+52/835 DALI 5P OCB L2935	1	0.014	9.300	57
6691	3F HD100DI AL 22+20/840 DALI 5P FD L1174	1	0.010	6.200	59
6692	3F HD100DI AL 26+26/840 DALI 5P FD L1468	1	0.012	6.800	59
6696	3F HD100DI AL 52+52/840 DALI 5P FD L2935	1	0.024	11.700	59
6700	3F HD100DI AL 22+20/840 DALI 5P GSP L1174	1	0.010	6.400	58
6701	3F HD100DI AL 26+26/840 DALI 5P GSP L1468	1	0.012	7.000	58
6705	3F HD100DI AL 52+52/840 DALI 5P GSP L2935	1	0.024	12.100	58
6710	3F HD50R WH 13/840 DALI FDP L1188	1	0.006	4.700	62
6711	3F HD50R WH 16/840 DALI FDP L1482	1	0.007	5.100	62
6712	3F HD50R WH 32/840 DALI FDP L2949	1	0.015	9.400	62
6714	3F HD50R WH 13/840 DALI FDO L1188	1	0.006	4.700	63
6715	3F HD50R WH 16/840 DALI FDO L1482	1	0.007	5.100	63
6716	3F HD50R WH 32/840 DALI FDO L2949	1	0.015	9.400	63
6718	3F HD50R WH 13/840 DALI GSP L1188	1	0.006	4.700	61
6719	3F HD50R WH 16/840 DALI GSP L1482	1	0.007	5.100	61
6720	3F HD50R WH 32/840 DALI GSP L2949	1	0.015	9.400	61
6722	3F HD50R WH 12/835 DALI OCW L1188	1	0.006	3.500	61
6723	3F HD50R WH 15/835 DALI OCW L1482	1	0.007	3.800	61
6724	3F HD50R WH 30/835 DALI OCW L2949	1	0.015	7.600	61
6729	3F HD100R WH 22/840 DALI FDP L1188	1	0.010	5.400	62

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
6730	3F HD100R WH 26/840 DALI FDP L1482	1	0.012	5.800	62
6731	3F HD100R WH 52/840 DALI FDP L2949	1	0.024	10.000	62
6733	3F HD100R WH 22/840 DALI FDO L1188	1	0.010	5.400	63
6734	3F HD100R WH 26/840 DALI FDO L1482	1	0.012	5.800	63
6735	3F HD100R WH 52/840 DALI FDO L2949	1	0.024	10.000	63
6737	3F HD100R WH 22/840 DALI GSP L1188	1	0.010	5.400	61
6738	3F HD100R WH 26/840 DALI GSP L1482	1	0.012	5.800	61
6739	3F HD100R WH 52/840 DALI GSP L2949	1	0.024	10.000	61
6746	3F HD50R WH 13/840 DALI 5P FD L1174	1	0.006	4.900	68
6747 6751	3F HD50R WH 16/840 DALI 5P FD L1468 3F HD50R WH 32/840 DALI 5P FD L2935	1	0.007	5.300 9.800	68 68
6755	3F HD50R WH 32/840 DALI 5P FD L2935 3F HD50R WH 13/840 DALI 5P GSP L1174	1	0.015	4.900	67
6756	3F HD50R WH 16/840 DALI 5P GSP L1468	1	0.000	5.300	67
6760	3F HD50R WH 32/840 DALI 5P GSP L2935	1	0.007	9.800	67
6764	3F HD50R WH 12/835 DALI 5P OCW L1174	1	0.006	3.700	67
6765	3F HD50R WH 15/835 DALI 5P OCW L1468	1	0.007	4.000	67
6769	3F HD50R WH 30/835 DALI 5P OCW L2935	1	0.015	8.000	67
6776	3F HD100R WH 22/840 DALI 5P FD L1174	1	0.010	5.600	68
6777	3F HD100R WH 26/840 DALI 5P FD L1468	1	0.012	6.000	68
6781	3F HD100R WH 52/840 DALI 5P FD L2935	1	0.024	10.400	68
6785	3F HD100R WH 22/840 DALI 5P GSP L1174	1	0.010	5.800	67
6786	3F HD100R WH 26/840 DALI 5P GSP L1468	1	0.012	6.300	67
6790	3F HD100R WH 52/840 DALI 5P GSP L2935	1	0.024	11.000	67
6793	3F HD50 WH HO 22/840 DALI GSP L1214	1	0.006	5.000	41
6794	3F HD50 WH HO 26/840 DALI GSP L1508	1	0.007	5.500	41
6795	3F HD50 WH HO 52/840 DALI GSP L2975	1	0.014	10.200	41
6796	3F HD100 WH HO 36/840 DALI GSP L1214	1	0.010	5.800	41
6797	3F HD100 WH HO 44/840 DALI GSP L1508	1	0.012	6.300	41
6798	3F HD100 WH HO 88/840 DALI GSP L2975	1	0.024	11.200	41
6799	3F HD50 BK HO 22/840 DALI GSP L1214	1	0.006	5.000	41
6800	3F HD50 BK HO 26/840 DALI GSP L1508	1	0.007	5.500	41
6801	3F HD50 BK HO 52/840 DALI GSP L2975	1	0.014	10.200	41
6802	3F HD100 BK HO 36/840 DALI GSP L1214	1	0.010	5.800	41
6803	3F HD100 BK HO 44/840 DALI GSP L1508	1	0.012	6.300	41
6804	3F HD100 BK HO 88/840 DALI GSP L2975	1	0.024	11.200	41
6805	3F HD50 AL HO 22/840 DALI GSP L1214	1	0.006	5.000	41
6806	3F HD50 AL HO 26/840 DALI GSP L1508	1	0.007	5.500	41
6807	3F HD50 AL HO 52/840 DALI GSP L2975	1	0.014	10.200	41
6808	3F HD100 AL HO 36/840 DALI GSP L1214	1	0.010	5.800	41
6809	3F HD100 AL HO 44/840 DALI GSP L1508	1	0.012	6.300	41
6810	3F HD100 AL HO 88/840 DALI GSP L2975	1	0.024	11.200	41
6811	3F HD50 WH HO 22/840 DALL FDP L1214	1	0.006	5.000	43
6812 6813	3F HD50 WH HO 26/840 DALI FDP L1508 3F HD50 WH HO 52/840 DALI FDP L2975	1	0.007	5.500 10.200	43
6814	3F HD30 WH HO 32/840 DALI FDP L2973 3F HD100 WH HO 36/840 DALI FDP L1214	1	0.014	5.800	43
6815	3F HD100 WH HO 44/840 DALI FDP L1508	1	0.010	6.300	43
6816	3F HD100 WH HO 88/840 DALI FDF L2975	1	0.012	11.200	43
6817	3F HD50 BK HO 22/840 DALI FDP L1214	1	0.006	5.000	43
6818	3F HD50 BK HO 26/840 DALI FDP L1508	1	0.007	5.500	43
6819	3F HD50 BK HO 52/840 DALI FDP L2975	1	0.007	10.200	43
6820	3F HD100 BK HO 36/840 DALI FDP L1214	. 1	0.010	5.800	43
6821	3F HD100 BK HO 44/840 DALI FDP L1508	1	0.012	6.300	43
6822	3F HD100 BK HO 88/840 DALI FDP L2975	1	0.024	11.200	43
6823	3F HD50 AL HO 22/840 DALI FDP L1214	1	0.006	5.000	43
6824	3F HD50 AL HO 26/840 DALI FDP L1508	1	0.007	5.500	43
6825	3F HD50 AL HO 52/840 DALI FDP L2975	1	0.014	10.200	43
6826	3F HD100 AL HO 36/840 DALI FDP L1214	1	0.010	5.800	43
6827	3F HD100 AL HO 44/840 DALI FDP L1508	1	0.012	6.300	43
6828	3F HD100 AL HO 88/840 DALI FDP L2975	1	0.024	11.200	43
6829	3F HD50 WH HO 22/840 DALI FDO L1214	1	0.006	5.000	45

Code	Item		F	Pack	Page
		Pcs	m³	Gross weight in kg	
6830	3F HD50 WH HO 26/840 DALI FDO L1508	1	0.007	5.500	45
6831	3F HD50 WH HO 52/840 DALI FDO L2975	1	0.014	10.200	45
6832	3F HD100 WH HO 36/840 DALI FDO L1214	1	0.010	5.800	45
6833	3F HD100 WH HO 44/840 DALI FDO L1508	1	0.012	6.300	45
6834	3F HD100 WH HO 88/840 DALI FDO L2975	1	0.024	11.200	45
6835	3F HD50 BK HO 22/840 DALI FDO L1214	1	0.006	5.000	45
6836	3F HD50 BK HO 26/840 DALI FDO L1508	1	0.007	5.500	45
6837	3F HD50 BK HO 52/840 DALI FDO L2975	1	0.014	10.200	45
6838	3F HD100 BK HO 36/840 DALI FDO L1214	1	0.010	5.800	45
6839	3F HD100 BK HO 44/840 DALI FDO L1508	1	0.012	6.300	45
6840 6841	3F HD100 BK HO 88/840 DALI FDO L2975 3F HD50 AL HO 22/840 DALI FDO L1214	1	0.024	11.200 5.000	45 45
6842	3F HD50 AL HO 22/840 DALI FDO L1214 3F HD50 AL HO 26/840 DALI FDO L1508	1	0.000	5.500	45
6843	3F HD50 AL HO 52/840 DALI FD0 L1308	1	0.007	10.200	43
6844	3F HD100 AL HO 36/840 DALI FDO L1214	1	0.014	5.800	43
6845	3F HD100 AL HO 44/840 DALI FD0 L1508	1	0.012	6.300	45
6846	3F HD100 AL HO 88/840 DALI FDO L2975	1	0.024	11.200	45
6847	3F HD50R WH HO 22/840 DALI GSP L1188	1	0.006	4.700	62
6848	3F HD50R WH HO 26/840 DALI GSP L1482	1	0.007	5.100	62
6849	3F HD50R WH HO 52/840 DALI GSP L2949	1	0.015	9.400	62
6850	3F HD100R WH HO 36/840 DALI GSP L1188	1	0.010	5.400	62
6851	3F HD100R WH HO 44/840 DALI GSP L1482	1	0.012	5.800	62
6852	3F HD100R WH HO 88/840 DALI GSP L2949	1	0.024	10.200	62
6853	3F HD50R WH HO 22/840 DALI FDP L1188	1	0.006	4.700	63
6854	3F HD50R WH HO 26/840 DALI FDP L1482	1	0.007	5.100	63
6855	3F HD50R WH HO 52/840 DALI FDP L2949	1	0.015	9.400	63
6856	3F HD100R WH HO 36/840 DALI FDP L1188	1	0.010	5.400	63
6857	3F HD100R WH HO 44/840 DALI FDP L1482	1	0.012	5.800	63
6858	3F HD100R WH HO 88/840 DALI FDP L2949	1	0.024	10.200	63
6859	3F HD50R WH HO 22/840 DALI FDO L1188	1	0.006	4.700	64
6860	3F HD50R WH HO 26/840 DALI FDO L1482	1	0.007	5.100	64
6861	3F HD50R WH HO 52/840 DALI FDO L2949	1	0.015	9.400	64
6862	3F HD100R WH HO 36/840 DALI FDO L1188	1	0.010	5.400	64
6863	3F HD100R WH HO 44/840 DALI FDO L1482	1	0.012	5.800	64
6864	3F HD100R WH HO 88/840 DALI FDO L2949	1	0.024	10.200	64
7001	3F Manta AN 50/730 AMPIO L660	1		16.800	501
7002	3F Manta AN 75/730 AMPIO L660	1		16.800	501
7003	3F Manta AN 100/730 AMPIO L660	1		16.800	501
7004	3F Manta AN 135/730 AMPIO L660	1		16.800	501
7009	3F Manta AN 50/730 MEDIO L660	1		16.800	501
7010	3F Manta AN 75/730 MEDIO L660	1		16.800	501
7011 7012	3F Manta AN 100/730 MEDIO L660 3F Manta AN 135/730 MEDIO L660	1		16.800 16.800	501 501
7012	3F Marta AN 185/730 MEDIO L660	1		16.800	501
8357	3F 66 1 LED 6 II	1	0.017	3.000	505
8358	3F 66 2 LED 12 II	1	0.017	3.300	505
10591	3F Zeta DR UGR 2x18 LED L1194	1	0.008	3.700	156
10592	3F Zeta DR UGR 1x24 LED L1194	1	0.008	3.500	156
10593	3F Zeta DR UGR 2x18 LED DALI L1194	1	0.008	3.700	156
10594	3F Zeta DR UGR 1x24 LED DALI L1194	1	0.008	3.500	156
10598	3F Zeta DR UGR 2x9 LED L605	1	0.004	3.000	156
10599	3F Zeta DR UGR 1x12 LED L605	1	0.004	2.800	156
10600	3F Zeta DR UGR 2x9 LED DALI L605	1	0.004	3.000	156
10601	3F Zeta DR UGR 1x12 LED DALI L605	1	0.004	2.800	156
10605	3F Zeta L AS 40 LED L1489	1	0.010	4.000	150
10606	3F Zeta L AS 40 LED DALI L1489	1	0.010	4.000	150
10607	3F Zeta L AS 40 LED EP L1489	1	0.010	4.800	150
	3F Travetta LED 1x18W OP L1290	1	0.018	3.800	172
10731					
10731 10732	3F Travetta LED 1x22W OP L1590	1	0.022	4.800	172

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
10735	3F Travetta LED 2x22W OP L1590	1	0.022	5.000	172
10747	3F Travetta LED DI 2x15W 2MG L1590	1	0.022	5.200	175
10748	3F Travetta LED DI 2x22W 2MG L1590	1	0.022	5.200	175
10763	3F TRAV. LED 2X22W DALI DT8 TW 2MG L1590	1	0.022	6.500	177
10775	3F Travetta LED 1x40W OP L2200	1	0.028	7.000	172
10777	3F Travetta LED 2x40W OP L2200	1	0.028	7.500	172
10848	P 202x24W LED VS IP54 196x1231	1	0.022	6.300	193
10851	P 203x10W LED VS IP54 596x596	1	0.037	7.700	193
10852	P 204x10W LED VS IP54 596x596	1	0.037	7.800	193
10856	P 202x24W LED SP IP54 196x1231	1	0.022	4.700	193
10859	P 203x10W LED SP IP54 596x596	1	0.037	5.500	193
10860	P 204x10W LED SP IP54 596x596	1	0.037	5.600	193
10864	3F Zeta L UGR 30 LED L1194	1	0.008	3.500	149
10867	3F Zeta L UGR 30 LED DALI L1194	1	0.008	3.500	149
10870	3F Zeta D 1x22 LED L1489	1	0.010	4.000	153
10871	3F Zeta D 1x18 LED L1194	1	0.008	3.500	153
10872	3F Zeta D 1x9 LED L605	1	0.004	2.800	153
10873	3F Zeta D 2x22 LED L1489	1	0.010	4.200	153
10874	3F Zeta D 2x18 LED L1194	1	0.004	3.700	153
10875	3F Zeta D 2x9 LED L605	1	0.004	3.000	153
10877	3F Zeta DR 1x22 LED L1489	1	0.010	4.000	155
10878	3F Zeta DR 1x18 LED L1194	1	0.008	3.500	155
10879	3F Zeta DR 1x9 LED L605	1	0.004	2.800	155
10880	3F Zeta DR 2x22 LED L1489	1	0.010	4.200	155
10881	3F Zeta DR 2x18 LED L1194	1	0.008	3.700	155
10882	3F Zeta DR 2x9 LED L605	1	0.004	3.000	155
10886	3F Zeta DR AS 1x30 LED L1489	1	0.010	4.500	155
10887	3F Zeta DR AS 2x22 LED L1489	1	0.010	4.700	155
10892	3F Zeta L 40 LED L1489	1	0.010	4.000	149
10893	3F Zeta L 30 LED L1194	1	0.008	3.500	149
10894	3F Zeta L 15 LED L605	1	0.004	2.800	149
10898	3F Mirella BK 40 SP L1480	1	0.027	6.100	89
10899	3F Mirella BK 60 SP L2200	1	0.039	8.700	89
10900	3F Mirella BK 40 DALI SP L1480	1	0.027	6.200	89
10901	3F Mirella BK 60 DALI SP L2200	1	0.039	8.800	89
10902	3F Mirella BK DI 40+8 SP L1480	1	0.027	6.400	93
10903	3F Mirella BK DI 60+14 SP L2200	1	0.039	9.100	93
10904	3F Mirella BK DI 40+8 DALI SP L1480	1	0.027	6.500	93
10905	3F Mirella BK DI 60+14 DALI SP L2200	1	0.039	9.200	93
10909	3F Mirella BK 40 OP L1480	1	0.027	6.100	90
10910	3F Mirella BK 60 OP L2200	1	0.039	8.700	90
10911	3F Mirella BK 40 DALI OP L1480	1	0.027	6.200	90
10912	3F Mirella BK 60 DALI OP L2200	1	0.039	8.800	90
10913	3F Mirella BK DI 40+8 OP L1480	1	0.027	6.400	94
10914	3F Mirella BK DI 60+14 OP L2200	1	0.039	9.100	94
10915	3F Mirella BK DI 40+8 DALI OP L1480	1	0.027	6.500	94
10916	3F Mirella BK DI 60+14 DALI OP L2200	1	0.039	9.200	94
10920	3F Mirella WH 40 SP L1480	1	0.027	6.100	89
10921	3F Mirella WH 60 SP L2200	1	0.039	8.700	89
10922	3F Mirella WH 40 DALI SP L1480	1	0.027	6.200	89
10923	3F Mirella WH 60 DALI SP L2200	1	0.039	8.800	89
10924	3F Mirella WH DI 40+8 SP L1480	1	0.027	6.400	93
10925	3F Mirella WH DI 60+14 SP L2200	1	0.039	9.100	93
10926	3F Mirella WH DI 40+8 DALI SP L1480	1	0.027	6.500	93
10927	3F Mirella WH DI 60+14 DALI SP L2200	1	0.039	9.200	93
10931	3F Mirella WH 40 OP L1480	1	0.027	6.100	90
10932	3F Mirella WH 60 OP L2200	1	0.039	8.700	90
10933	3F Mirella WH 40 DALI OP L1480	1	0.027	6.200	90
10934	3F Mirella WH 60 DALI OP L2200	1	0.039	8.800	90
10935	3F Mirella WH DI 40+8 OP L1480	1	0.027	6.400	94

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
10936	3F Mirella WH DI 60+14 OP L2200	1	0.039	9.100	94
10937	3F Mirella WH DI 40+8 DALI OP L1480	1	0.027	6.500	94
10938	3F Mirella WH DI 60+14 DALI OP L2200	1	0.039	9.200	94
10942	3F Mirella AL 40 SP L1480	1	0.027	6.100	89
10943	3F Mirella AL 60 SP L2200	1	0.039	8.700	89
10944	3F Mirella AL 40 DALI SP L1480	1	0.027	6.200	89
10945	3F Mirella AL 60 DALI SP L2200	1	0.039	8.800	89
10946	3F Mirella AL DI 40+8 SP L1480	1	0.027	6.400	93
10947	3F Mirella AL DI 60+14 SP L2200	1	0.039	9.100	93
10948	3F Mirella AL DI 40+8 DALI SP L1480	1	0.027	6.500	93
10949	3F Mirella AL DI 60+14 DALI SP L2200	1	0.039	9.200	93
10953	3F Mirella AL 40 OP L1480	1	0.027	6.100	90
10954	3F Mirella AL 60 OP L2200	1	0.039	8.700	90
10955	3F Mirella AL 40 DALI OP L1480	1	0.027	6.200	90
10956	3F Mirella AL 60 DALI OP L2200	1	0.039	8.800	90
10957	3F Mirella AL DI 40+8 OP L1480	1	0.027	6.400	94
10958	3F Mirella AL DI 60+14 OP L2200	1	0.039	9.100	94
10959	3F Mirella AL DI 40+8 DALI OP L1480	1	0.027	6.500	94
10960	3F Mirella AL DI 60+14 DALI OP L2200	1	0.039	9.200	94
10961	3F Zeta D 1x22 LED DALI L1489	1	0.010	4.000	153
10962	3F Zeta D 1x18 LED DALI L1194	1	0.008	3.500	153
10964	3F Zeta D 2x22 LED DALI L1489	1	0.010	4.200	153
10965	3F Zeta D 2x18 LED DALI L1194	1	0.004	3.700	153
10967	3F Zeta DR 1x22 LED DALI L1489	1	0.010	4.000	155
10968	3F Zeta DR 1x18 LED DALI L1194	1	0.008	3.500	155
10970	3F Zeta DR 2x22 LED DALI L1489	1	0.010	4.200	155
10971	3F Zeta DR 2x18 LED DALI L1194	1	0.008	3.700	155
10973	3F Zeta DR AS 1x30 LED DALI L1489	1	0.010	4.500	155
10974	3F Zeta DR AS 2x22 LED DALI L1489	1	0.010	4.700	155
10976	3F Zeta L 40 LED DALI L1489	1	0.010	4.000	149
10977	3F Zeta L 30 LED DALI L1194	1	800.0	3.500	149
10980	3F Zeta D 1x22 LED EP L1489	1	0.010	4.800	153
10982	3F Zeta D 2x22 LED EP L1489	1	0.010	5.000	153
10984	3F Zeta DR 1x22 LED EP L1489	1	0.010	4.800	155
10986	3F Zeta DR 2x22 LED EP L1489	1	0.010	5.000	155
10988	3F Zeta L 40 LED EP L1489		0.010	4.800	149
10997	3F Zeta DR UGR 2x22 LED L1783 3F Zeta DR UGR 1x30 LED L1783	1	0.012	5.500	156
10998 10999	3F Zeta DR UGR 1x30 LED E1763 3F Zeta DR UGR 2x22 LED DALI L1783	1	0.012	5.400 5.500	156 156
11000	3F Zeta DR UGR 1x30 LED DALI L1783	1	0.012	5.400	156
11000	3F Zeta DR UGR 2x22 LED EP L1783	1	0.012	6.100	156
11002	3F Zeta DR UGR 1x30 LED EP L1783	1	0.012	6.000	156
11002	3F Zeta DR UGR 2x22/940 LED L1783	1	0.012	5.500	156
11003	3F Zeta DR UGR 2x22/340 LED DALI L1783	1	0.012	5.500	156
11481	3F Travetta LED 1x22W DALI 2MG L1590	1	0.012	4.800	130
11484	3F Travetta LED 2x22W DALI 2NG L1590	1	0.022	5.000	171
11494	3F Travetta LED 1x18W DALI OP L1290	1	0.022	3.800	171
11495	3F Travetta LED 1x22W DALI OF L1230	1	0.010	4.800	172
11497	3F Travetta LED 2x18W DALI OF L1290	1	0.022	4.000	172
11498	3F Travetta LED 2x22W DALI OF L1230	1	0.010	5.000	172
11503	3F Travetta LED DI 2x15W DALI OF E1390	1	0.022	5.200	172
11504	3F Travetta LED DI 2x13W DALI 2NG L1590 3F Travetta LED DI 2x22W DALI 2MG L1590	1	0.022	5.200	175
11511	3F Travetta LED 1 x40W DALI OP L2200	1	0.022	7.000	173
11513	3F Travetta LED 2x40W DALI OF L2200	1	0.028	7.500	172
11522	3F Travella LED 2x40W DALI OF L2200 3F Trav. LED DI 2x15W DALI LS 2MG L1590	1	0.028	5.300	172
11523	3F Trav. LED DI 2x22W DALI LS 2MG L1590	1	0.022	5.300	175
11528	3F Travetta LED 1x22W DALI LS 210G L1590	1	0.022	3.800	175
11530	3F Travetta LED 1x24W LGS L1290 3F Travetta LED 1x30W LGS L1590	1	0.018	4.800	171
11531	3F Travetta LED 2x18W LGS L1290	1	0.022	4.000	171
	S. HAVORA LED ENTONY LOO LIEUU	1	5.010	т.000	171

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
11537	3F Travetta LED 1x24W DALI LGS L1290	1	0.018	3.800	171
11539	3F Travetta LED 1x30W DALI LGS L1590	1	0.022	4.800	171
11540	3F Travetta LED 2x18W DALI LGS L1290	1	0.018	4.000	171
11542	3F Travetta LED 2x22W DALI LGS L1590	1	0.022	5.000	171
11672	P 250 32W LED OP 596x596	1	0.023	5.200	199
11674	P 250 32W LED DALI OP 596x596	1	0.023	5.200	199
11686	P 250 32W LED LGS 596x596	1	0.023	5.200	199
11688	P 250 32W LED DALI LGS 596x596	1	0.023	5.200	199
12126	3F Diagon P 25W/830 SOFT UGR 596x596	1	0.016	6.400	143
12127	3F Diagon P 25W/830 DALI SOFT UGR 596x596	1	0.016	6.600	143
12128	3F Diagon P 25W/830 EP SOFT UGR 596x596	1	0.016	7.200	143
12130	3F Diagon P 25W/840 SOFT UGR 596x596	1	0.016	6.400	143
12131	3F Diagon P 25W/840 DALI SOFT UGR 596x596	1	0.016	6.600	143
12132	3F Diagon P 25W/840 EP SOFT UGR 596x596	1	0.016	7.200	143
12134	3F Diagon P 39W/930 SOFT UGR 596x596	1	0.016	6.400	143
12135	3F Diagon P 39W/930 DALI SOFT UGR 596x596	1	0.016	6.600	143
12136	3F Diagon P 39W/930 EP SOFT UGR 596x596	1	0.016	7.200	143
12138	3F Diagon P 39W/940 SOFT UGR 596x596	1	0.016	6.400	143
12139	3F Diagon P 39W/940 DALI SOFT UGR 596x596	1	0.016	6.600	143
12140	3F Diagon P 39W/940 EP SOFT UGR 596x596	1	0.016	7.200	143
12142 12403	3F Diagon P 25W DT8 TW SOFT UGR 596x596 Fil 180 LED 2x24W RSP AMPIO L1280	1	0.016	6.400 5.000	145
12403	Fil 180 LED 2x24W RSP AMPIO L1280	1	0.021	6.200	183
12601	Fil 180 LED 1x24W 2US L1280	1	0.020	4.500	183
12603	Fil 180 LED 1x30W 2US L1590	1	0.021	5.700	183
12605	Fil 180 LED 2x24W 2US L1280	1	0.020	4.700	183
12607	Fil 180 LED 2x24W 203 L1280	1	0.021	5.900	183
12614	Fil 180 LED 1+1x30W 2US L3140	1	0.020	11.400	183
12618	Fil 180 LED 2+2x30W 2US L3140	1	0.051	11.800	183
12675	P 201x30W LED 2US 156x1531	1	0.022	4.900	191
12680	P 202x24W LED 2US 196x1231	1	0.022	4.500	191
12682	P 202x30W LED 2US 196x1531	1	0.028	5.800	191
12687	P 202x24W LED 2US 270x1231	1	0.030	5.900	191
12689	P 202x30W LED 2US 270x1531	1	0.040	6.700	191
12692	P 203x10W LED 2US 596x596	1	0.037	5.300	191
12771	Barraluce P 1x30W LED SP L1471	1	0.017	4.600	202
12773	Barraluce P 1+1x30W LED SP L2937	1	0.033	9.200	202
12779	Barraluce P 1x30W LED SP 5P L1466	1	0.017	4.900	202
12781	Barraluce P 1+1x30W LED SP 5P L2932	1	0.033	9.800	202
12787	Barraluce P 1x30W LED OP L1471	1	0.017	4.600	201
12789	Barraluce P 1+1x30W LED OP L2937	1	0.033	9.200	201
12795	Barraluce P 1x30W LED OP 5P L1466	1	0.017	4.900	201
12797	Barraluce P 1+1x30W LED OP 5P L2932	1	0.033	9.200	201
12815	P 251x30W LED SP 156x1531	1	0.015	5.000	195
12820	P 252x24W LED SP 196x1231	1	0.015	4.400	195
12822	P 252x30W LED SP 196x1531	1	0.019	5.600	195
12824	P 253x10W LED SP 596x596	1	0.023	4.900	195
12826	P 254x10W LED SP 596x596	1	0.023	5.100	195
12835	P 251x30W LED OP 156x1531	1	0.015	5.000	195
12840	P 252x24W LED OP 196x1231	1	0.015	4.400	195
12842	P 252x30W LED OP 196x1531	1	0.019	5.600	195
12844	P 253x10W LED OP 596x596	1	0.023	4.900	195
12846	P 254x10W LED OP 596x596	1	0.023	5.100	195
12855	P 251x30W LED LGS 156x1531	1	0.015	5.000	196
12860	P 252x24W LED LGS 196x1231	1	0.015	4.400	196
12862	P 252x30W LED LGS 196x1531	1	0.019	5.600	196
12864	P 253x10W LED LGS 596x596	1	0.023	4.900	196
12866	P 254x10W LED LGS 596x596	1	0.023	5.100	196
12870	3F Mirella SF BK 40 SP L1480	1	0.027	6.100	97
12871	3F Mirella SF BK 60 SP L2200	1	0.039	8.700	97

Code	Item		F	Pack	Page
		Pcs	m³	Gross weight in kg	
12872	3F Mirella SF BK 40 DALI SP L1480	1	0.027	6.200	97
12873	3F Mirella SF BK 60 DALI SP L2200	1	0.039	8.800	97
12874	3F Mirella SF BK DI 40+8 SP L1480	1	0.027	6.400	99
12875	3F Mirella SF BK DI 60+14 SP L2200	1	0.039	9.100	99
12876	3F Mirella SF BK DI 40+8 DALI SP L1480	1	0.027	6.500	99
12877	3F Mirella SF BK DI 60+14 DALI SP L2200	1	0.039	9.200	99
12892	3F Mirella SF WH 40 SP L1480	1	0.027	6.100	97
12893	3F Mirella SF WH 60 SP L2200	1	0.039	8.700	97
12894	3F Mirella SF WH 40 DALI SP L1480 3F Mirella SF WH 60 DALI SP L2200	1	0.027	6.200	97
12895 12896	3F Mirella SF WH DI 40+8 SP L1480	1	0.039	8.800 6.400	97 99
12897	3F Mirella SF WH DI 60+14 SP L2200	1	0.027	9.100	99
12898	3F Mirella SF WH DI 40+8 DALI SP L1480	1	0.000	6.500	99
12899	3F Mirella SF WH DI 60+14 DALI SP L2200	1	0.027	9.200	99
12914	3F Mirella SF AL 40 SP L 1480	1	0.027	6.100	97
12915	3F Mirella SF AL 60 SP L2200	1	0.039	8.700	97
12916	3F Mirella SF AL 40 DALI SP L1480	1	0.027	6.200	97
12917	3F Mirella SF AL 60 DALI SP L2200	1	0.039	8.800	97
12918	3F Mirella SF AL DI 40+8 SP L1480	1	0.027	6.400	99
12919	3F Mirella SF AL DI 60+14 SP L2200	1	0.039	9.100	99
12920	3F Mirella SF AL DI 40+8 DALI SP L1480	1	0.027	6.500	99
12921	3F Mirella SF AL DI 60+14 DALI SP L2200	1	0.039	9.200	99
12960	3F Mirella Floor SF BK 23+23	1		15.000	101
12961	3F Mirella Floor SF WH 23+23	1		15.000	101
12964	3F Mirella Floor SF BK 23+23 Touch DALI	1		15.000	101
12965	3F Mirella Floor SF WH 23+23 Touch DALI	1		15.000	101
21244	L 323x10W LED SP 596x596	1	0.031	5.000	255
21245	L 324x10W LED SP 596x596	1	0.031	5.200	255
21256	L 323x10W LED DALI SP 596x596	1	0.031	5.000	255
21257	L 324x10W LED DALI SP 596x596	1	0.031	5.200	255
21262	L 323x10W LED EP SP 596x596	1	0.031	5.900	255
21263	L 324x10W LED EP SP 596x596	1	0.031	6.100	255
21282	L 323x10W LED Sensor CF SP 596x596	1	0.031	5.200	265
21287 21290	L 322x18W LED SP 296x1196 L 322x18W LED DALI SP 296x1196	1	0.039	5.400 5.400	255 255
21290	L 322x18W LED EP SP 296x1196	1	0.039	5.900	255
21233	L 594x10W LED RVS 599x599	1	0.003	11.500	289
21524	L 596x10W LED RVS 599x599	1	0.041	12.000	289
21529	L 594x10W/940 LED RVS 599x599	1	0.041	11.500	289
21531	L 596x10W/940 LED RVS 599x599	1	0.041	12.000	289
21536	L 594x10W LED DALI RVS 599x599	1	0.041	11.500	289
21538	L 596x10W LED DALI RVS 599x599	1	0.041	12.000	289
21543	L 594x10W/940 LED DALI RVS 599x599	1	0.041	11.500	289
21545	L 596x10W/940 LED DALI RVS 599x599	1	0.041	12.000	289
21557	L 594x10W/940 LED RVSS 599x599	1	0.041	13.500	289
21559	L 596x10W/940 LED RVSS 599x599	1	0.041	14.000	289
21571	L 594x10W/940 LED DALI RVSS 599x599	1	0.041	13.500	289
21573	L 596x10W/940 LED DALI RVSS 599x599	1	0.041	14.000	289
21580	L 323x10W LED LGS 596x596	1	0.031	5.000	256
21581	L 324x10W LED LGS 596x596	1	0.031	5.200	256
21586	L 323x10W LED DALI LGS 596x596	1	0.031	5.000	256
21587	L 324x10W LED DALI LGS 596x596	1	0.031	5.200	256
21589	L 323x10W LED EP LGS 596x596	1	0.031	5.900	256
21590	L 324x10W LED EP LGS 596x596	1	0.031	6.100	256
21598	L 323x10W LED Sensor CF LGS 596x596	1	0.031	5.200	265
21600	L 322x18W LED LGS 296x1196	1	0.039	5.400	256
21603 21606	L 322x18W LED DALI LGS 296x1196 L 322x18W LED EP LGS 296x1196	1	0.039	5.400 5.900	256 256
21606	L 323x10W LED DALI DT8 TW LGS 596x596	1	0.039	5.200	263
21640	L 320 32W LED LGS 596x596	1	0.023	4.900	260
			0.020		200

Code	Item		F	Pack	Page
		Pcs	m³	Gross weight in kg	
21641	L 320 32W LED DALI LGS 596x596	1	0.023	4.900	260
21642	L 320 32W LED EP LGS 596x596	1	0.045	5.900	260
21648	L 320 32W LED OP 596x596	1	0.023	4.900	259
21649	L 320 32W LED DALI OP 596x596	1	0.023	4.900	259
21650	L 320 32W LED EP OP 596x596	1	0.045	5.900	259
21652	L 320 32W LED LGS 621x621	1	0.024	4.800	260
21653	L 320 32W LED DALI LGS 621x621	1	0.024	4.800	260
21654	L 320 32W LED EP LGS 621x621	1	0.054	5.800	260
21660	L 320 32W LED OP 621x621	1	0.024	4.800	259
21661	L 320 32W LED DALI OP 621x621	1	0.024	4.800	259
21662	L 320 32W LED EP OP 621x621	1	0.054	5.800	259
21720	3F Emilio R LED 2000/840 SPOT	1	0.006	1.600	229
21721	3F Emilio R LED 2000/930 SPOT	1	0.006	1.600	229
21728	3F Emilio R LED 2000/840 ELL	1	0.006	1.600	229
21729	3F Emilio R LED 2000/930 ELL	1	0.006	1.600	229
21736	3F Emilio R LED 2000/840 IPER	1	0.006	1.600	230
21737	3F Emilio R LED 2000/930 IPER	1	0.006	1.600	230
21744	3F Emilio R LED 3000/840 IPER	1	0.006	1.600	230
21801	L 583x10W LED SP IP54 596x596	1	0.037	5.500	286
21802	L 584x10W LED SP IP54 596x596	1	0.037	5.800	286
21808	L 583x10W LED SP IP54 621x621	1	0.041	5.600	286
21809	L 584x10W LED SP IP54 621x621	1	0.041	5.900	286
21815	L 583x10W LED VS IP54 596x596	1	0.037	7.000	285
21816	L 584x10W LED VS IP54 596x596	1	0.037	7.300	285
21822	L 583x10W LED VS IP54 621x621	1	0.041	7.100	285
21823	L 584x10W LED VS IP54 621x621	1	0.041	7.400	285
21829	L 583x10W LED DALI SP IP54 596x596	1	0.037	5.500	286
21830	L 584x10W LED DALI SP IP54 596x596	1	0.037	5.800	286
21836	L 583x10W LED DALI SP IP54 621x621	1	0.041	5.600	286
21837	L 584x10W LED DALI SP IP54 621x621	1	0.041	5.900	286
21843	L 583x10W LED DALI VS IP54 596x596	1	0.037	7.000	285
21844	L 584x10W LED DALI VS IP54 596x596	1	0.037	7.300	285
21850	L 583x10W LED DALI VS IP54 621x621	1	0.041	7.100	285
21851	L 584x10W LED DALI VS IP54 621x621	1	0.041	7.400	285
22701	L 323x10W/940 LED SP 596x596	1	0.031	5.000	255
22702	L 324x10W/940 LED SP 596x596	1	0.031	5.200	255
22703	L 323x10W/940 LED DALI SP 596x596	1	0.031	5.000	255
22704	L 324x10W/940 LED DALI SP 596x596	1	0.031	5.200	255
22705	L 323x10W/940 LED EP SP 596x596	1	0.031	5.900	255
22706	L 324x10W/940 LED EP SP 596x596	1	0.031	6.100	255
22709	L 324x10W/940 LED LGS 596x596	1	0.031	5.200	256
22710	L 324x10W/940 LED DALI LGS 596x596	1	0.031	5.200	256
22711	L 324x10W/940 LED EP LGS 596x596	1	0.031	6.100	256
22716	L 323x10W/940 LED 2S 596x596	1	0.031	4.850	254
22717	L 323x10W/940 LED EP 2S 596x596	1	0.031	5.150	254
22718	L 323x10W/940 LED DALI 2S 596x596	1	0.031	4.850	254
22722	L 323x10W/940 LED 2MG 596x596	1	0.031	4.850	253
22723	L 323x10W/940 LED EP 2MG 596x596	1	0.031	5.150	253
22724	L 323x10W/940 LED DALI 2MG 596x596	1	0.031	4.850	253
22732	L 320 32W/940 LED LGS 596x596	1	0.023	4.900	260
22733	L 320 32W/940 LED DALI LGS 596x596	1	0.023	4.900	260
22734	L 320 32W/940 LED EP LGS 596x596	1	0.045	5.900	260
22742	L 320 32W/940 LED OP 596x596	1	0.023	4.900	259
22743	L 320 32W/940 LED DALI OP 596x596	1	0.023	4.900	259
22744	L 320 32W/940 LED EP OP 596x596	1	0.045	5.900	259
22754	L 592x24W/940 LED RVS 299x1199	1	0.042	11.000	289
22755	L 592x24W/940 LED RVSS 299x1199	1	0.042	16.000	289
22757	L 592x24W/940 LED DALI RVS 299x1199	1	0.042	11.000	289
22758	L 592x24W/940 LED DALI RVSS 299x1199	1	0.042	16.000	289
22767	L 480 24W LED GSP 80x1210	. 1	=	2.900	277
					211

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
22768	L 480 30W LED GSP 80x1510	1		3.700	277
22770	L 480 24W LED DALI GSP 80x1210	1		3.000	277
22771	L 480 30W LED DALI GSP 80x1510	1		3.800	277
22773	L 480 24W LED OP 80x1210	1		2.900	277
22774	L 480 30W LED OP 80x1510	1		3.700	277
22776	L 480 24W LED DALI OP 80x1210	1		3.000	277
22777	L 480 30W LED DALI OP 80x1510	1		3.800	277
22782	L 362x12W LED OCW 296x1196	1		6.500	275
22783	L 362x12W LED DALI OCW 296x1196	1		6.700	275
22786	L 362x12W LED OCW 308x1246	1		6.800	275
22787	L 362x12W LED DALI OCW 308x1246	1		7.000	275
23002	3F Diagon 25W/830 596x596	1	0.014	4.100	239
23006	3F Diagon 25W/830 DALI 596x596	1	0.014	4.100	239
23010	3F Diagon 25W/830 EP 596x596	1	0.014	4.900	239
23024 23025	3F Diagon 19W/840 596x596	1	0.014	4.100 4.100	239 239
23025	3F Diagon 15W/840 596x596 3F Diagon 25W/840 596x596	1	0.014	4.100	239
23020	3F Diagon 39W/840 596x596	1		4.100	239
23027	3F Diagon 19W/840 DALI 596x596	1	0.014	4.100	239
23029	3F Diagon 15W/840 DALI 596x596	1		4.100	239
23030	3F Diagon 25W/840 DALI 596x596	1	0.014	4.100	239
23031	3F Diagon 39W/840 DALI 596x596	1	0.014	4.100	239
23032	3F Diagon 19W/840 EP 596x596	1	0.014	4.900	239
23033	3F Diagon 15W/840 EP 596x596	1	0.014	4.900	239
23034	3F Diagon 25W/840 EP 596x596	1	0.014	4.900	239
23035	3F Diagon 39W/840 EP 596x596	1		4.900	239
23098	3F Diagon 25W/930 596x596	1	0.014	4.100	239
23102	3F Diagon 25W/930 DALI 596x596	1		4.100	239
23106	3F Diagon 25W/930 EP 596x596	1	0.014	4.900	239
23122	3F Diagon 25W/940 596x596	1	0.014	4.100	239
23126	3F Diagon 25W/940 DALI 596x596	1	0.014	4.100	239
23130	3F Diagon 25W/940 EP 596x596	1	0.014	4.900	239
23386	3F Diagon 25W/830 621x621	1	0.016	4.300	239
23390	3F Diagon 25W/830 DALI 621x621	1	0.016	4.300	240
23394	3F Diagon 25W/830 EP 621x621	1	0.016	5.100	240
23408	3F Diagon 19W/840 621x621	1	0.016	4.300	239
23409	3F Diagon 15W/840 621x621	1	0.016	4.300	239
23410	3F Diagon 25W/840 621x621	1	0.016	4.300	239
23411	3F Diagon 39W/840 621x621	1	0.016	4.300	239
23412	3F Diagon 19W/840 DALI 621x621	1	0.016	4.300	240
23413	3F Diagon 15W/840 DALI 621x621	1	0.016	4.300	240
23414	3F Diagon 25W/840 DALI 621x621	1	0.016	4.300	240
23415	3F Diagon 39W/840 DALI 621x621	1	0.016	4.300	240
23416	3F Diagon 19W/840 EP 621x621	1		5.100	240
23417	3F Diagon 15W/840 EP 621x621	1	0.016	5.100	240
23418	3F Diagon 25W/840 EP 621x621	1		5.100	240
23419	3F Diagon 39W/840 EP 621x621	1	0.016	5.100	240
23482	3F Diagon 25W/930 621x621	1		4.300	239
23486	3F Diagon 25W/930 DALI 621x621	1	0.016	4.300	240
23490	3F Diagon 25W/930 EP 621x621	1	0.016	5.100	240
23506	3F Diagon 25W/940 621x621	1	0.016	4.300	239
23510	3F Diagon 25W/940 DALI 621x621	1	0.016	4.300	240
23514	3F Diagon 25W/940 EP 621x621	1	0.016	5.100	240
23768	3F Diagon FP 19W/840 621x621	1		4.500	248
23769	3F Diagon FP 25W/840 621x621	1		4.500	248
23770	3F Diagon FP 19W/840 DALI 621x621	1		4.500	248
23771 23772	3F Diagon FP 25W/840 DALI 621x621	1	0.037	4.500	248 248
23772	3F Diagon FP 19W/840 EP 621x621 3F Diagon FP 25W/840 EP 621x621	1	0.037	5.300 5.300	248
23785	3F Diagon FCL 19W/840 599x599	1	0.037	4.500	240
20100	or bidgoint of taxing40 Jaakaaa	I	0.037	4.000	247

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
23786	3F Diagon FCL 25W/840 599x599	1	0.037	4.500	247
23787	3F Diagon FCL 19W/840 DALI 599x599	1	0.037	4.500	247
23788	3F Diagon FCL 25W/840 DALI 599x599	1	0.037	4.500	247
23789	3F Diagon FCL 19W/840 EP 599x599	1	0.037	5.300	247
23790	3F Diagon FCL 25W/840 EP 599x599	1	0.037	5.300	247
23795	3F Diagon FCH 19W/840 599x599	1	0.037	4.500	247
23796	3F Diagon FCH 25W/840 599x599	1	0.037	4.500	247
23797	3F Diagon FCH 19W/840 DALI 599x599	1	0.037	4.500	247
23798	3F Diagon FCH 25W/840 DALI 599x599	1	0.037	4.500	247
23799	3F Diagon FCH 19W/840 EP 599x599	1	0.037	5.300	247
23800	3F Diagon FCH 25W/840 EP 599x599	1	0.037	5.300	247
23812	3F Diagon 25W/840 SOFT UGR 596x596	1	0.014	4.100	241
23813	3F Diagon 25W/840 EP SOFT UGR 596x596	1	0.014	4.900	241
23814	3F Diagon 25W/840 DALI SOFT UGR 596x596	1	0.014	4.100	241
23816	3F Diagon 25W DT8 TW SOFT UGR 596x596	1	0.014	4.100	243
23819	3F Diagon 25W/840 SOFT UGR 621x621	1	0.016	4.300	241
23820	3F Diagon 25W/840 EP SOFT UGR 621x621	1	0.016	5.100	241
23821	3F Diagon 25W/840 DALI SOFT UGR 621x621	1	0.016	4.300	241
23823	3F Diagon 25W DT8 TW SOFT UGR 621x621	1	0.016	4.300	243
23826	3F Diagon 25W/830 SOFT UGR 596x596	1	0.014	4.100	241
23827	3F Diagon 25W/830 EP SOFT UGR 596x596	1	0.014	4.900	241
23828	3F Diagon 25W/830 DALI SOFT UGR 596x596	1	0.014	4.100	241
23830	3F Diagon 25W/830 SOFT UGR 621x621	1	0.016	4.300	241
23831	3F Diagon 25W/830 EP SOFT UGR 621x621	1	0.016	5.100	241
23832	3F Diagon 25W/830 DALI SOFT UGR 621x621	1	0.016	4.300	241
23834	3F Diagon 39W/940 SOFT UGR 596x596	1	0.014	4.100	241
23835 23836	3F Diagon 39W/940 EP SOFT UGR 596x596	1	0.014	4.900 4.100	241 241
23838	3F Diagon 39W/940 DALI SOFT UGR 596x596 3F Diagon 39W/940 SOFT UGR 621x621	1	0.014	4.300	241
23839	3F Diagon 39W/940 EP SOFT UGR 621x621	1	0.016	5.100	241
23840	3F Diagon 39W/940 DALI SOFT UGR 621x621	1	0.016	4.300	241
23842	3F Diagon 39W/930 SOFT UGR 596x596	1	0.010	4.100	241
23843	3F Diagon 39W/930 EP SOFT UGR 596x596	1	0.014	4.900	241
23844	3F Diagon 39W/930 DALI SOFT UGR 596x596	1	0.014	4.100	241
23846	3F Diagon 39W/930 SOFT UGR 621x621	1	0.016	4.300	241
23847	3F Diagon 39W/930 EP SOFT UGR 621x621	1	0.016	5.100	241
23848	3F Diagon 39W/930 DALI SOFT UGR 621x621	1	0.016	4.300	241
23850	3F Diagon FP 25W/840 SOFT UGR 621x621	1	0.037	4.500	248
23851	3F Diagon FP 25W/840 EP SOFT UGR 621x621	1	0.037	5.300	248
23852	3F Diagon FP 25W/840 DALI SOFT UGR 621x621	1	0.037	4.500	248
28826	L 323x10W LED 2S 596x596	1	0.031	4.850	254
28828	L 322x18W LED 2S 296x1196	1	0.039	5.200	254
28829	L 323x10W LED EP 2S 596x596	1	0.031	5.150	254
28831	L 322x18W LED EP 2S 296x1196	1	0.039	6.000	254
28838	L 323x10W LED DALI 2S 596x596	1	0.031	4.850	254
28840	L 322x18W LED DALI 2S 296x1196	1	0.039	5.200	254
28844	L 323x10W LED 2MG 596x596	1	0.031	4.850	253
28846	L 322x18W LED 2MG 296x1196	1	0.039	5.200	253
28847	L 323x10W LED EP 2MG 596x596	1	0.031	5.150	253
28849	L 322x18W LED EP 2MG 296x1196	1	0.039	6.000	253
28856	L 323x10W LED DALI 2MG 596x596	1	0.031	4.850	253
28858	L 322x18W LED DALI 2MG 296x1196	1	0.039	5.200	253
30001	3F Reno 100 WH 1000/840 SPOT	1	0.004	0.700	213
30005	3F Reno 100 WH 1000/930 SPOT	1	0.004	0.700	213
30009	3F Reno 100 WH 2000/840 SPOT	1	0.004	0.700	213
30013	3F Reno 100 WH 2000/930 SPOT	1	0.004	0.700	213
30018	3F Reno 100 WH 1000/840 EP SPOT	1	0.004	1.500	213
30022	3F Reno 100 WH 1000/930 EP SPOT	1	0.004	1.500	213
30026	3F Reno 100 WH 2000/840 EP SPOT	1	0.004	1.500	213
30030	3F Reno 100 WH 2000/930 EP SPOT	1	0.004	1.500	213

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
30035	3F Reno 100 WH 1000/840 DALI SPOT	1	0.004	0.700	213
30039	3F Reno 100 WH 1000/930 DALI SPOT	1	0.004	0.700	213
30043	3F Reno 100 WH 2000/840 DALI SPOT	1	0.004	0.700	213
30047	3F Reno 100 WH 2000/930 DALI SPOT	1	0.004	0.700	213
30069	3F Reno 100 WH 1000/840 WIDE	1	0.004	0.700	215
30073	3F Reno 100 WH 1000/930 WIDE	1	0.004	0.700	215
30077	3F Reno 100 WH 2000/840 WIDE	1	0.004	0.700	215
30081	3F Reno 100 WH 2000/930 WIDE	1	0.004	0.700	215
30086	3F Reno 100 WH 1000/840 EP WIDE	1	0.004	1.500	215
30090 30094	3F Reno 100 WH 1000/930 EP WIDE 3F Reno 100 WH 2000/840 EP WIDE	1	0.004	1.500 1.500	215 215
30094	3F Reno 100 WH 2000/930 EP WIDE	1	0.004	1.500	215
30103	3F Reno 100 WH 1000/840 DALI WIDE	1	0.004	0.700	215
30107	3F Reno 100 WH 1000/930 DALI WIDE	1	0.004	0.700	215
30111	3F Reno 100 WH 2000/840 DALI WIDE	1	0.004	0.700	215
30115	3F Reno 100 WH 2000/930 DALI WIDE	1	0.004	0.700	215
30205	3F Reno 100 WH 1000/840 ELL	1	0.004	0.700	217
30209	3F Reno 100 WH 1000/930 ELL	1	0.004	0.700	217
30213	3F Reno 100 WH 2000/840 ELL	1	0.004	0.700	217
30217	3F Reno 100 WH 2000/930 ELL	1	0.004	0.700	217
30222	3F Reno 100 WH 1000/840 EP ELL	1	0.004	1.500	217
30226	3F Reno 100 WH 1000/930 EP ELL	1	0.004	1.500	217
30230	3F Reno 100 WH 2000/840 EP ELL	1	0.004	1.500	217
30234	3F Reno 100 WH 2000/930 EP ELL	1	0.004	1.500	217
30239	3F Reno 100 WH 1000/840 DALI ELL	1	0.004	0.700	217
30243	3F Reno 100 WH 1000/930 DALI ELL	1	0.004	0.700	217
30247	3F Reno 100 WH 2000/840 DALI ELL	1	0.004	0.700	217
30251	3F Reno 100 WH 2000/930 DALI ELL	1	0.004	0.700	217
30273	3F Reno 150 WH 2000/840 SPOT	1	0.006	0.800	213
30277 30281	3F Reno 150 WH 2000/930 SPOT	1	0.006	0.800	213
30285	3F Reno 150 WH 3000/840 SPOT 3F Reno 150 WH 3000/930 SPOT	1	0.006	1.300 1.300	213 213
30290	3F Reno 150 WH 2000/840 EP SPOT	1	0.006	1.600	213
30294	3F Reno 150 WH 2000/930 EP SPOT	1	0.006	1.600	213
30298	3F Reno 150 WH 2000/840 EP SPOT	1	0.006	2.100	213
30302	3F Reno 150 WH 3000/930 EP SPOT	1	0.006	2.100	213
30307	3F Reno 150 WH 2000/840 DALI SPOT	1	0.006	0.800	213
30311	3F Reno 150 WH 2000/930 DALI SPOT	1	0.006	0.800	213
30315	3F Reno 150 WH 3000/840 DALI SPOT	1	0.006	1.300	213
30319	3F Reno 150 WH 3000/930 DALI SPOT	1	0.006	1.300	213
30341	3F Reno 150 WH 2000/840 WIDE	1	0.006	0.800	215
30345	3F Reno 150 WH 2000/930 WIDE	1	0.006	0.800	215
30349	3F Reno 150 WH 3000/840 WIDE	1	0.006	1.300	215
30353	3F Reno 150 WH 3000/930 WIDE	1	0.006	1.300	215
30358	3F Reno 150 WH 2000/840 EP WIDE	1	0.006	1.600	215
30362	3F Reno 150 WH 2000/930 EP WIDE	1	0.006	1.600	215
30366	3F Reno 150 WH 3000/840 EP WIDE	1	0.006	2.100	215
30370	3F Reno 150 WH 3000/930 EP WIDE	1	0.006	2.100	215
30375	3F Reno 150 WH 2000/840 DALI WIDE	1	0.006	0.800	215
30379	3F Reno 150 WH 2000/930 DALI WIDE	1	0.006	0.800	215
30383 30387	3F Reno 150 WH 3000/840 DALI WIDE 3F Reno 150 WH 3000/930 DALI WIDE	1	0.006	1.300 1.300	215 215
30387	3F Reno 150 WH 3000/930 DALI WIDE 3F Reno 150 WH 1500/840 UGR	1	0.006	0.800	215
30408	3F Reno 150 WH 2000/840 UGR	1	0.006	0.800	219
30409	3F Reno 150 WH 1500/840 EP UGR	1	0.006	1.600	219
30420	3F Reno 150 WH 2000/840 EP UGR	1	0.006	1.600	213
30420	3F Reno 150 WH 1500/840 DALI UGR	1	0.006	0.800	213
30431	3F Reno 150 WH 2000/840 DALI UGR	1	0.006	0.800	219
30453	3F Reno 150 WH 2000/840 ELL	1	0.006	0.800	217
30457	3F Reno 150 WH 2000/930 ELL	1	0.006	0.800	217
					2

	Item		Pack		
		Pcs	m³	Gross weight in kg	
30461	3F Reno 150 WH 3000/840 ELL	1	0.006	1.300	217
30465	3F Reno 150 WH 3000/930 ELL	1	0.006	1.300	217
30470	3F Reno 150 WH 2000/840 EP ELL	1	0.006	1.600	217
30474	3F Reno 150 WH 2000/930 EP ELL	1	0.006	1.600	217
30478	3F Reno 150 WH 3000/840 EP ELL	1	0.006	2.100	217
30482	3F Reno 150 WH 3000/930 EP ELL	1	0.006	2.100	217
30487	3F Reno 150 WH 2000/840 DALI ELL	1	0.006	0.800	217
30491	3F Reno 150 WH 2000/930 DALI ELL	1	0.006	0.800	217
30495	3F Reno 150 WH 3000/840 DALI ELL	1	0.006	1.300	217
30499	3F Reno 150 WH 3000/930 DALI ELL	1	0.006	1.300	217
30521	3F Reno 200 WH 2000/840 SPOT	1	0.011	1.500	214
30525	3F Reno 200 WH 2000/930 SPOT	1	0.011	1.100	214
30529	3F Reno 200 WH 3000/840 SPOT	1	0.011	1.500	214
30533	3F Reno 200 WH 3000/930 SPOT	1	0.011	1.500	214
30537	3F Reno 200 WH 4000/840 SPOT	1	0.011	1.500	214
30541	3F Reno 200 WH 4000/930 SPOT	1	0.011	1.500	214
30546	3F Reno 200 WH 2000/840 EP SPOT	1	0.011	1.900	214
30550	3F Reno 200 WH 2000/930 EP SPOT	1	0.011	1.900	214
30554	3F Reno 200 WH 3000/840 EP SPOT	1	0.011	2.300	214
30558	3F Reno 200 WH 3000/930 EP SPOT	1	0.011	2.300	214
30562	3F Reno 200 WH 4000/840 EP SPOT	1	0.011	2.300	214
30566	3F Reno 200 WH 4000/930 EP SPOT	1	0.011	2.300	214
30571	3F Reno 200 WH 2000/840 DALI SPOT	1	0.011	1.100	214
30575	3F Reno 200 WH 2000/930 DALI SPOT	1	0.011	1.100	214
30579	3F Reno 200 WH 3000/840 DALI SPOT	1	0.011	1.500	214
30583	3F Reno 200 WH 3000/930 DALI SPOT	1	0.011	1.500	214
30587	3F Reno 200 WH 4000/840 DALI SPOT	1	0.011	1.500	214
30591	3F Reno 200 WH 4000/930 DALI SPOT	1	0.011	1.500	214
30621	3F Reno 200 WH 2000/840 WIDE	1	0.011	1.100	216
30625	3F Reno 200 WH 2000/930 WIDE	1	0.011	1.100	216
30629 30633	3F Reno 200 WH 3000/840 WIDE 3F Reno 200 WH 3000/930 WIDE	1	0.011	1.500 1.500	216 216
30637	3F Reno 200 WH 4000/840 WIDE	1	0.011	1.500	216
30641	3F Reno 200 WH 4000/930 WIDE	1	0.011	1.500	216
30646	3F Reno 200 WH 2000/840 EP WIDE	1	0.011	1.900	210
30650	3F Reno 200 WH 2000/930 EP WIDE	1	0.011	1.900	210
30654	3F Reno 200 WH 3000/840 EP WIDE	1	0.011	2.300	210
30658	3F Reno 200 WH 3000/930 EP WIDE	1	0.011	2.300	210
30662	3F Reno 200 WH 4000/840 EP WIDE	1	0.011	2.300	216
30666	3F Reno 200 WH 4000/930 EP WIDE	1	0.011	2.300	216
30671	3F Reno 200 WH 2000/840 DALI WIDE	1	0.011	1.100	216
30675	3F Reno 200 WH 2000/930 DALI WIDE	1	0.011	1.100	216
30679	3F Reno 200 WH 3000/840 DALI WIDE	1	0.011	1.500	216
30683	3F Reno 200 WH 3000/930 DALI WIDE	1	0.011	1.500	216
30687	3F Reno 200 WH 4000/840 DALI WIDE	1	0.011	1.500	216
30691	3F Reno 200 WH 4000/930 DALI WIDE	1	0.011	1.500	216
30721	3F Reno 200 WH 2000/840 UGR	1	0.011	1.100	219
30725	3F Reno 200 WH 2000/930 UGR	1	0.011	1.100	219
30726	3F Reno 200 WH 3000/840 UGR	1	0.011	1.500	219
30730	3F Reno 200 WH 2500/930 UGR	1	0.011	1.500	219
30737	3F Reno 200 WH 2000/840 EP UGR	1	0.011	1.900	219
30741	3F Reno 200 WH 2000/930 EP UGR	1	0.011	1.900	219
30742	3F Reno 200 WH 3000/840 EP UGR	1	0.011	2.300	219
30746	3F Reno 200 WH 2500/930 EP UGR	1	0.011	2.300	219
30753	3F Reno 200 WH 2000/840 DALI UGR	1	0.011	1.100	219
30757	3F Reno 200 WH 2000/930 DALI UGR	1	0.011	1.100	219
30758	3F Reno 200 WH 3000/840 DALI UGR	1	0.011	1.500	219
30762	3F Reno 200 WH 2500/930 DALI UGR	1	0.011	1.500	219
				1.100	218
30785	3F Reno 200 WH 2000/840 ELL	1	0.011	1.100	210

Code	Item	Pack			Page
		Pcs	m³	Gross weight in kg	
30793	3F Reno 200 WH 3000/840 ELL	1	0.011	1.500	218
30797	3F Reno 200 WH 3000/930 ELL	1	0.011	1.500	218
30801	3F Reno 200 WH 4000/840 ELL	1	0.011	1.500	218
30805	3F Reno 200 WH 4000/930 ELL	1	0.011	1.500	218
30810	3F Reno 200 WH 2000/840 EP ELL	1	0.011	1.900	218
30814	3F Reno 200 WH 2000/930 EP ELL	1	0.011	1.900	218
30818	3F Reno 200 WH 3000/840 EP ELL	1	0.011	2.300	218
30822	3F Reno 200 WH 3000/930 EP ELL	1	0.011	2.300	218
30826	3F Reno 200 WH 4000/840 EP ELL 3F Reno 200 WH 4000/930 EP ELL	1	0.011	2.300	218
30830 30835	3F Reno 200 WH 2000/840 DALI ELL	1	0.011	2.300	218 218
30839	3F Reno 200 WH 2000/930 DALI ELL 3F Reno 200 WH 2000/930 DALI ELL	1	0.011	1.100	218
30843	3F Reno 200 WH 3000/840 DALI ELL	1	0.011	1.500	218
30847	3F Reno 200 WH 3000/930 DALI ELL	1	0.011	1.500	218
30851	3F Reno 200 WH 4000/840 DALI ELL	. 1	0.011	1.500	218
30855	3F Reno 200 WH 4000/930 DALI ELL	1	0.011	1.500	218
30893	3F Reno 100 BK 2000/840 SPOT	1	0.004	0.700	221
30897	3F Reno 100 BK 2000/930 SPOT	1	0.004	0.700	221
30927	3F Reno 100 BK 2000/840 DALI SPOT	1	0.004	0.700	221
30931	3F Reno 100 BK 2000/930 DALI SPOT	1	0.004	0.700	221
30961	3F Reno 100 BK 2000/840 WIDE	1	0.004	0.700	222
30965	3F Reno 100 BK 2000/930 WIDE	1	0.004	0.700	222
30995	3F Reno 100 BK 2000/840 DALI WIDE	1	0.004	0.700	222
30999	3F Reno 100 BK 2000/930 DALI WIDE	1	0.004	0.700	222
31097	3F Reno 100 BK 2000/840 ELL	1	0.004	0.700	223
31101	3F Reno 100 BK 2000/930 ELL	1	0.004	0.700	223
31131	3F Reno 100 BK 2000/840 DALI ELL	1	0.004	0.700	223
31135	3F Reno 100 BK 2000/930 DALI ELL	1	0.004	0.700	223
31165	3F Reno 150 BK 3000/840 SPOT	1	0.006	1.300	221
31169	3F Reno 150 BK 3000/930 SPOT	1	0.006	1.300	221
31199	3F Reno 150 BK 3000/840 DALI SPOT	1	0.006	1.300	221
31203	3F Reno 150 BK 3000/930 DALI SPOT	1	0.006	1.300	221
31233	3F Reno 150 BK 3000/840 WIDE	1	0.006	1.300	222
31237	3F Reno 150 BK 3000/930 WIDE	1	0.006	1.300	222
31267	3F Reno 150 BK 3000/840 DALI WIDE	1	0.006	1.300	222
31271	3F Reno 150 BK 3000/930 DALI WIDE	1	0.006	1.300	222
31293	3F Reno 150 BK 2000/840 UGR 3F Reno 150 BK 2000/840 DALI UGR	1	0.006	0.800	224
31315 31345	3F Reno 150 BK 2000/840 DALI OGR 3F Reno 150 BK 3000/840 ELL	1	0.006	0.800	224 223
31349	3F Reno 150 BK 3000/930 ELL	1	0.006	1.300	223
31379	3F Reno 150 BK 3000/840 DALI ELL	1	0.000	1.300	223
31383	3F Reno 150 BK 3000/930 DALI ELL	1	0.006	1.300	223
31421	3F Reno 200 BK 4000/840 SPOT	. 1	0.011	1.300	221
31425	3F Reno 200 BK 4000/930 SPOT	. 1	0.011	1.300	221
31471	3F Reno 200 BK 4000/840 DALI SPOT	1	0.011	1.300	221
31475	3F Reno 200 BK 4000/930 DALI SPOT	1	0.011	1.300	221
31521	3F Reno 200 BK 4000/840 WIDE	1	0.011	1.500	222
31525	3F Reno 200 BK 4000/930 WIDE	1	0.011	1.500	222
31571	3F Reno 200 BK 4000/840 DALI WIDE	1	0.011	1.500	222
31575	3F Reno 200 BK 4000/930 DALI WIDE	1	0.011	1.500	222
31610	3F Reno 200 BK 3000/840 UGR	1	0.011	1.500	224
31614	3F Reno 200 BK 2500/930 UGR	1	0.011	1.500	224
31642	3F Reno 200 BK 3000/840 DALI UGR	1	0.011	1.500	224
31646	3F Reno 200 BK 2500/930 DALI UGR	1	0.011	1.500	224
31685	3F Reno 200 BK 4000/840 ELL	1	0.011	1.500	223
31689	3F Reno 200 BK 4000/930 ELL	1	0.011	1.500	223
31735	3F Reno 200 BK 4000/840 DALI ELL	1	0.011	1.500	223
31739	3F Reno 200 BK 4000/930 DALI ELL	1	0.011	1.500	223
34229	3F Petra OP 300 12W LED	1	0.013	1.200	161
34233	3F Petra OP 300 12W LED Sensor	1	0.013	1.200	163

Code	Item		Pack		
		Pcs	m³	Gross weight in kg	
34330	3F Petra OP 380 22W LED	1	0.020	2.000	161
34332	3F Petra OP 380 22W LED EP	1	0.020	2.800	161
34334	3F Petra OP 380 22W LED Sensor	1	0.020	2.000	163
34407	3F Petra OP 620 50W LED	1	0.058	6.000	161
34409	3F Petra OP 620 50W LED EP	1	0.058	6.500	161
34411	3F Petra OP 620 50W LED SO	1	0.058	6.000	165
36575	Lucequadro LED 2000 VS	1	0.008	3.500	297
36576	Lucequadro LED 2000 EP VS	1	0.016	4.300	297
36578	Lucequadro LED 3000 VS	1	0.008	3.500	297
36579	Lucequadro LED 3000 EP VS	1	0.016	4.300	297
36581	Lucequadro LED 2000 VOP	1	0.008	3.500	297
36582	Lucequadro LED 2000 EP VOP	1	0.016	4.300	297
36584	Lucequadro LED 3000 VOP	1	0.008	3.500	297
36585	Lucequadro LED 3000 EP VOP	1	0.016	4.300	297
36587	Lucequadro LED 2000 SOP	1	0.008	3.200	298
36588	Lucequadro LED 2000 EP SOP	1	0.016	4.000	298
36590	Lucequadro LED 3000 SOP	1	0.008	3.200	298
36591	Lucequadro LED 3000 EP SOP	1	0.016	4.000	298
37542	Galassia 220 LED AB 2000 VOP	1	0.008	2.500	305
37543	Galassia 220 LED AB 2000 DALI VOP	1	0.008	2.500	305
37544	Galassia 220 LED AB 2000 EP VOP	1	0.014	3.500	305
37551	Galassia 220 LED AB 2000 VS	1	0.008	2.500	304
37552	Galassia 220 LED AB 2000 DALI VS	1	0.008	2.500	304
37553	Galassia 220 LED AB 2000 EP VS	1	0.014	3.500	304
37578	Galassia 220 LED AB 3000 VOP	1	0.008	2.500	305
37579	Galassia 220 LED AB 3000 DALI VOP	1	0.008	2.500	305
37580	Galassia 220 LED AB 3000 EP VOP	1	0.014	3.500	305
37587	Galassia 220 LED AB 3000 VS	1	0.008	2.500	304
37588	Galassia 220 LED AB 3000 DALI VS	1	0.008	2.500	304
37589	Galassia 220 LED AB 3000 EP VS	1	0.014	3.500	304
37604	Galassia 220 LED AB 4000 VS	1	0.012	3.000	304
37606	Galassia 220 LED AB 4000 DALI VS	1	0.012	3.000	304
37608	Galassia 220 LED AB 4000 VOP	1	0.012	3.000	305
37610	Galassia 220 LED AB 4000 DALI VOP	1	0.012	3.000	305
37759	Galassia 220 LED 2000 VT	1	0.008	2.500	301
37760	Galassia 220 LED 2000 DALI VT	1	0.008	2.500	301
37761	Galassia 220 LED 2000 EP VT	1	0.014	3.500	301
37768	Galassia 220 LED 2000 VOP	1	0.008	2.500	303
37769	Galassia 220 LED 2000 DALI VOP	1	0.008	2.500	303
37770	Galassia 220 LED 2000 EP VOP	1	0.014	3.500	303
37777	Galassia 220 LED 2000 VS	1	0.008	2.500	302
37778	Galassia 220 LED 2000 DALI VS	1	0.008	2.500	302
37779	Galassia 220 LED 2000 EP VS	1	0.014	3.500	302
37802	Galassia 220 LED 3000 VT	1	0.008	2.500	301
37803	Galassia 220 LED 3000 DALI VT	1	0.008	2.500	301
37804	Galassia 220 LED 3000 EP VT	1	0.014	3.500	301
37811	Galassia 220 LED 3000 VOP	1	0.008	2.500	303
37812	Galassia 220 LED 3000 DALI VOP	1	0.008	2.500	303
37813	Galassia 220 LED 3000 EP VOP	1	0.014	3.500	303
37820	Galassia 220 LED 3000 VS	1	0.008	2.500	302
37821	Galassia 220 LED 3000 DALI VS	1	0.008	2.500	302
37822	Galassia 220 LED 3000 EP VS	1	0.014	3.500	302
37834	Galassia 220 LED 4000 VT	1	0.012	3.000	301
37836	Galassia 220 LED 4000 DALI VT	1	0.012	3.000	301
37838	Galassia 220 LED 4000 VS	1	0.012	3.000	302
37840	Galassia 220 LED 4000 DALI VS	1	0.012	3.000	302
37842	Galassia 220 LED 4000 VOP	1	0.012	3.000	303
37844	Galassia 220 LED 4000 DALI VOP	1	0.012	3.000	303
47124	3F Zeta TK L 50 AMPIO L1783	1	0.022	6.100	375

Code	Item		P	Page	
		Pcs	m³	Gross weight in kg	
47136	3F Zeta TK L 15 AMPIO L605	1	0.022	2.900	375
47140	3F Zeta TK L 50 DALI AMPIO L1783	1	0.022	6.100	375
47148	3F Zeta TK L 30 DALI AMPIO L1194	1	0.022	3.700	375
47152	3F Zeta TK L 15 DALI AMPIO L605	1	0.022	2.900	375
47509	3F Emilio P LED 3000/840	1	0.004	1.200	167
47534	3F Emilio TK LED 3000/840 DALI	1	0.004	0.900	371
47535	3F Emilio TK LED 3000/830 DALI	1	0.004	0.900	371
47536	3F Emilio TK LED 2000/930 DALI	1	0.004	0.900	371
47543	3F Emilio TK LED 3000/840 DALI BLE	1	0.004	1.100	373
47544	3F Emilio TK LED 3000/830 DALI BLE	1	0.004	1.100	373
47545 47551	3F Emilio TK LED 2000/930 DALI BLE 3F Emilio TK LED 3000/840	1	0.004	1.100 0.900	373 365
47552	3F Emilio TK LED 3000/840 3F Emilio TK LED 4000/840	1	0.004	0.900	365
47555	3F Emilio TK LED 4000/840 3F Emilio TK LED 3000/830	1	0.004	0.900	365
47556	3F Emilio TK LED 2000/MEAT	1	0.004	0.900	365
47559	3F Emilio TK LED 2000/ME (1	1	0.004	0.900	365
47561	3F Emilio TK LED 3000/940	1	0.004	0.900	365
47562	3F Emilio TK LED 2000/930	1	0.004	0.900	365
47563	3F Emilio TK LED 3000/930	1	0.004	0.900	365
47566	3F Emilio TK LED 4000/830	1	0.004	0.900	365
47572	3F Emilio TK LED 2000/BREAD	1	0.004	0.900	365
47574	3F Emilio TK LED 2500/CRISP	1	0.004	0.900	365
47576	3F Emilio TK BK LED 3000/840	1	0.004	0.900	365
47577	3F Emilio TK BK LED 4000/840	1	0.004	0.900	365
47580	3F Emilio TK BK LED 3000/830	1	0.004	0.900	365
47581	3F Emilio TK BK LED 2000/MEAT	1	0.004	0.900	365
47584	3F Emilio TK BK LED 3000/827	1	0.004	0.900	365
47586	3F Emilio TK BK LED 3000/940	1	0.004	0.900	365
47587	3F Emilio TK BK LED 2000/930	1	0.004	0.900	365
47588	3F Emilio TK BK LED 3000/930	1	0.004	0.900	365
47591	3F Emilio TK BK LED 4000/830	1	0.004	0.900	365
47597	3F Emilio TK BK LED 2000/BREAD	1	0.004	0.900	365
47599	3F Emilio TK BK LED 2500/CRISP	1	0.004	0.900	365
47607	3F Emilio TK LED 3000/840 ELL	1	0.004	0.900	366
47608	3F Emilio TK LED 4000/840 ELL	1	0.004	0.900	366
47611	3F Emilio TK LED 3000/830 ELL	1	0.004	0.900	366
47612	3F Emilio TK LED 2000/MEAT ELL	1	0.004	0.900	366
47615	3F Emilio TK LED 3000/827 ELL	1	0.004	0.900	366
47617	3F Emilio TK LED 3000/940 ELL	1	0.004	0.900	366
47618	3F Emilio TK LED 2000/930 ELL	1	0.004	0.900	366
47619	3F Emilio TK LED 3000/930 ELL	1	0.004	0.900	366
47622	3F Emilio TK LED 4000/830 ELL	1	0.004	0.900	366
47628	3F Emilio TK LED 2000/BREAD ELL 3F Emilio TK LED 2500/CRISP ELL	1	0.004	0.900	366
47630	3F Emilio TK LED 2000/CRISP ELL 3F Emilio TK LED 3000/840 IPER		0.004	0.900	366
47640 47641	3F Emilio TK LED 3000/840 IPER	1	0.004	0.900	367 367
47644	3F Emilio TK LED 3000/830 IPER	1	0.004	0.900	367
47645	3F Emilio TK LED 4000/830 IPER	1	0.004	0.900	367
47648	3F Emilio TK LED 4000/827 IPER	1	0.004	0.900	367
47652	3F Emilio TK LED 3000/927 II ETT	1	0.004	0.900	367
47654	3F Emilio TK LED 2000/940 II ETT	1	0.004	0.900	367
47655	3F Emilio TK LED 2000/930 IPER	1	0.004	0.900	367
47657	3F Emilio TK LED 2000/MEAT IPER	1	0.004	0.900	368
47660	3F Emilio TK LED 2000/BREAD IPER	1	0.004	0.900	368
47664	3F Emilio TK LED 2500/CRISP IPER	1	0.004	0.900	368
47668	3F Emilio TK BK LED 3000/840 IPER	1	0.004	0.900	367
47669	3F Emilio TK BK LED 4000/840 IPER	1	0.004	0.900	367
47672	3F Emilio TK BK LED 3000/830 IPER	1	0.004	0.900	367
	3F Emilio TK BK LED 4000/830 IPER	1	0.004	0.900	367
47673			0.001	0.000	001

Code	Item		F	Pack	Page
		Pcs	m³	Gross weight in kg	
47680	3F Emilio TK BK LED 3000/940 IPER	1	0.004	0.900	367
47682	3F Emilio TK BK LED 2000/930 IPER	1	0.004	0.900	367
47683	3F Emilio TK BK LED 3000/930 IPER	1	0.004	0.900	367
47685	3F Emilio TK BK LED 2000/MEAT IPER	1	0.004	0.900	368
47688	3F Emilio TK BK LED 2000/BREAD IPER	1	0.004	0.900	368
47692	3F Emilio TK BK LED 2500/CRISP IPER	1	0.004	0.900	368
47698	3F Six WH 85 AMPIO 307x378	1	0.017	3.400	317
47699	3F Six WH 70 AMPIO 307x378	1	0.017	3.400	317
47700	3F Six WH 60 AMPIO 307x378	1	0.017	3.400	317
47701	3F Six WH 85 DALI AMPIO 307x378	1	0.017	3.400	317
47702	3F Six WH 70 DALI AMPIO 307x378	1	0.017	3.400	317
47703	3F Six WH 60 DALI AMPIO 307x378	1	0.017	3.400	317
47705	3F Six WH 85 MEDIO 307x378	1	0.017	3.400	317
47706	3F Six WH 70 MEDIO 307x378	1	0.017	3.400	317
47707	3F Six WH 60 MEDIO 307x378	1	0.017	3.400	317
47708	3F Six WH 85 DALI MEDIO 307x378	1	0.017	3.400	317
47709	3F Six WH 70 DALI MEDIO 307x378	1	0.017	3.400	317
47710	3F Six WH 60 DALI MEDIO 307x378	1	0.017	3.400	317
47712	3F Six WH 40 UGR 307x378	1	0.017	3.400	318
47713	3F Six WH 40 DALI UGR 307x378	1	0.017	3.400	318
47720	3F Six TK WH 60 AMPIO 307x378	1	0.017	3.600	313
47721	3F Six TK WH 50 AMPIO 307x378	1	0.017	3.600	313
47722	3F Six TK WH 40 AMPIO 307x378	1	0.017	3.600	313
47723	3F Six TK WH 60 DALI AMPIO 307x378	1	0.017	3.600	313
47724	3F Six TK WH 50 DALI AMPIO 307x378	1	0.017	3.600	313
47725	3F Six TK WH 40 DALI AMPIO 307x378	1	0.017	3.600	313
47727	3F Six TK WH 60 MEDIO 307x378	1	0.017	3.600	313
47728	3F Six TK WH 50 MEDIO 307x378	1	0.017	3.600	313
47729	3F Six TK WH 40 MEDIO 307x378	1	0.017	3.600	313
47730	3F Six TK WH 60 DALI MEDIO 307x378	1	0.017	3.600	313
47731	3F Six TK WH 50 DALI MEDIO 307x378	1	0.017	3.600	313
47732	3F Six TK WH 40 DALI MEDIO 307x378	1	0.017	3.600	313
47734	3F Six TK WH 40 UGR 307x378	1	0.017	3.600	315
47735	3F Six TK WH 40 DALI UGR 307x378	1	0.017	3.600	315
47740	3F Six TK WH 60 AMPIO 190x602	1	0.017	3.600	313
47741	3F Six TK WH 50 AMPIO 190x602	1	0.017	3.600	313
47742	3F Six TK WH 40 AMPIO 190x602	1	0.017	3.600	313
47743	3F Six TK WH 60 DALLAMPIO 190x602	1	0.017	3.600	313
47744	3F Six TK WH 50 DALL AMPIO 190x602	1	0.017	3.600	313
47745	3F Six TK WH 40 DALI AMPIO 190x602	1	0.017	3.600	313
47747	3F Six TK WH 60 BAT 190x602	1	0.017	3.600	314
47748	3F Six TK WH 50 BAT 190x602	1	0.017	3.600	314
47749	3F Six TK WH 40 BAT 190x602	1	0.017	3.600	314
47750	3F Six TK WH 60 DALI BAT 190x602 3F Six TK WH 50 DALI BAT 190x602	1	0.017	3.600	314
47751	3F Six TK WH 40 DALI BAT 190x602 3F Six TK WH 40 DALI BAT 190x602	1	0.017	3.600 3.600	314
47752 47754	3F Six TK WH 40 DALI BAT 190x602 3F Six TK WH 60 BAT WD 190x602	1	0.017	3.600	314 314
47755	3F Six TK WH 50 BAT WD 190x602	1	0.017	3.600	314
47756	3F Six TK WH 40 BAT WD 190x602	1	0.017	3.600	314
	3F Six TK WH 40 BAT WD 190x002 3F Six TK WH 60 DALI BAT WD 190x602	1			
47757 47758	3F Six TK WH 50 DALI BAT WD 190x602 3F Six TK WH 50 DALI BAT WD 190x602	1	0.017	3.600 3.600	314 314
47759	3F Six TK WH 40 DALI BAT WD 190x602 3F Six TK WH 40 DALI BAT WD 190x602	1	0.017	3.600	314
	3F Six TK WH 40 UGR 190x602 3F Six TK WH 40 UGR 190x602	1		3.600	314
47761		1	0.017		
47762	3F Six TK WH 40 DALI UGR 190x602		0.017	3.600	315
52510	Beta 235 LED 752x55 CONC L1565	1	0.041	9.200	452
52511	Beta 235 LED 751x60 CONC L1565	1		8.300	452
52512	Beta 235 LED 762x55 CONC VT L1565	1	0.041	12.900	456
52513	Beta 235 LED 761x60 CONC VT L1565 Beta 235 LED 762x55 CONC VS L1565	1	0.041	12.000	456 454
52514		1	0.041	12.900	
52515	Beta 235 LED 761x60 CONC VS L1565		0.041	12.000	454

Code	Item		F	Pack	Page
		Pcs	m³	Gross weight in kg	
52517	Beta 235 LED 752x55 DALI CONC L1565	1	0.041	9.200	452
52518	Beta 235 LED 751x60 DALI CONC L1565	1	0.041	8.300	452
52519	Beta 235 LED 762x55 DALI CONC VT L1565	1	0.041	12.900	456
52520	Beta 235 LED 761x60 DALI CONC VT L1565	1	0.041	12.000	456
52521	Beta 235 LED 762x55 DALI CONC VS L1565	1	0.041	12.900	454
52522	Beta 235 LED 761x60 DALI CONC VS L1565	1	0.041	12.000	454
52524	Beta 235 LED 752x45 CONC L1265	1	0.041	7.900	452
52526 52528	Beta 235 LED 762x45 CONC VT L1265 Beta 235 LED 762x45 CONC VS L1265	1	0.033	10.500 10.500	456 454
52531	Beta 235 LED 752x45 DALI CONC L1265	1	0.033	7.900	452
52533	Beta 235 LED 762x45 DALI CONC VT L1265	1	0.033	10.500	456
52535	Beta 235 LED 762x45 DALI CONC VS L1265	. 1	0.033	10.500	454
52552	Beta 235 LED 752x55 MEDIO L1565	1	0.041	9.200	451
52553	Beta 235 LED 751x60 MEDIO L1565	1	0.041	8.300	451
52554	Beta 235 LED 762x55 MEDIO VT L1565	1	0.041	12.900	455
52555	Beta 235 LED 761x60 MEDIO VT L1565	1	0.041	12.000	455
52556	Beta 235 LED 762x55 MEDIO VS L1565	1	0.041	12.900	453
52557	Beta 235 LED 761x60 MEDIO VS L1565	1	0.041	12.000	453
52559	Beta 235 LED 752x55 DALI MEDIO L1565	1	0.041	9.200	451
52560	Beta 235 LED 751x60 DALI MEDIO L1565	1	0.041	8.300	451
52561	Beta 235 LED 762x55 DALI MEDIO VT L1565	1	0.041	12.900	455
52562	Beta 235 LED 761x60 DALI MEDIO VT L1565	1	0.041	12.000	455
52563	Beta 235 LED 762x55 DALI MEDIO VS L1565	1	0.041	12.900	453
52564	Beta 235 LED 761x60 DALI MEDIO VS L1565	1	0.041	12.000	453
52566	Beta 235 LED 752x45 MEDIO L1265	1	0.041	7.900	451
52567	Beta 235 LED 751x50 MEDIO L1265	1	0.041	7.200	451
52568	Beta 235 LED 762x45 MEDIO VT L1265	1	0.033	10.500	455
52569	Beta 235 LED 761x50 MEDIO VT L1265	1	0.033	9.800	455
52570	Beta 235 LED 762x45 MEDIO VS L1265	1	0.033	10.500	453
52571 52573	Beta 235 LED 761x50 MEDIO VS L1265 Beta 235 LED 752x45 DALI MEDIO L1265	1	0.033	9.800 7.900	453 451
52573	Beta 235 LED 751x50 DALI MEDIO L1205	1	0.041	7.200	451
52575	Beta 235 LED 762x45 DALI MEDIO VT L1265	1	0.041	10.500	451
52576	Beta 235 LED 761x50 DALI MEDIO VT L1265	1	0.033	9.800	455
52577	Beta 235 LED 762x45 DALI MEDIO VS L1265	1	0.033	10.500	453
52578	Beta 235 LED 761x50 DALI MEDIO VS L1265	1	0.033	9.800	453
52762	Beta 235 LED 752x55 AMPIO L1565	1	0.041	9.200	451
52764	Beta 235 LED 752x55 IPERCONC L1565	1	0.041	9.200	452
52765	Beta 235 LED 751x60 AMPIO L1565	1	0.041	8.300	451
52769	Beta 235 LED 762x55 AMPIO VT L1565	1	0.041	12.900	455
52771	Beta 235 LED 762x55 IPERCONC VT L1565	1	0.041	12.900	456
52772	Beta 235 LED 761x60 AMPIO VT L1565	1	0.041	12.000	455
52776	Beta 235 LED 762x55 AMPIO VS L1565	1	0.041	12.900	453
52778	Beta 235 LED 762x55 IPERCONC VS L1565	1	0.041	12.900	454
52779	Beta 235 LED 761x60 AMPIO VS L1565	1	0.041	12.000	453
52783	Beta 235 LED 922x50 AMPIO L1565	1	0.054	9.200	459
52785	Beta 235 LED 922x50 IPERCONC L1565	1	0.054	9.200	459
52786	Beta 235 LED 921x60 AMPIO L1565	1	0.054	8.300	459
52790	Beta 235 LED 932x50 AMPIO VT L1565	1	0.041	12.900	461
52792	Beta 235 LED 932x50 IPERCONC VT L1565	1	0.041	12.900	461
52793	Beta 235 LED 931x60 AMPIO VT L1565	1	0.041	12.000	461
52797	Beta 235 LED 932x50 AMPIO VS L1565	1	0.041	12.900	460
52799	Beta 235 LED 932x50 IPERCONC VS L1565	1	0.041	12.900	460
52800	Beta 235 LED 931x60 AMPIO VS L1565	1	0.041	12.000	460
52804	Beta 235 LED 752x55 DALI AMPIO L1565	1	0.041	9.200	451
52806	Beta 235 LED 752x55 DALI IPERCONC L1565	1	0.041	9.200	452
52807 52811	Beta 235 LED 751x60 DALI AMPIO L1565 Beta 235 LED 762x55 DALI AMPIO VT L1565	1	0.041 0.041	8.300	451 455
52813	Beta 235 LED 762x55 DALI AMPIO VI L1565 Beta 235 LED 762x55 DALI IPERCONC VI L1565	1	0.041	12.900	455
52813	Beta 235 LED 761x60 DALI AMPIO VT L1565	1	0.041	12.000	455
02014		I	0.041	12.000	400

Pcs m³ Gross weight in kg 52810 Beina 235 LED 762x55 DALL MAPIC VS L1565 1 0.041 12.900 52820 Beina 235 LED 762x55 DALL AMPIC VS L1565 1 0.041 12.000 52820 Beina 235 LED 762x55 DALL AMPIC VS L1565 1 0.041 12.000 52825 Beina 235 LED 275x00 DALL AMPIC VS L1565 1 0.054 9.200 52828 Beina 235 LED 275x00 DALL AMPIC VS L1565 1 0.054 9.200 52828 Beina 235 LED 325x00 DALL AMPIC VT L1565 1 0.041 12.900 52838 Beina 235 LED 325x00 DALL AMPIC VT L1565 1 0.041 12.900 52849 Beina 235 LED 35x00 DALL AMPIC VS L1565 1 0.041 12.900 52849 Beina 235 LED 75x45 MPIC VL L1265 1 0.041 7.900 52840 Beina 235 LED 75x45 MPIC VL L265 1 0.041 7.900 52849 Beina 235 LED 75x45 MPIC VL L265 1 0.033 10.500 52849 Beina 235 LED 75x45 MPIC VL L265 1 0.033 10.500	453 454 453 459 459 461 461 461 460 460 460 460 460 451 452 455 455
52820 Beta 235 LED 762x65 DALI JPERCONC VS L1565 1 0.041 12.000 52825 Beta 235 LED 22x50 DALI AMPIO VS L1565 1 0.054 9.200 52825 Beta 235 LED 22x50 DALI AMPIO VS L1565 1 0.054 9.200 52825 Beta 235 LED 22x50 DALI AMPIO L1665 1 0.041 12.900 52828 Beta 235 LED 23x50 DALI AMPIO VT L1565 1 0.041 12.900 52838 Beta 235 LED 23x50 DALI MPIO VT L1565 1 0.041 12.900 52839 Beta 235 LED 32x50 DALI MPIO VT L1565 1 0.041 12.900 52846 Beta 235 LED 32x50 DALI MPIO VS L1565 1 0.041 12.900 52847 Beta 235 LED 75x54 AMPIO L1265 1 0.041 7.900 52848 Beta 235 LED 75x54 AMPIO L1265 1 0.041 7.900 52849 Beta 235 LED 75x45 AMPIO L1265 1 0.033 10.500 52849 Beta 235 LED 76x45 AMPIO VT L1265 1 0.033 10.500 52848 Beta 235 LED 76x45 AMPIO VS L1265 1 <	454 453 459 459 461 461 461 460 460 460 451 452 451 455 456
52821 Beta 235 LED 761x60 DALI AMPIO US L1565 1 0.041 12.000 52825 Beta 235 LED 922x60 DALI PERCONC L1565 1 0.054 9.200 52828 Beta 235 LED 922x60 DALI PERCONC L1565 1 0.041 12.900 52828 Beta 235 LED 92x50 DALI PERCONC VI L1565 1 0.041 12.900 52835 Beta 235 LED 932x50 DALI AMPIO VI L1565 1 0.041 12.900 52835 Beta 235 LED 932x50 DALI AMPIO VI L1565 1 0.041 12.900 52842 Beta 235 LED 932x50 DALI AMPIO VI L1565 1 0.041 12.900 52844 Beta 235 LED 752x45 DEPERCONC VI L1565 1 0.041 7.900 52848 Beta 235 LED 751x50 AMPIO L1265 1 0.041 7.900 52848 Beta 235 LED 751x50 AMPIO VI L1265 1 0.033 10.500 52858 Beta 235 LED 761x50 AMPIO VI L1265 1 0.033 10.500 52858 Beta 235 LED 761x50 AMPIO VI L1265 1 0.033 10.500 52860 Beta 235 LED 761x50 AMPIO VI L1265	453 459 459 461 461 461 460 460 460 451 452 451 455 456
52825 Beta 235 LED 922×50 DALI AMPIO L1565 1 0.054 9.200 62827 Beta 235 LED 921×50 DALI MPIO VI L1565 1 0.054 9.200 52828 Beta 235 LED 921×50 DALI AMPIO VI L1565 1 0.041 12.900 52839 Beta 235 LED 91×50 DALI AMPIO VI L1565 1 0.041 12.900 52839 Beta 235 LED 91×50 DALI AMPIO VI L1565 1 0.041 12.900 52848 Beta 235 LED 91×50 DALI MPIO VI L1565 1 0.041 12.900 52849 Beta 235 LED 91×50 DALI MPIO VS L1565 1 0.041 12.900 52848 Beta 235 LED 75×45 AMPIO L1265 1 0.041 7.900 52848 Beta 235 LED 75×45 AMPIO L1265 1 0.041 7.900 52849 Beta 235 LED 76×45 AMPIO VT L1265 1 0.033 10.500 52849 Beta 235 LED 76×45 AMPIO VT L1265 1 0.033 9.800 52860 Beta 235 LED 76×45 AMPIO VS L1265 1 0.033 9.800 52860 Beta 235 LED 76×45 AMPIO VS L1265 1 0.	459 459 461 461 461 460 460 460 451 452 451 455 456
52827 Beta 235 LED 92:x50 DALI PERCONC L1565 1 0.054 9.200 52828 Beta 235 LED 93:x50 DALI AMPIO VT L1565 1 0.041 12.900 52838 Beta 235 LED 93:x50 DALI AMPIO VT L1565 1 0.041 12.000 52839 Beta 235 LED 93:x50 DALI AMPIO VT L1565 1 0.041 12.000 52839 Beta 235 LED 93:x50 DALI AMPIO VT L1565 1 0.041 12.000 52848 Beta 235 LED 93:x50 DALI AMPIO VS L1565 1 0.041 7.900 52848 Beta 235 LED 75:x45 AMPIO L1265 1 0.041 7.900 52849 Beta 235 LED 75:x45 AMPIO L1265 1 0.041 7.900 52849 Beta 235 LED 75:x45 AMPIO L1265 1 0.033 10.500 52858 Beta 235 LED 76:x50 AMPIO VT L1265 1 0.033 10.500 52858 Beta 235 LED 76:x45 AMPIO VS L1265 1 0.033 10.500 52860 Beta 235 LED 76:x45 AMPIO VS L1265 1 0.033 10.500 52861 Beta 235 LED 76:x45 AMPIO VS L1265 1	459 459 461 461 460 460 460 451 452 451 455 455
52828 Beta 235 LED 932x60 DALI AMPIO L1565 1 0.041 12.900 52834 Beta 235 LED 932x60 DALI PERCONC VT L1565 1 0.041 12.900 52834 Beta 235 LED 932x60 DALI AMPIO VT L1565 1 0.041 12.900 52835 Beta 235 LED 932x60 DALI AMPIO VT L1565 1 0.041 12.900 52841 Beta 235 LED 932x60 DALI AMPIO VS L1565 1 0.041 12.900 52842 Beta 235 LED 931x60 DALI AMPIO VS L1565 1 0.041 7.900 52844 Beta 235 LED 752x45 MPICONC VS L1565 1 0.041 7.900 52845 Beta 235 LED 752x45 MPICONC VS L1265 1 0.041 7.900 52858 Beta 235 LED 762x45 MPICONC VT L1265 1 0.033 10.500 52860 Beta 235 LED 762x45 MPICONC VT L1265 1 0.033 9.800 52867 Beta 235 LED 762x45 MPICONC VS L1265 1 0.033 10.500 52868 Beta 235 LED 762x45 MPICONC VS L1265 1 0.033 10.500 52867 Beta 235 LED 762x45 MPICONC VS L1265	459 461 461 460 460 460 451 452 451 455 455
52832 Beta 235 LED 932x60 DALI AMPIO VT L1565 1 0.041 12.900 52834 Beta 235 LED 932x60 DALI AMPIO VT L1565 1 0.041 12.900 52835 Beta 235 LED 932x60 DALI AMPIO VT L1565 1 0.041 12.900 52834 Beta 235 LED 932x60 DALI AMPIO VS L1565 1 0.041 12.900 52842 Beta 235 LED 932x60 DALI AMPIO VS L1565 1 0.041 7.900 52848 Beta 235 LED 752x45 MPIO L1265 1 0.041 7.900 52848 Beta 235 LED 752x45 IPERCONC VI L265 1 0.041 7.900 52848 Beta 235 LED 762x45 IPERCONC VI L265 1 0.033 10.500 52855 Beta 235 LED 762x45 AMPIO VI L1265 1 0.033 10.500 52860 Beta 235 LED 761x50 AMPIO VI L1265 1 0.033 10.500 52862 Beta 235 LED 761x50 AMPIO VI L1265 1 0.033 10.500 52862 Beta 235 LED 761x50 AMPIO VI L1265 1 0.033 10.500 52862 Beta 235 LED 761x50 AMPIO VI L1265 1 0.041 7.900 52867 Beta 235 LED 92x40 AMPI	461 461 460 460 460 451 452 451 455 455
52834 Beta 235 LED 932x50 DALI IPERCONC VT L1565 1 0.041 12.900 52839 Beta 235 LED 931x60 DALI AMPIO VT L1565 1 0.041 12.900 52841 Beta 235 LED 932x60 DALI PERCONC VS L1565 1 0.041 12.900 52842 Beta 235 LED 932x60 DALI PERCONC VS L1565 1 0.041 12.000 52844 Beta 235 LED 752x45 AMPIO L1285 1 0.041 7.900 52848 Beta 235 LED 751x50 AMPIO L1285 1 0.041 7.900 52848 Beta 235 LED 751x50 AMPIO VT L1285 1 0.033 10.500 52856 Beta 235 LED 761x50 AMPIO VT L1285 1 0.033 10.500 52860 Beta 235 LED 762x45 AMPIO VT L1285 1 0.033 10.500 52860 Beta 235 LED 762x45 AMPIO VT L1285 1 0.033 10.500 52860 Beta 235 LED 762x45 AMPIO VT L1285 1 0.033 10.500 52867 Beta 235 LED 762x45 AMPIO VT L1285 1 0.033 10.500 52868 Beta 235 LED 762x45 AMPIO VT L1285 1	461 460 460 460 451 452 451 452 451 455 456
52835 Beta 235 LED 931x80 DALI AMPIO VT L1565 1 0.041 12.000 52841 Beta 235 LED 932x80 DALI IPERCONC VS L1565 1 0.041 12.900 52842 Beta 235 LED 931x80 DALI AMPIO VS L1565 1 0.041 12.000 52846 Beta 235 LED 931x80 DALI AMPIO VS L1565 1 0.041 7.900 52848 Beta 235 LED 752x45 AMPIO L1265 1 0.041 7.900 52849 Beta 235 LED 752x45 IPERCONC V1265 1 0.033 10.500 52853 Beta 235 LED 762x45 IPERCONC VT L1265 1 0.033 10.500 52860 Beta 235 LED 761x50 AMPIO VT L1265 1 0.033 10.500 52862 Beta 235 LED 761x50 AMPIO VT L1265 1 0.033 10.500 52863 Beta 235 LED 761x50 AMPIO VS L1265 1 0.033 10.500 52864 Beta 235 LED 761x50 AMPIO VS L1265 1 0.033 10.500 52867 Beta 235 LED 761x50 AMPIO VS L1265 1 0.041 7.900 52868 Beta 235 LED 92x40 IPERCONC VS L1265 1 0.041 7.900 52870 Beta 235 LED 92x40 IPER	461 460 460 451 451 452 451 455 455
52839 Beta 235 LED 932x50 DALI PERCONC VS L1565 1 0.041 12.900 52841 Beta 235 LED 932x50 DALI PERCONC VS L1565 1 0.041 12.900 52842 Beta 235 LED 752x45 AMPIO U XS L1565 1 0.041 7.900 52848 Beta 235 LED 752x45 AMPIO L1265 1 0.041 7.900 52848 Beta 235 LED 751x50 AMPIO L1265 1 0.041 7.200 52853 Beta 235 LED 751x50 AMPIO VT L1265 1 0.033 10.500 52856 Beta 235 LED 761x50 AMPIO VT L1265 1 0.033 10.500 52866 Beta 235 LED 761x50 AMPIO VT L1265 1 0.033 10.500 52867 Beta 235 LED 761x50 AMPIO VS L1265 1 0.033 10.500 52868 Beta 235 LED 761x50 AMPIO VS L1265 1 0.033 10.500 52869 Beta 235 LED 761x50 AMPIO VS L1265 1 0.041 7.900 52870 Beta 235 LED 921x60 AMPIO VI L1265 1 0.041 7.900 52871 Beta 235 LED 931x50 AMPIO VI L1265 1 0.03	460 460 451 452 451 455 455 456
52841 Beta 235 LED 932x50 DALI IPERONC VS L1565 1 0.041 12.900 52842 Beta 235 LED 752x45 MIPIO L1265 1 0.041 7.900 52848 Beta 235 LED 752x45 MIPIO L1265 1 0.041 7.900 52848 Beta 235 LED 752x45 MIPIO CNC L1265 1 0.041 7.200 52853 Beta 235 LED 752x45 MIPIO VT L1265 1 0.033 10.500 52856 Beta 235 LED 762x45 MIPIO VT L1265 1 0.033 10.500 52856 Beta 235 LED 762x45 MIPIO VT L1265 1 0.033 10.500 52860 Beta 235 LED 762x45 IPERCONC VT L1265 1 0.033 10.500 52861 Beta 235 LED 762x45 IPERCONC VS L1265 1 0.033 10.500 52862 Beta 235 LED 762x46 IPERCONC VS L1265 1 0.041 7.900 52863 Beta 235 LED 92x40 APPIO VT L1265 1 0.041 7.900 52864 Beta 235 LED 92x40 APPIO VT L1265 1 0.041 7.900 52876 Beta 235 LED 92x40 APPIO VT L1265 1 0.033 10.500 52877 Beta 235 LED 93x40 APPIO VT L1265	460 460 451 452 451 455 455
52842 Beta 235 LED 931:x80 DALI AMPIO VS L1565 1 0.041 7.900 52846 Beta 235 LED 752:x45 IPERCONC L1265 1 0.041 7.900 52848 Beta 235 LED 752:x45 IPERCONC L1265 1 0.041 7.200 52849 Beta 235 LED 751:x50 AMPIO L1265 1 0.033 10.500 52853 Beta 235 LED 762:x45 IPERCONC VT L1265 1 0.033 10.500 52866 Beta 235 LED 762:x45 IPERCONC VS L1265 1 0.033 10.500 52867 Beta 235 LED 762:x45 IPERCONC VS L1265 1 0.033 10.500 52868 Beta 235 LED 762:x45 IPERCONC VS L1265 1 0.033 10.500 52868 Beta 235 LED 762:x40 AMPIO VS L1265 1 0.041 7.900 52869 Beta 235 LED 92:x40 AMPIO VI L1265 1 0.041 7.900 52869 Beta 235 LED 92:x40 AMPIO VI L1265 1 0.033 10.500 52870 Beta 235 LED 93:x40 AMPIO VI L1265 1 0.033 10.500 52877 Beta 235 LED 93:x40 AMPIO VI L1265 1	460 451 452 451 455 455
52846 Beta 235 LED 752×45 AMPIO L1265 1 0.041 7.900 52848 Beta 235 LED 752×45 IPERCONC L1265 1 0.041 7.200 52849 Beta 235 LED 751×50 AMPIO L1265 1 0.033 10.500 52853 Beta 235 LED 762×45 AMPIO VT L1265 1 0.033 10.500 52856 Beta 235 LED 762×45 AMPIO VT L1265 1 0.033 10.500 52860 Beta 235 LED 762×45 AMPIO VT L1265 1 0.033 10.500 52862 Beta 235 LED 762×45 AMPIO VS L1265 1 0.033 10.500 52863 Beta 235 LED 761×50 AMPIO VS L1265 1 0.033 10.500 52864 Beta 235 LED 761×50 AMPIO VS L1265 1 0.041 7.900 52867 Beta 235 LED 922×40 AMPIO VS L1265 1 0.041 7.900 52870 Beta 235 LED 922×40 AMPIO VT L1265 1 0.033 10.500 52874 Beta 235 LED 932×40 AMPIO VT L1265 1 0.033 10.500 52876 Beta 235 LED 932×40 AMPIO VT L1265 1 0.033 10.500 52877 Beta 235 LED 932×40 AMPIO VT L1265 1 <td>451 452 451 455 456</td>	451 452 451 455 456
52848 Beta 235 LED 752x45 IPERCONC L1265 1 0.041 7.900 52849 Beta 235 LED 751x50 AMPIO VT L1265 1 0.033 10.500 52855 Beta 235 LED 762x45 IPERCONC VT L1265 1 0.033 10.500 52856 Beta 235 LED 762x45 IPERCONC VT L1265 1 0.033 10.500 52866 Beta 235 LED 761x50 AMPIO VT L1265 1 0.033 10.500 52867 Beta 235 LED 761x50 AMPIO VS L1265 1 0.033 10.500 52868 Beta 235 LED 762x45 IPERCONC VS L1265 1 0.033 10.500 52867 Beta 235 LED 92x40 AMPIO VS L1265 1 0.033 9.800 52867 Beta 235 LED 92x40 AMPIO VS L1265 1 0.041 7.900 52867 Beta 235 LED 92x40 AMPIO VT L1265 1 0.033 10.500 52874 Beta 235 LED 92x40 AMPIO VT L1265 1 0.033 10.500 52874 Beta 235 LED 93x40 AMPIO VT L1265 1 0.033 10.500 52874 Beta 235 LED 93x40 AMPIO VS L1265 1 0.033 <td>452 451 455 456</td>	452 451 455 456
52849 Beta 235 LED 751x50 AMPIO L1265 1 0.033 10.500 52853 Beta 235 LED 762x45 IPERCONC VT L1265 1 0.033 10.500 52856 Beta 235 LED 762x45 IPERCONC VT L1265 1 0.033 10.500 52860 Beta 235 LED 762x45 IPERCONC VT L1265 1 0.033 10.500 52862 Beta 235 LED 762x45 IPERCONC VS L1265 1 0.033 10.500 52863 Beta 235 LED 762x45 IPERCONC VS L1265 1 0.033 10.500 52864 Beta 235 LED 92x40 AMPIO VS L1265 1 0.041 7.900 52867 Beta 235 LED 922x40 IPERCONC L1265 1 0.041 7.200 52870 Beta 235 LED 921x60 AMPIO VT L1265 1 0.041 7.200 52874 Beta 235 LED 921x60 AMPIO VT L1265 1 0.033 10.500 52876 Beta 235 LED 932x40 IPERCONC VT L1265 1 0.033 10.500 52871 Beta 235 LED 932x40 IPERCONC VT L1265 1 0.033 10.500 52874 Beta 235 LED 932x40 IPERCONC VT L1265 1 0.033 10.500 52881 Beta 235 LED 932x40 IPERCON	451 455 456
52853 Beta 235 LED 762x45 AMPIO VT L1265 1 0.033 10.500 52855 Beta 235 LED 761x50 AMPIO VT L1265 1 0.033 9.800 52866 Beta 235 LED 762x45 AMPIO VT L1265 1 0.033 10.500 52862 Beta 235 LED 762x45 AMPIO VS L1265 1 0.033 10.500 52862 Beta 235 LED 761x50 AMPIO VS L1265 1 0.033 9.800 52863 Beta 235 LED 761x50 AMPIO VS L1265 1 0.041 7.900 52869 Beta 235 LED 921x60 AMPIO L1265 1 0.041 7.900 52870 Beta 235 LED 932x40 IPERCONC VI L1265 1 0.041 7.200 52874 Beta 235 LED 931x50 AMPIO VI L1265 1 0.033 10.500 52877 Beta 235 LED 931x50 AMPIO VI L1265 1 0.033 10.500 52878 Beta 235 LED 931x50 AMPIO VI L1265 1 0.033 10.500 52877 Beta 235 LED 931x50 AMPIO VI L1265 1 0.033 10.500 52881 Beta 235 LED 931x50 AMPIO VI L1265 1 0.033	455 456
52855 Beta 235 LED 762x45 IPERCONC VT L1265 1 0.033 10.500 52856 Beta 235 LED 761x50 AMPIO VT L1265 1 0.033 10.500 52860 Beta 235 LED 762x45 IPERCONC VS L1265 1 0.033 10.500 52862 Beta 235 LED 762x45 IPERCONC VS L1265 1 0.033 9.800 52863 Beta 235 LED 761x50 AMPIO VS L1265 1 0.041 7.900 52867 Beta 235 LED 922x40 IPERCONC L1265 1 0.041 7.900 52870 Beta 235 LED 922x40 IPERCONC VT L1265 1 0.041 7.200 52874 Beta 235 LED 932x40 AMPIO VT L1265 1 0.033 10.500 52876 Beta 235 LED 932x40 IPERCONC VT L1265 1 0.033 10.500 52877 Beta 235 LED 932x40 IPERCONC VT L1265 1 0.033 10.500 52881 Beta 235 LED 932x40 IPERCONC VS L1265 1 0.033 10.500 52884 Beta 235 LED 762x45 DALI AMPIO VS L1265 1 0.033 10.500 52884 Beta 235 LED 762x45 DALI AMPIO VT L1265 1	456
52856 Beta 235 LED 761x50 AMPIO VT L1265 1 0.033 9.800 52860 Beta 235 LED 762x45 AMPIO VS L1265 1 0.033 10.500 52862 Beta 235 LED 762x45 IPERCONC VS L1265 1 0.033 9.800 52863 Beta 235 LED 761x50 AMPIO VS L1265 1 0.033 9.800 52864 Beta 235 LED 922x40 IPERCONC L1265 1 0.041 7.900 52870 Beta 235 LED 922x40 IPERCONC L1265 1 0.041 7.200 52874 Beta 235 LED 921x50 AMPIO VT L1265 1 0.033 10.500 52876 Beta 235 LED 932x40 IPERCONC VT L1265 1 0.033 10.500 52877 Beta 235 LED 932x40 AMPIO VT L1265 1 0.033 10.500 52881 Beta 235 LED 931x50 AMPIO VS L1265 1 0.033 10.500 52883 Beta 235 LED 932x40 IPERCONC VS L1265 1 0.033 10.500 52884 Beta 235 LED 752x45 DALI AMPIO VS L1265 1 0.033 10.500 52884 Beta 235 LED 752x45 DALI AMPIO VT L1265 1	
52860Beta 235 LED 762x45 AMPIO VS L126510.03310.50052862Beta 235 LED 762x45 IPERCONC VS L126510.0339.80052863Beta 235 LED 761x50 AMPIO VS L126510.0417.90052867Beta 235 LED 922x40 AMPIO L126510.0417.90052870Beta 235 LED 922x40 AMPIO VT L126510.0417.90052871Beta 235 LED 932x40 AMPIO VT L126510.0417.20052872Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052874Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052875Beta 235 LED 931x50 AMPIO VT L126510.03310.50052884Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052884Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 931x50 AMPIO VS L126510.03310.50052884Beta 235 LED 931x50 AMPIO VS L126510.03310.50052884Beta 235 LED 752x45 DALI AMPIO L126510.03310.50052895Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052998Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052997Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052998Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.5005	
52862Beta 235 LED 762x45 IPERCONC VS L126510.03310.50052863Beta 235 LED 761x50 AMPIO VS L126510.0417.90052867Beta 235 LED 922x40 AMPIO L126510.0417.90052869Beta 235 LED 922x40 IPERCONC L126510.0417.20052870Beta 235 LED 921x50 AMPIO L126510.0417.20052874Beta 235 LED 932x40 AMPIO VT L126510.03310.50052876Beta 235 LED 932x40 AMPIO VT L126510.03310.50052877Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052881Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052881Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 752x45 DALI AMPIO VS L126510.03310.50052885Beta 235 LED 752x45 DALI AMPIO VT L126510.0417.90052896Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052904Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052905Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052904Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052905Beta 235 LED 762x45 DALI AMPIO VS L126510.0417.900	453
52863Beta 235 LED 761x50 AMPIO VS L126510.0339.80052867Beta 235 LED 922x40 IPERCONC L126510.0417.90052869Beta 235 LED 921x50 AMPIO L126510.0417.20052874Beta 235 LED 932x40 AMPIO VT L126510.03310.50052875Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052876Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052877Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052881Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052883Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 752x45 DALI AMPIO VS L126510.0417.90052890Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052909Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.	454
52867Beta 235 LED 922x40 AMPIO L126510.0417.90052869Beta 235 LED 921x50 AMPIO L126510.0417.20052870Beta 235 LED 932x40 AMPIO VT L126510.03310.50052874Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052876Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052877Beta 235 LED 931x50 AMPIO VT L126510.03310.50052881Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052883Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 931x50 AMPIO VS L126510.03310.50052885Beta 235 LED 931x50 AMPIO VS L126510.03310.50052884Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052909Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052909Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052909Beta 235 LED 762x45 DALI AMPIO VS L126510.0417.90052910Beta 235 LED 762x45 DALI AMPIO VS L126510.0417.90052909Beta 235 LED 762x45 DALI IPERCONC VS L126510.0417.900 <td>453</td>	453
52870Beta 235 LED 921x50 AMPIO L126510.0417.20052874Beta 235 LED 932x40 AMPIO VT L126510.03310.50052876Beta 235 LED 932x40 IPERCONC VT L126510.0339.80052877Beta 235 LED 931x50 AMPIO VT L126510.0339.80052881Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052883Beta 235 LED 932x40 IPERCONC VS L126510.0339.80052884Beta 235 LED 931x50 AMPIO VS L126510.0339.80052885Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 752x45 DALI IPERCONC L126510.0417.90052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052910Beta 235 LED 922x40 DALI AMPIO L126510.03310.50052911Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L12651	459
52874Beta 235 LED 932x40 AMPIO VT L126510.03310.50052876Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052877Beta 235 LED 931x50 AMPIO VT L126510.0339.80052881Beta 235 LED 932x40 AMPIO VS L126510.03310.50052883Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 931x50 AMPIO VS L126510.0339.80052888Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 752x45 DALI IPERCONC L126510.03310.50052895Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 922x40 DALI AMPIO L126510.0417.90052911Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.50052916Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L1265<	459
52876Beta 235 LED 932x40 IPERCONC VT L126510.03310.50052877Beta 235 LED 931x50 AMPIO VT L126510.0339.80052881Beta 235 LED 932x40 AMPIO VS L126510.03310.50052883Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 931x50 AMPIO VS L126510.0339.80052888Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 752x45 DALI IPERCONC L126510.03310.50052895Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 72x40 DALI AMPIO L126510.0417.90052911Beta 235 LED 922x40 DALI AMPIO L126510.0417.90052916Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.500	459
52877Beta 235 LED 931x50 AMPIO VT L126510.0339.80052881Beta 235 LED 932x40 AMPIO VS L126510.03310.50052883Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 931x50 AMPIO VS L126510.0339.80052885Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 752x45 DALI IPERCONC L126510.03310.50052895Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052910Beta 235 LED 762x45 DALI IPERCONC VS L126510.0417.90052911Beta 235 LED 922x40 DALI AMPIO L126510.0417.90052916Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.500	461
52881Beta 235 LED 932x40 AMPIO VS L126510.03310.50052883Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 931x50 AMPIO VS L126510.0339.80052885Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 752x45 DALI IPERCONC L126510.03310.50052895Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 922x40 DALI AMPIO L126510.0417.90052911Beta 235 LED 922x40 DALI IPERCONC L126510.0417.90052916Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.500	461
52883Beta 235 LED 932x40 IPERCONC VS L126510.03310.50052884Beta 235 LED 931x50 AMPIO VS L126510.0339.80052888Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 752x45 DALI IPERCONC L126510.0417.90052895Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x40 DALI AMPIO L126510.0417.90052911Beta 235 LED 922x40 DALI IPERCONC L126510.0417.90052916Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.500	461
52884Beta 235 LED 931x50 AMPIO VS L126510.0339.80052888Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 752x45 DALI IPERCONC L126510.0417.90052895Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 922x40 DALI AMPIO L126510.0417.90052911Beta 235 LED 922x40 DALI IPERCONC L126510.0417.90052916Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.500	460
52888Beta 235 LED 752x45 DALI AMPIO L126510.0417.90052890Beta 235 LED 752x45 DALI IPERCONC L126510.0417.90052895Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 922x40 DALI IPERCONC VS L126510.0417.90052911Beta 235 LED 922x40 DALI IPERCONC L126510.0417.90052916Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.500	460
52890Beta 235 LED 752x45 DALI IPERCONC L126510.0417.90052895Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 762x40 DALI IPERCONC VS L126510.0417.90052910Beta 235 LED 922x40 DALI AMPIO L126510.0417.90052911Beta 235 LED 922x40 DALI IPERCONC L126510.03310.50052916Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.500	460
52895Beta 235 LED 762x45 DALI AMPIO VT L126510.03310.50052897Beta 235 LED 762x45 DALI IPERCONC VT L126510.03310.50052902Beta 235 LED 762x45 DALI AMPIO VS L126510.03310.50052904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 922x40 DALI AMPIO L126510.0417.90052911Beta 235 LED 922x40 DALI IPERCONC L126510.0417.90052916Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.500	451
52897 Beta 235 LED 762x45 DALI IPERCONC VT L1265 1 0.033 10.500 52902 Beta 235 LED 762x45 DALI AMPIO VS L1265 1 0.033 10.500 52904 Beta 235 LED 762x45 DALI IPERCONC VS L1265 1 0.033 10.500 52909 Beta 235 LED 922x40 DALI AMPIO L1265 1 0.041 7.900 52911 Beta 235 LED 922x40 DALI IPERCONC L1265 1 0.041 7.900 52916 Beta 235 LED 932x40 DALI AMPIO VT L1265 1 0.033 10.500 52918 Beta 235 LED 932x40 DALI IPERCONC VT L1265 1 0.033 10.500	452
52902 Beta 235 LED 762x45 DALI AMPIO VS L1265 1 0.033 10.500 52904 Beta 235 LED 762x45 DALI IPERCONC VS L1265 1 0.033 10.500 52909 Beta 235 LED 922x40 DALI AMPIO L1265 1 0.041 7.900 52911 Beta 235 LED 922x40 DALI IPERCONC L1265 1 0.041 7.900 52916 Beta 235 LED 932x40 DALI AMPIO VT L1265 1 0.033 10.500 52918 Beta 235 LED 932x40 DALI IPERCONC VT L1265 1 0.033 10.500	455
52904Beta 235 LED 762x45 DALI IPERCONC VS L126510.03310.50052909Beta 235 LED 922x40 DALI AMPIO L126510.0417.90052911Beta 235 LED 922x40 DALI IPERCONC L126510.0417.90052916Beta 235 LED 932x40 DALI AMPIO VT L126510.03310.50052918Beta 235 LED 932x40 DALI IPERCONC VT L126510.03310.500	456
52909 Beta 235 LED 922x40 DALI AMPIO L1265 1 0.041 7.900 52911 Beta 235 LED 922x40 DALI IPERCONC L1265 1 0.041 7.900 52916 Beta 235 LED 932x40 DALI AMPIO VT L1265 1 0.033 10.500 52918 Beta 235 LED 932x40 DALI IPERCONC VT L1265 1 0.033 10.500	453
52911 Beta 235 LED 922x40 DALI IPERCONC L1265 1 0.041 7.900 52916 Beta 235 LED 932x40 DALI AMPIO VT L1265 1 0.033 10.500 52918 Beta 235 LED 932x40 DALI IPERCONC VT L1265 1 0.033 10.500	454
52916 Beta 235 LED 932x40 DALI AMPIO VT L1265 1 0.033 10.500 52918 Beta 235 LED 932x40 DALI IPERCONC VT L1265 1 0.033 10.500	459
52918 Beta 235 LED 932x40 DALI IPERCONC VT L1265 1 0.033 10.500	459
	461
59093 Bota 935 LED 0392/10 DALLAMPIO VS L1965 1 0.0022 10.0092 10.000	461
	460
52925 Beta 235 LED 932x40 DALI IPERCONC VS L1265 1 0.033 10.500 50000 Data 235 LED 750x00 AMPIOL (SEE 1 0.000 5.400	460
52930 Beta 235 LED 752x20 AMPIO L655 1 0.022 5.400 52931 Beta 235 LED 751x25 AMPIO L655 1 0.022 5.000	451 451
52931 Beta 235 LED 751x25 AMPIO L655 1 0.022 5.000 52936 Beta 235 LED 762x20 AMPIO VS L655 1 0.019 6.500	451
52937 Beta 235 LED 761x25 AMPIO VS L655 1 0.019 6.100	453
52939 Beta 235 LED 922x15 AMPIO L655 1 0.022 5.400	459
52940 Beta 235 LED 921x25 AMPIO L655 1 0.022 5.000	459
52945 Beta 235 LED 932x15 AMPIO VS L655 1 0.019 6.500	460
52946 Beta 235 LED 931x25 AMPIO VS L655 1 0.019 6.100	460
53438 i3F LED 764x50W CR AMPIO VT L1251 1 0.094 18.900	477
53445 i3F LED 764x63W CR AMPIO VT L1551 1 0.117 20.900	477
53452 i3F LED 764x50W CR AMPIO SL L1251 1 0.094 15.500	477
53459 i3F LED 764x63W CR AMPIO SL L1551 1 0.117 17.500	477
53490 Beta Iperconc LED 4x30W CR VT IP64 L1551 1 0.117 20.000	477
53493 Beta Iperconc LED 4x30W CR SL IP64 L1551 1 0.117 17.000	477
53860 A3F Ice LED 902x12W UR95 AMPIO L655 1 0.019 3.800	+11
53861 A3F Ice LED 902x24W UR95 AMPIO L1265 1 0.033 6.000	469
53862 A3F Ice LED 902x30W UR95 AMPIO L1565 1 0.041 7.000	
53863 A3F Ice LED 902x60W UR95 AMPIO L1565 1 0.041 7.800	469

Peak n*1 Consumptining State Attributes 1 0.041 7.000 State Display-Converse Convertings 1 0.041 7.800 State Display-Converse Convertings 1 0.041 7.800 State Display-Converse Convertings 1 0.041 7.500 State Display-Converse Converse	Code	Item		F	Pack	Page																																																																																																																																																																																						
SB88 AF Inc LED 8006WU FB8 CONC 11865 1 0.641 7.800 S801 FLED 752-00W CONC 11965 1 0.664 7.800 S8017 BF LED 752-00W CONC 11965 1 0.641 11.800 S8018 BF LED 752-00W CA MARG VT L1625 1 0.041 11.800 S8134 BF LED 752-00W CA MARG VS L1885 1 0.041 11.800 S8134 BF LED 752-00W AAMO VS L1885 1 0.041 11.800 S8145 BF LED 752-00W AAMO VS L1885 1 0.041 11.800 S8146 BF LED 752-00W AAMO VS L1885 1 0.041 3.700 S8147 BF LED 752-00W AAMO VS L1885 1 0.041 7.800 S8149 BF LED 752-00W AAMO VS L1885 1 0.041 7.800 S8149 BF LED 752-00W AAMO VS L1885 1 0.041 7.800 S8660 BF LED 752-00W AAMO VS L1885 1 0.041 7.800 S8660 BF LED 752-00W AAMO L1805 1 0.041 1.800 S8600 BF LED 75			Pcs	m³	Gross weight in kg																																																																																																																																																																																							
5600 6F LED 762-000 CONC L1665 1 0.064 7.500 5607 6F LED 762-000 CONC L1665 1 0.041 11.500 5607 6F LED 762-000 (PP AURO VI 11565 1 0.041 11.500 5618 6F LED 762-000 (AVAMO VI 11565 1 0.041 11.500 5618 6F LED 762-000 (AVAMO VI 11565 1 0.014 11.500 5618 6F LED 762-000 (AVAMO VI 11565 1 0.014 11.500 5614 6F LED 762-000 (APAMO VI 11565 1 0.014 11.500 5614 6F LED 762-000 (APAMO VI 11565 1 0.014 11.500 5656 6F LED 762-000 (APAMO VI 11565 1 0.014 7.000 5656 6F LED 762-000 (APAMO VI 11565 1 0.041 11.500 5667 6F LED 762-000 (APAMO VI 11565 1 0.041 11.500 5668 6F LED 762-000 (APAMO VI 11565 1 0.041 11.500 5669 7F LED 762-000 (APAMO VI 11565 1 0.041 11.500 5670	53867	A3F Ice LED 902x30W UR95 CONC L1565	1	0.041	7.000	469																																																																																																																																																																																						
BODY OF ED 7262000 PED 7260000 72600000	53868	A3F Ice LED 902x60W UR95 CONC L1565	1	0.041	7.800	469																																																																																																																																																																																						
5072 GF LED 76300W AMPO VT L1505 1 0.011 15.00 5634 GF LED 76300W AMPO VS L1655 1 0.031 8.40 5614 GF LED 76300W AMPO VS L1505 1 0.033 8.40 5613 GF LED 76300W AMPO VS L1505 1 0.041 10.500 5614 GF LED 76300W AMPO VS L1505 1 0.041 11.000 5614 GF LED 76300W AMPO VS L1505 1 0.041 11.000 5614 GF LED 76300W APPO VS L1505 1 0.041 6.000 5614 GF LED 775204W AMPO VS L1505 1 0.041 6.000 56500 GF LED 775204W AMPO L1505 1 0.041 7.500 56600 GF LED 75204W AMPO L1505 1 0.041 10.000 56600 GF LED 75204W AMPO L1505 1 0.041 11.000 56600 GF LED 75204W AMPO L1505 1 0.041 11.000 56600 GF LED 75204W AMPO L1505 1 0.041 11.000 56600 GF LED 75204W AMPO L1505 <t< td=""><td>55006</td><td>i3F LED 752x30W CONC L1565</td><td>1</td><td>0.054</td><td>7.500</td><td>465</td></t<>	55006	i3F LED 752x30W CONC L1565	1	0.054	7.500	465																																																																																																																																																																																						
SK8 ED / BS/KW FP AMPO VI L1985 1 0.011 11.001 E0134 ISF LED / BS/KW AMPIO VS L1985 1 0.033 6.450 E5185 ISF LED / BS/KW AMPIO VS L1985 1 0.041 10.500 E5187 ISF LED / BS/KW AMPIO VS L1985 1 0.041 11.500 E5147 ISF LED / BS/KW FP AMPIO VS L1985 1 0.041 11.500 E5149 ISF LED / BS/KW FP AMPIO VS L1985 1 0.041 11.500 E5568 ISF LED / TS/KW FP AMPIO VS L1985 1 0.041 7.200 E5669 ISF LED / TS/KW FP AMPIO L1985 1 0.041 7.200 E5661 ISF LED / TS/KW FP AMPIO L1985 1 0.041 1.500 E5661 ISF LED / TS/KW FP AMPIO L1985 1 0.041 1.500 E5661 ISF LED / TS/KW FP AMPIO L1985 1 0.041 1.500 E5661 ISF LED / TS/KW FP AMPIO L1985 1 0.041 1.500 E5663 ISF LED / TS/KW FP AMPIO L1985 1 0.041 1.500 <td< td=""><td>55017</td><td>i3F LED 752x30W EP CONC L1565</td><td>1</td><td>0.054</td><td>8.500</td><td>465</td></td<>	55017	i3F LED 752x30W EP CONC L1565	1	0.054	8.500	465																																																																																																																																																																																						
BY LED 762.01W AMPO VS LESS 1 0.019 \$1.00 BS158 BF LED 762.01W AMPO VS LESS 1 0.041 0.500 BS1518 BF LED 762.01W AMPO VS LESS 1 0.041 0.100 BS1547 BF LED 762.01W AMPO VS LESS 1 0.041 11.00 BS1547 BF LED 762.01W AMPO VS LESS 1 0.041 11.00 BS1567 BF LED 762.01W AMPO VS LESS 1 0.041 6.200 BS5568 BF LED 762.01W AMPO LESS 1 0.041 6.200 BS5569 BF LED 762.01W AMPO LESS 1 0.041 6.200 BS5507 BF LED 752.01W AMPO LESS 1 0.041 7.00 BS6507 BF LED 752.01W AMPO LESS 1 0.041 7.00 BS6507 BF LED 752.01W AMPO LESS 1 0.041 11.500 BS6507 BF LED 752.01W AMPO LESS 1 0.041 11.500 BS6508 BF LED 762.01W PANDO LESS 1 0.196 11.800 BS6507 BF LED 762.01W PANDO LESS 1 0.196 11.800 BS6508 BF LED 762.01W PANDO LES	55072	i3F LED 762x30W AMPIO VT L1565	1	0.041	10.500	466																																																																																																																																																																																						
8516 SF LED 762-304 MARPO VS 1285 1 0.031 8.460 65138 GF LED 762-304 MARPO VS 1656 1 0.041 10.500 65141 GF LED 762-304 PAMPO VS 1655 1 0.033 9.460 65147 GF LED 762-304 PAMPO VS 1655 1 0.041 11.500 65960 GF LED 762-304 PAMPO VS 1655 1 0.041 15.00 65960 GF LED 752-304 PAMPO VS 1655 1 0.041 7.200 65600 GF LED 752-304 PP AMPO 1595 1 0.041 7.200 65601 GF LED 752-304 PP AMPO 1595 1 0.041 15.00 65607 GF LED 752-304 PP AMPO 1595 1 0.041 15.00 65607 GF LED 752-304 PP AMPO 1595 1 0.041 15.00 65607 GF LED 752-304 PP AMPO 1595 1 0.041 15.00 65607 GF LED 752-304 PP AMPO 1595 1 0.041 15.00 65607 GF LED 752-304 PP AMPO 1595 1 0.041 15.00 65637 GF LED 103W DALCR	55083		1	0.041	11.500	466																																																																																																																																																																																						
B518 BF LED 782-004 AURO VS L1665 1 0.019 0.100 B5147 GF LED 782-104 PF AURO VS L1665 1 0.019 0.100 B5149 GF LED 782-004 PF AURO VS L1665 1 0.011 1.8.00 B5589 GF LED 782-004 PF AURO VS L1665 1 0.011 3.700 B5589 GF LED 782-004 AURO L1655 1 0.011 4.700 B5500 GF LED 782-004 AURO L1655 1 0.014 7.800 B5500 GF LED 782-004 AURO L1655 1 0.014 1.800 B5600 GF LED 782-004 VP AURO L1655 1 0.041 1.800 B5600 GF LED 782-004 VP AURO L1655 1 0.041 1.800 B5600 GF LED 782-004 VP AURO L1655 1 0.041 1.800 B5633 GF LED 782-004 VP AURO L1655 1 0.041 1.800 B5633 GF LED 782-004 VP AURO L167 VT 1 0.196 1.800 B5633 GF LED 1500 VG RV 1 0.196 1.800 B5633 GF LUB LED 1500 VG R						466																																																																																																																																																																																						
ES14 IF_LED 752x12W EP AMPO VS.L655 1 0.019 6.100 55147 ISF_LED 752x3W EP AMPO VS.1265 1 0.041 11.600 55568 ISF_LED 752x3W APPO L1565 1 0.041 6.200 55568 ISF_LED 752x3W AMPO L1565 1 0.041 6.200 55560 ISF_LED 752x3W AMPO L1565 1 0.041 7.200 55600 ISF_LED 752x3W AMPO L1565 1 0.041 7.200 55607 ISF_LED 752x3W AMPO L1565 1 0.041 7.200 56607 ISF_LED 752x3W AMPO L1565 1 0.041 11.800 56707 ISF_LED 752x3W AMPO L1565 1 0.041 11.800 5680 SF CUB LED 100W CR VT 1 0.196 11.800 56830 SF CUB LED 100W CR VT 1 0.196 12.000 56333 SF CUB LED 100W CR VT 1 0.196 12.000 56333 SF CUB LED 100W CR VS 1 0.196 12.000 56343 SF CUB LED 100W CR VS 1	55136		1	0.033	8.450	466																																																																																																																																																																																						
bit 40 BF LED 782.42W EP AMPO VS L1265 1 0.033 9.450 bit 40 BF LED 762.52W AMPO L1565 1 0.041 3.700 bit66 BF LED 762.52W AMPO L1565 1 0.041 7.500 bit66 BF LED 752.52W AMPO L1565 1 0.041 7.500 bit660 BF LED 752.52W AMPO L1565 1 0.054 7.500 bit660 BF LED 752.52W AMPO L1565 1 0.054 8.500 bit667 BF LED 752.52W APPAND L1565 1 0.054 8.500 bit667 BF LED 752.52W APPAND L1565 1 0.041 11.500 bit667 BF LED 752.52W APPAND L1565 1 0.041 11.500 bit677 BF LED 752.52W APPAND L1765 1 0.196 11.800 bit683 BF CLD 752.52W APPAND L1765 1 0.196 11.800 bit683 BF CLD F25.52W APPAND L1785 1 0.196 11.800 bit683 BF CLD F25.52W CAN VF T 1 0.196 12.000 bit683 BF CLB LED 150W						466																																																																																																																																																																																						
BS140 BF LED 785.40W AMPIO 1265 1 0.041 11.500 B5688 SF LED 755.40W AMPIO 1265 1 0.041 6.700 S5600 SF LED 755.40W AMPIO 1265 1 0.054 7.700 S5600 SF LED 755.20W AMPIO 1265 1 0.054 7.700 S5600 SF LED 755.20W EP AMPIO 1565 1 0.054 8.500 S5601 SF LED 755.20W EP AMPIO 1565 1 0.054 8.500 S5607 SF LED 755.20W EP CONC VT 1565 1 0.054 11.800 S5607 SF LED 785.20W EP CONC VT 1565 1 0.196 11.800 S5637 SF LED 785.20W EP CONC VT 1565 1 0.196 11.800 S6333 SF CUB LED 100W CAU CR VT 1 0.196 11.800 S6333 SF CUB LED 100W CAU CR VT 1 0.196 12.000 S6339 SF CUB LED 100W CAU CR VT 1 0.196 12.000 S6339 SF CUB LED 100W CAU CR VT 1 0.196 12.000 S6339 SF CUB LED 100W CAU C						466																																																																																																																																																																																						
BSS8 IFLED 732-X0V AMPIO L1265 1 0.041 6.200 S6568 IFLED 752-X0V AMPIO L1265 1 0.054 7.500 S6560 IFLED 752-X0V AMPIO L1265 1 0.054 7.500 S6560 IFLED 752-X0V AMPIO L1265 1 0.064 7.500 S6561 IFLED 752-X0V AMPIO L1265 1 0.064 6.500 S6561 IFLED 752-X0V AMPIO L1265 1 0.041 11.500 S6567 IFLED 752-X0V AMPIO L1265 1 0.041 11.500 S6333 IF CUB LED 100W DAL GN VT 1 0.196 11.800 S6333 IF CUB LED 100W DAL GN VT 1 0.196 11.800 S6333 IF CUB LED 100W DAL GN VT 1 0.196 11.800 S6334 IF CUB LED 100W DAL GN VS 1 0.196 11.800 S6334 IF CUB LED 100W DAL GN VS 1 0.196 11.800 S6343 IF CUB LED 100W DAL GN VS 1 0.196 11.800 S6344 IF CUB LED 100W DAL GN SP						466																																																																																																																																																																																						
95588 ISF LED 752x24W AMPO L1285 1 0.041 0.200 05600 ISF LED 752x24W PAMPO L1585 1 0.019 4.700 05607 ISF LED 752x24W FP AMPO L1285 1 0.041 7.200 05611 ISF LED 752x24W FP AMPO L1586 1 0.041 10.500 05668 ISF LED 762x30W CONC VT L1565 1 0.041 11.500 05633 ISF CUB LED 100W CONC VT L1565 1 0.016 11.800 05633 ISF CUB LED 100W CONC VT L1565 1 0.196 11.800 05633 ISF CUB LED 100W CONV VT L1565 1 0.196 11.800 05633 ISF CUB LED 100W DAU GN VT 1 0.196 11.800 05633 ISF CUB LED 100W DAU GN VS 1 0.196 12.000 05634 ISF CUB LED 100W DAU GN VS 1 0.196 12.000 05634 ISF CUB LED 100W DAU GN VS 1 0.196 12.000 05634 ISF CUB LED 100W DAU GN VS 1 0.196 12.000 05634 ISF C						466																																																																																																																																																																																						
S6800 ISF LED 752:24/DV PA AMPIO L1865 1 0.054 7.500 S6807 ISF LED 752:24/UP PA AMPIO L1855 1 0.041 7.200 S6811 ISF LED 752:24/UP PA AMPIO L1855 1 0.041 10.500 S6811 ISF LED 752:24/UP PA AMPIO L1855 1 0.041 11.500 S6813 ISF LED 762:240/UP CON VT L1655 1 0.041 11.500 S6333 ISF CUB LED 100W CR VT 1 0.196 11.800 S6333 ISF CUB LED 100W CR VT 1 0.196 11.800 S6333 ISF CUB LED 100W CR VT 1 0.196 11.800 S6333 ISF CUB LED 100W CR VT 1 0.196 11.800 S6334 ISF CUB LED 100W CR VS 1 0.196 11.800 S6343 ISF CUB LED 100W CR VS 1 0.196 12.000 S6344 ISF CUB LED 100W CR VS 1 0.196 10.000 S6344 ISF CUB LED 100W CR VS 1 0.196 9.800 S6347 ISF CUB LED 100W CR ISF S						465																																																																																																																																																																																						
55607 ISF LED 752x12W EP AMPIO L2655 1 0.019 4.700 55600 ISF LED 752x3W EP AMPIO L2655 1 0.041 7.200 55681 ISF LED 752x3W EP AMPIO L1655 1 0.041 10.500 55686 ISF LED 725x3W EP CONC VT L1665 1 0.041 11.500 55837 ISF CUB LED 100W CR VT 1 0.196 11.800 56333 SF CUB LED 100W CR VT 1 0.196 12.000 56333 SF CUB LED 100W CR VT 1 0.196 12.000 56333 SF CUB LED 100W CR VT 1 0.196 11.800 56333 SF CUB LED 100W CR VT 1 0.196 11.800 56333 SF CUB LED 100W CR VS 1 0.196 12.000 56343 SF CUB LED 100W DALI CR VS 1 0.196 10.000 56344 SF CUB LED 100W DALI CR VS 1 0.196 9.300 56347 SF CUB LED 100W DALI CR SP 1 0.196 10.000 56348 SF CUB LED 100W DALI CR SP 1 0.016 2.500 56349 SF CUB LED 100W DALI CR						465																																																																																																																																																																																						
56609 IBF LED 752x24W EP AMPIO L1265 1 0.041 7.200 56611 BF LED 752x30W EP AMPIO L1565 1 0.041 10.500 56677 IBF LED 752x30W EP CONC VT L1565 1 0.041 11.800 56332 GF CUB LED 100W CR VT 1 0.196 11.800 56333 GF CUB LED 100W CR VT 1 0.196 11.800 56333 GF CUB LED 100W CR VT 1 0.196 11.800 56333 GF CUB LED 100W CR VT 1 0.196 11.800 56333 GF CUB LED 100W CR VS 1 0.196 11.800 56340 SF CUB LED 100W DAU CR VS 1 0.196 12.000 56343 SF CUB LED 100W DAU CR VS 1 0.196 12.000 56344 SF CUB LED 100W DAU CR VS 1 0.196 10.000 56343 SF CUB LED 100W DAU CR SP 1 0.196 10.000 56343 SF CUB LED 100W DAU CR SP 1 0.196 10.000 56343 SF CUB LED 100W DAU CR SP <td< td=""><td></td><td></td><td></td><td></td><td></td><td>465</td></td<>						465																																																																																																																																																																																						
55611 IBF LED 752x30W EP AMPIO L1565 1 0.054 8.500 55666 IBF LED 752x30W CONC VT L1565 1 0.041 11.500 66333 GF CUB LED 100W CR VT 1 0.196 11.800 56333 SF CUB LED 100W CR VT 1 0.196 12.000 56333 SF CUB LED 150W CR VT 1 0.196 12.000 56333 SF CUB LED 150W CR VT 1 0.196 12.000 56333 SF CUB LED 150W CR VT 1 0.196 12.000 56334 SF CUB LED 150W CR VF 1 0.196 12.000 56343 SF CUB LED 150W CR VS 1 0.196 12.000 56344 SF CUB LED 150W CR VS 1 0.196 12.000 56344 SF CUB LED 150W CR SP 1 0.196 10.000 56344 SF CUB LED 150W DALI CR SP 1 0.196 10.000 56345 SF CUB LED 150W DALI CR SP 1 0.196 10.000 56346 SF CUB LED 150W DALI CR SP 1 0.196 10.000 58443 SF Linda LED 1420W UBAL LERS 1						465																																																																																																																																																																																						
55666 ISF LED 782x30W CONC VT L1565 1 0.041 11.500 55677 ISF LED 782x30W EP CONC VT L1565 1 0.041 11.500 56330 SF CUB LED 100W CR VT 1 0.196 11.800 56333 SF CUB LED 100W DALI CR VT 1 0.196 12.000 56333 SF CUB LED 100W DALI CR VT 1 0.196 11.800 56333 SF CUB LED 100W DALI CR VT 1 0.196 11.800 56334 SF CUB LED 100W DALI CR VS 1 0.196 11.800 56340 SF CUB LED 100W DALI CR VS 1 0.196 12.000 56344 SF CUB LED 100W DALI CR VS 1 0.196 12.000 56344 SF CUB LED 100W DALI CR VS 1 0.196 9.800 56347 SF CUB LED 100W DALI CR VS 1 0.196 10.000 56347 SF CUB LED 100W DALI CR VS 1 0.196 10.000 56349 SF CUB LED 100W DALI CR SP 1 0.196 10.000 56447 SF Linda LED 162W DALI CR SP 1 0.016 2.500 58459 SF						465																																																																																																																																																																																						
5677 BF LED 762x30W EP CONC VT L1565 1 0.041 11.500 6333 3F CUB LED 100W CR VT 1 0.196 11.800 6333 3F CUB LED 100W DAU CR VT 1 0.196 11.800 6333 3F CUB LED 100W DAU CR VT 1 0.196 11.200 6333 3F CUB LED 100W DAU CR VT 1 0.196 11.200 6333 3F CUB LED 100W DAU CR VT 1 0.196 11.800 6333 3F CUB LED 100W DAU CR VS 1 0.196 11.800 6334 3F CUB LED 100W DAU CR VS 1 0.196 12.000 6344 3F CUB LED 100W CR SP 1 0.196 9.800 6344 3F CUB LED 100W DAU CR SP 1 0.196 9.800 6344 3F CUB LED 160W CR SP 1 0.196 10.000 6344 3F CUB LED 160W DAU CR SP 1 0.196 10.000 63443 3F Linda LED loce 124W UR95 L1270 1 0.016 2.500 63443 3F Linda LED loce 244W UR95 L1270 1 0.028 3.700 63443 3F Linda LED loce 244W UR9						465																																																																																																																																																																																						
56330 SF CUB LED 100W CR VT 1 0.196 11.800 56332 SF CUB LED 100W CR VT 1 0.196 11.800 56333 SF CUB LED 100W CR VT 1 0.196 12.000 56335 SF CUB LED 100W CR VS 1 0.196 11.800 56337 SF CUB LED 100W CR VS 1 0.196 11.800 56340 SF CUB LED 100W DAU CR VS 1 0.196 12.000 56344 SF CUB LED 100W CR VS 1 0.196 12.000 56344 SF CUB LED 100W DAU CR VS 1 0.196 9.800 56344 SF CUB LED 100W DAU CR SP 1 0.196 9.800 56344 SF CUB LED 100W DAU CR SP 1 0.196 10.000 56345 SF CUB LED 100W DAU CR SP 1 0.196 10.000 56346 SF CUB LED 100W DAU CR SP 1 0.196 10.000 56449 SF Linda LED 162 X24W UR95 L1270 1 0.016 2.500 58463 SF Linda LED 162 X24W UR95 L1270 1 0.028 3.700 58463 SF Linda LED 162 X24W DAU L1630 <td></td> <td></td> <td></td> <td></td> <td></td> <td>467</td>						467																																																																																																																																																																																						
56332 3F CUB LED 100W DALI CR VT 1 0.196 11.800 56333 3F CUB LED 150W CR VT 1 0.196 12.000 56337 3F CUB LED 100W DALI CR VT 1 0.196 11.800 56339 3F CUB LED 100W DALI CR VS 1 0.196 11.800 56340 3F CUB LED 100W DALI CR VS 1 0.196 12.000 56344 3F CUB LED 100W CR SP 1 0.196 9.800 56344 3F CUB LED 100W CR SP 1 0.196 9.800 56344 3F CUB LED 100W CR SP 1 0.196 9.800 56347 3F CUB LED 100W DALI CR SP 1 0.196 10.000 5847 3F CUB LED 100W DALI CR SP 1 0.196 10.000 5847 3F CUB LED 100W DALI CR SP 1 0.196 10.000 5847 3F Linda LED los 2x2W URS L1270 1 0.019 3.000 58461 3F Linda LED los 2x2W URS L1270 1 0.013 1.420 58550 3F Linda LED 10XW DALI L600 1 0.013 1.420 58553 3F Linda LED 1X2W DALI L						467																																																																																																																																																																																						
56333 3F CUB LED 150W DAL CR VT 1 0.196 12.000 56335 3F CUB LED 100W DAL CR VT 1 0.196 11.800 56337 3F CUB LED 100W DAL CR VS 1 0.196 11.800 56340 3F CUB LED 100W DAL CR VS 1 0.196 12.000 56340 3F CUB LED 100W DAL CR VS 1 0.196 12.000 56344 3F CUB LED 100W CR SP 1 0.196 9.800 56344 3F CUB LED 100W DAL CR SP 1 0.196 10.000 56344 3F CUB LED 150W DAL CR SP 1 0.196 10.000 56345 3F LUB LED 150W DAL CR SP 1 0.196 10.000 56346 3F CUB LED 150W DAL CR SP 1 0.016 2.500 58459 3F Linda LED Lee 1220W URBS L1270 1 0.024 3.300 58451 3F Linda LED Lee 224W URBS L1570 1 0.028 3.700 58553 3F Linda LED 224W DAL L680 1 0.008 1.420 58553 3F Linda LED 224W DAL L670 1 0.028 3.000 58553 3F Linda LED						485 485																																																																																																																																																																																						
56335 3F CUB LED 150W DALI CR VT 1 0.196 12.000 66337 3F CUB LED 100W OR VS 1 0.196 11.800 56338 3F CUB LED 100W DALI CR VS 1 0.196 12.000 56340 3F CUB LED 100W DALI CR VS 1 0.196 12.000 56342 3F CUB LED 100W DALI CR VS 1 0.196 9.800 56344 3F CUB LED 100W DALI CR SP 1 0.196 9.800 56347 3F CUB LED 100W DALI CR SP 1 0.196 9.800 56347 3F CUB LED 150W CR SP 1 0.196 10.000 58457 3F Linda LED lee 122W UR95 L1270 1 0.016 2.500 58459 3F Linda LED lee 122W UR95 L1270 1 0.024 3.300 58461 3F Linda LED lee 224W UR95 L1570 1 0.028 3.700 58549 3F Linda LED lee 243W UR95 L1570 1 0.028 3.700 58549 3F Linda LED 1x2W DALI L660 1 0.016 2.320 58550 3F Linda LED 1x2W DALI L670 1 0.024 3.100 58553 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>485</td></td<>						485																																																																																																																																																																																						
58337 3F CUB LED 100W CR VS 1 0.196 11.800 56339 3F CUB LED 100W DALI CR VS 1 0.196 11.800 56340 3F CUB LED 150W DALI CR VS 1 0.196 12.000 56344 3F CUB LED 150W DALI CR VS 1 0.196 12.000 56344 3F CUB LED 150W DALI CR SP 1 0.196 9.800 56347 3F CUB LED 150W DALI CR SP 1 0.196 10.000 56347 3F CUB LED 150W DALI CR SP 1 0.196 10.000 56347 3F Luda LED to 150W DALI CR SP 1 0.196 10.000 58457 3F Luda LED toe 1x24W UR95 L1270 1 0.016 2.500 58461 3F Luda LED toe 1x34W UR95 L1570 1 0.024 3.300 58463 3F Luda LED toe 1x34W DALI L660 1 0.008 1.420 58550 3F Luda LED 1x12W DALI L660 1 0.013 1.920 58552 3F Luda LED 1x2W DALI L670 1 0.024 3.100 58553 3F Luda LED 1x2W DALI L670 1 0.028 1.400 58564						485																																																																																																																																																																																						
56339 3F CUB LED 100W DALI CR VS 1 0.196 11.800 56340 3F CUB LED 150W CR VS 1 0.196 12.000 56342 3F CUB LED 100W CR SP 1 0.196 9.800 56346 3F CUB LED 100W DALI CR SP 1 0.196 9.800 56347 3F CUB LED 100W DALI CR SP 1 0.196 9.800 56347 3F CUB LED 150W CR SP 1 0.196 10.000 56347 3F CUB LED 160W DALI CR SP 1 0.196 10.000 56347 3F Linda LED lee 1x24W UR95 L1270 1 0.016 2.500 58459 3F Linda LED lee 1x30W UR95 L1570 1 0.028 3.700 58463 3F Linda LED lee 2x24W UR95 L1570 1 0.016 2.320 58550 3F Linda LED 1x12W DALI L660 1 0.013 1.920 58551 3F Linda LED 1x2W DALI L1570 1 0.024 3.100 58553 3F Linda LED 1x2W DALI L1570 1 0.028 4.000 58554 3F Linda LED 1x2W DALI L1570 1 0.028 4.000 58553 3F						486																																																																																																																																																																																						
56340 3F CUB LED 150W CR VS 1 0.196 12.000 56342 3F CUB LED 150W DAL CR VS 1 0.196 12.000 56344 3F CUB LED 100W DAL R SP 1 0.196 9.800 56347 3F CUB LED 100W DAL CR SP 1 0.196 10.000 56347 3F CUB LED 150W DAL CR SP 1 0.196 10.000 56348 3F CUB LED 150W DAL CR SP 1 0.196 10.000 58459 3F Linda LED loc 1x24W UR95 L1270 1 0.024 3.300 58461 3F Linda LED loc 2x24W UR95 L1570 1 0.028 3.700 58459 3F Linda LED 1x2W DALL L660 1 0.013 1.920 58551 3F Linda LED 1x2W DALL L660 1 0.016 2.320 58553 3F Linda LED 1x2W DALL L670 1 0.024 3.100 58554 3F Linda LED 1x2W DALL L660 1 0.013 1.920 58553 3F Linda LED 1x2W DALL L670 1 0.024 3.100 58564 3F Linda LED 1x2W DALL L670 1 0.013 1.920 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>486</td>						486																																																																																																																																																																																						
56342 3F CUB LED 150W DALL OR VS 1 0.196 12.000 56344 3F CUB LED 100W OR SP 1 0.196 9.800 56346 3F CUB LED 150W DALL OR SP 1 0.196 10.000 56347 3F CUB LED 150W DALL OR SP 1 0.196 10.000 56347 3F Linda LED los 150W DALL OR SP 1 0.016 2.500 58457 3F Linda LED los 1x24W UR95 L1270 1 0.024 3.300 58463 3F Linda LED los 2x24W UR95 L1570 1 0.028 3.700 58463 3F Linda LED los 2x24W UR95 L1570 1 0.0028 3.700 58550 3F Linda LED 1x12W DALL 1660 1 0.008 1.420 58550 3F Linda LED 2x24W DALL 1270 1 0.012 3.100 58553 3F Linda LED 2x24W DALL 1270 1 0.024 3.100 58553 3F Linda LED 2x24W DALL 1270 1 0.024 3.100 58554 3F Linda LED 1x30W DALL 1570 1 0.028 4.000 58567 3F Linda LED 1x12W E60 1 0.013 1.950 58568 <td></td> <td></td> <td></td> <td></td> <td></td> <td>486</td>						486																																																																																																																																																																																						
56344 3F CUB LED 100W CR SP 1 0.196 9.800 56346 3F CUB LED 100W DALI CR SP 1 0.196 9.800 56347 3F CUB LED 150W CR SP 1 0.196 10.000 56457 3F CUB LED 150W CR SP 1 0.196 10.000 56457 3F Linda LED loe 1x24W UR95 L1270 1 0.016 2.500 58459 3F Linda LED loe 1x24W UR95 L1570 1 0.024 3.300 58461 3F Linda LED loe 1x30W UR95 L1570 1 0.028 3.700 58563 3F Linda LED 1x12W DALI L660 1 0.018 1.420 58550 3F Linda LED 1x12W DALI L660 1 0.016 2.320 58551 3F Linda LED 1x12W DALI L1270 1 0.024 3.100 58552 3F Linda LED 1x2W DALI L1270 1 0.018 1.420 58563 3F Linda LED 1x12W L0AU 1 0.008 1.420 58564 3F Linda LED 1x12W L660 1 0.008 1.420 58563 3F Linda LED 1x12W L660 1 0.013 1.920 58566 3F Linda LED						486																																																																																																																																																																																						
56346 3F CUB LED 100W DALI CR SP 1 0.196 9.800 56347 3F CUB LED 150W CR SP 1 0.196 10.000 56349 3F CUB LED 150W CR SP 1 0.196 10.000 58459 3F Linda LED lee 1x24W UR95 L1270 1 0.024 3.300 58461 3F Linda LED lee 1x30W UR95 L1570 1 0.028 3.700 58459 3F Linda LED lee 2x30W UR95 L1570 1 0.008 1.420 58549 3F Linda LED lee 2x30W UR95 L1570 1 0.008 1.420 58549 3F Linda LED 1x12W DALI L600 1 0.013 1.920 58551 3F Linda LED 1x2W DALI L1270 1 0.016 2.320 58552 3F Linda LED 1x30W DALI L1270 1 0.019 2.800 58554 3F Linda LED 1x30W DALI L1570 1 0.024 3.100 58554 3F Linda LED 1x30W DALI L1570 1 0.008 1.420 58563 3F Linda LED 1x12W L600 1 0.008 1.420 58564 3F Linda LED 1x2W L600 1 0.013 1.920 58568						485																																																																																																																																																																																						
56347 3F CUB LED 150W CR SP 1 0.196 10.000 56349 3F CUB LED 150W DALI CR SP 1 0.196 10.000 58457 3F Linda LED lce 1x24W UR9S L1270 1 0.018 2.500 58458 3F Linda LED lce 1x24W UR9S L1270 1 0.024 3.300 58461 3F Linda LED lce 1x24W UR9S L1570 1 0.028 3.700 58463 3F Linda LED lce 2x30W UR9S L1570 1 0.028 3.700 58549 3F Linda LED lce 1x24W DALI L660 1 0.013 1.920 58551 3F Linda LED 1x24W DALI L1270 1 0.014 2.320 58552 3F Linda LED 1x24W DALI L1270 1 0.019 2.800 58554 3F Linda LED 1x30W DALI L1570 1 0.028 4.000 58554 3F Linda LED 1x30W DALI L1570 1 0.019 2.800 58554 3F Linda LED 1x30W DALI L1570 1 0.008 1.420 58567 3F Linda LED 1x4W L660 1 0.013 1.950 58568 3F Linda LED 1x2W K60 1 0.013 1.950 5856						485																																																																																																																																																																																						
563493F CUB LED 150W DALI CR SP10.19610.000584573F Linda LED loc 1x24W UR95 L127010.0162.500584693F Linda LED loc 2x24W UR95 L127010.0243.300584613F Linda LED loc 2x30W UR95 L157010.0283.700585493F Linda LED loc 2x30W UR95 L157010.0283.700585493F Linda LED 1x12W DALI L66010.0081.420585503F Linda LED 1x24W DALI L66010.0131.920585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x30W DALI L157010.0284.000585533F Linda LED 1x30W DALI L157010.0284.0005856413F Linda LED 1x12W L66010.0081.4205856533F Linda LED 1x12W L66010.0081.4205856413F Linda LED 1x12W L66010.0131.950585633F Linda LED 1x12W L66010.0131.9205856413F Linda LED 1x2W K16010.0131.920585633F Linda LED 1x2W K16010.0131.920585633F Linda LED 1x2W K127010.0162.320585843F Linda LED 1x2W K85 L127010.0162.320585853F Linda LED 1x24W/865 L127010.0163.100585893F Linda LED 1x24W/865 CP L127010.0163.100585913F Linda LED 1x24W/865 CP L127010.0163						485																																																																																																																																																																																						
58457 3F Linda LED loe 1x24W UR95 L1270 1 0.016 2.500 58459 3F Linda LED loe 2x24W UR95 L1270 1 0.019 3.000 58461 3F Linda LED loe 1x30W UR95 L1570 1 0.028 3.700 58463 3F Linda LED loe 2x30W UR95 L1570 1 0.008 1.420 58549 3F Linda LED 1x12W DALI L660 1 0.008 1.420 58550 3F Linda LED 1x24W DALI L660 1 0.013 1.920 58551 3F Linda LED 1x24W DALI L1270 1 0.016 2.320 58552 3F Linda LED 1x30W DALI L1570 1 0.019 2.800 58564 3F Linda LED 1x30W DALI L1570 1 0.028 4.000 585653 3F Linda LED 1x12W L660 1 0.008 1.420 585661 3F Linda LED 1x12W L660 1 0.0013 1.950 58669 3F Linda LED 1x2W L660 1 0.013 1.920 58672 3F Linda LED 1x2W L660 1 0.013 1.920 58683 3F Linda LED 1x24W.865 L1270 1 0.016 2.320 58584 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>485</td>			1			485																																																																																																																																																																																						
58461 3F Linda LED loc 1x30W UR95 L1570 1 0.019 3.000 58463 3F Linda LED loc 2x30W UR95 L1570 1 0.028 3.700 58549 3F Linda LED 1x12W DALI L660 1 0.013 1.420 58550 3F Linda LED 2x12W DALI L660 1 0.016 2.320 58551 3F Linda LED 1x24W DALI L1270 1 0.016 2.320 58552 3F Linda LED 1x30W DALI L1270 1 0.019 2.800 58553 3F Linda LED 1x30W DALI L1570 1 0.028 4.000 58564 3F Linda LED 1x12W DALI L1570 1 0.028 4.000 58563 3F Linda LED 1x2W DALI L1570 1 0.028 4.000 58564 3F Linda LED 1x2W DE60 1 0.008 1.420 58567 3F Linda LED 1x2W L660 1 0.013 1.950 58584 3F Linda LED 1x2W L660 1 0.013 1.920 58584 3F Linda LED 1x2W L660 1 0.013 1.920 58584 3F Linda LED 1x2W M 260 1 0.016 2.320 58584 3F Lind		3F Linda LED Ice 1x24W UR95 L1270	1	0.016		435																																																																																																																																																																																						
584633F Linda LED lee 2x30W UR95 L157010.0283.700585493F Linda LED 1x12W DALI L66010.0081.420585503F Linda LED 2x12W DALI L66010.0131.920585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 2x30W DALI L157010.0192.800585643F Linda LED 2x30W DALI L157010.0284.000585633F Linda LED 1x12W L66010.0081.420586633F Linda LED 1x12W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x2W VA6D10.0131.950585693F Linda LED 1x2W VA6D10.0162.320585843F Linda LED 1x2W L62010.0162.320585843F Linda LED 1x2W VA6D10.0162.320585843F Linda LED 1x2W VA6D10.0162.320585843F Linda LED 1x2W VA6D10.0162.320585853F Linda LED 1x2W VA6D10.0163.100585893F Linda LED 1x2W VA6D10.0163.100585903F Linda LED 1x2W VA6D EP L127010.0163.100585913F Linda LED 1x2W VA6D EP L127010.0163.100585913F Linda LED 1x2W VA6D EP L127010.0163.100 <tr <td="">58594<!--</td--><td>58459</td><td>3F Linda LED Ice 2x24W UR95 L1270</td><td>1</td><td>0.024</td><td>3.300</td><td>435</td></tr> <tr><td>585493F Linda LED 1x12W DALI L66010.0081.420585503F Linda LED 2x12W DALI L66010.0131.920585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 2x30W DALI L157010.0192.800585643F Linda LED 2x30W DALI L157010.0284.000585633F Linda LED 1x12W L66010.0081.420586633F Linda LED 1x12W EP LA L66010.0081.420586673F Linda LED 1x6W L66010.0131.950585693F Linda LED 1x2W EP LA L66010.0131.950585843F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x2W K66010.0162.320585843F Linda LED 1x2W L66010.0162.320585843F Linda LED 1x2W K66010.0162.320585853F Linda LED 1x2W K66 L127010.0162.320585843F Linda LED 1x24W/850 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100<</td><td></td><td>3F Linda LED Ice 1x30W UR95 L1570</td><td>1</td><td>0.019</td><td></td><td>435</td></tr> <tr><td>585503F Linda LED 2x12W DALI L66010.0131.920585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x12W L66010.0131.950585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x2W WEP LA L66010.0131.920585833F Linda LED 1x2W L66010.0162.320585843F Linda LED 1x2W L127010.0162.320585833F Linda LED 1x24W M65 L127010.0162.320585853F Linda LED 1x24W K65 L127010.0163.100585903F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W L630 EP L127010.0163.100585943F Linda LED 1x24W K65 EP L127010.0163.100585943F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100<</td><td>58463</td><td>3F Linda LED Ice 2x30W UR95 L1570</td><td>1</td><td>0.028</td><td>3.700</td><td>435</td></tr> <tr><td>585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585893F Linda LED 1x24W/865 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 2x24W L127010.0163.100</td><td>58549</td><td>3F Linda LED 1x12W DALI L660</td><td>1</td><td>0.008</td><td>1.420</td><td>425</td></tr> <tr><td>585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/865 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100</td><td>58550</td><td>3F Linda LED 2x12W DALI L660</td><td>1</td><td>0.013</td><td>1.920</td><td>425</td></tr> <tr><td>585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585643F Linda LED 1x6W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.920585723F Linda LED 1x2W L66010.0162.320585833F Linda LED 1x2W M665 L127010.0162.320585853F Linda LED 1x2W/865 L127010.0163.100585903F Linda LED 1x2W/865 EP L127010.0163.100585913F Linda LED 1x2W/865 EP L127010.0163.100585933F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 2x2W L127010.0163.100</td><td>58551</td><td>3F Linda LED 1x24W DALI L1270</td><td>1</td><td>0.016</td><td>2.320</td><td>425</td></tr> <tr><td>586543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100</td><td>58552</td><td>3F Linda LED 2x24W DALI L1270</td><td>1</td><td>0.024</td><td>3.100</td><td>425</td></tr> <tr><td>585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 2x24W L127010.0243.100</td><td>58553</td><td>3F Linda LED 1x30W DALI L1570</td><td>1</td><td>0.019</td><td>2.800</td><td>425</td></tr> <tr><td>585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/127010.0163.100</td><td>58554</td><td>3F Linda LED 2x30W DALI L1570</td><td>1</td><td>0.028</td><td>4.000</td><td>425</td></tr> <tr><td>585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100</td><td>58561</td><td>3F Linda LED 1x12W L660</td><td>1</td><td>0.008</td><td>1.420</td><td>425</td></tr> <tr><td>585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100</td><td>58563</td><td>3F Linda LED 1x6W L660</td><td>1</td><td>0.008</td><td>1.420</td><td>425</td></tr> <tr><td>58572 3F Linda LED 2x12W L660 1 0.013 1.920 58583 3F Linda LED 1x24W L1270 1 0.016 2.320 58584 3F Linda LED 1x24W/865 L1270 1 0.016 2.320 58585 3F Linda LED 1x24W/805 L1270 1 0.016 2.320 58584 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W/830 L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100</td><td>58567</td><td>3F Linda LED 1x12W EP LA L660</td><td>1</td><td>0.013</td><td>1.950</td><td>425</td></tr> <tr><td>585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W EP L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100</td><td>58569</td><td>3F Linda LED 1x6W EP LA L660</td><td>1</td><td>0.013</td><td>1.950</td><td>425</td></tr> <tr><td>58584 3F Linda LED 1x24W/865 L1270 1 0.016 2.320 58585 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100</td><td>58572</td><td>3F Linda LED 2x12W L660</td><td>1</td><td>0.013</td><td>1.920</td><td>425</td></tr> <tr><td>58585 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100</td><td>58583</td><td>3F Linda LED 1x24W L1270</td><td>1</td><td>0.016</td><td>2.320</td><td>425</td></tr> <tr><td>58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100</td><td>58584</td><td>3F Linda LED 1x24W/865 L1270</td><td>1</td><td>0.016</td><td>2.320</td><td>425</td></tr> <tr><td>58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100</td><td>58585</td><td>3F Linda LED 1x24W/830 L1270</td><td>1</td><td>0.016</td><td>2.320</td><td>425</td></tr> <tr><td>58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100</td><td></td><td></td><td></td><td></td><td></td><td>425</td></tr> <tr><td>58594 3F Linda LED 2x24W L1270 1 0.024 3.100</td><td>8590</td><td>3F Linda LED 1x24W/865 EP L1270</td><td>1</td><td>0.016</td><td>3.100</td><td>425</td></tr> <tr><td></td><td>68591</td><td>3F Linda LED 1x24W/830 EP L1270</td><td>1</td><td>0.016</td><td>3.100</td><td>425</td></tr> <tr><td>59505 25 Linda LED 0/20/W//965 L1070 1 0.000 0.100</td><td></td><td></td><td>1</td><td></td><td></td><td>425</td></tr> <tr><td>30393 SF Linux LED 2X2499/005 L1270 I 0.024 3.100</td><td>58595</td><td>3F Linda LED 2x24W/865 L1270</td><td>1</td><td>0.024</td><td>3.100</td><td>425</td></tr> <tr><td>58596 3F Linda LED 2x24W/830 L1270 1 0.024 3.100</td><td>8596</td><td>3F Linda LED 2x24W/830 L1270</td><td>1</td><td>0.024</td><td>3.100</td><td>425</td></tr> <tr><td>58600 3F Linda LED 2x24W EP L1270 1 0.024 3.300</td><td>600</td><td>3F Linda LED 2x24W EP L1270</td><td></td><td>0.024</td><td>3.300</td><td>425</td></tr> <tr><td>58601 3F Linda LED 2x24W/865 EP L1270 1 0.024 3.300</td><td></td><td></td><td></td><td>0.024</td><td></td><td>425</td></tr> <tr><td>58602 3F Linda LED 2x24W/830 EP L1270 1 0.024 3.300</td><td>\$8602</td><td>3F Linda LED 2x24W/830 EP L1270</td><td>1</td><td>0.024</td><td>3.300</td><td>425</td></tr> <tr><td>58605 3F Linda LED 1x30W L1570 1 0.019 2.800</td><td>68605</td><td>3F Linda LED 1x30W L1570</td><td>1</td><td>0.019</td><td>2.800</td><td>425</td></tr>	58459	3F Linda LED Ice 2x24W UR95 L1270	1	0.024	3.300	435	585493F Linda LED 1x12W DALI L66010.0081.420585503F Linda LED 2x12W DALI L66010.0131.920585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 2x30W DALI L157010.0192.800585643F Linda LED 2x30W DALI L157010.0284.000585633F Linda LED 1x12W L66010.0081.420586633F Linda LED 1x12W EP LA L66010.0081.420586673F Linda LED 1x6W L66010.0131.950585693F Linda LED 1x2W EP LA L66010.0131.950585843F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x2W K66010.0162.320585843F Linda LED 1x2W L66010.0162.320585843F Linda LED 1x2W K66010.0162.320585853F Linda LED 1x2W K66 L127010.0162.320585843F Linda LED 1x24W/850 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100<		3F Linda LED Ice 1x30W UR95 L1570	1	0.019		435	585503F Linda LED 2x12W DALI L66010.0131.920585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x12W L66010.0131.950585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x2W WEP LA L66010.0131.920585833F Linda LED 1x2W L66010.0162.320585843F Linda LED 1x2W L127010.0162.320585833F Linda LED 1x24W M65 L127010.0162.320585853F Linda LED 1x24W K65 L127010.0163.100585903F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W L630 EP L127010.0163.100585943F Linda LED 1x24W K65 EP L127010.0163.100585943F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100<	58463	3F Linda LED Ice 2x30W UR95 L1570	1	0.028	3.700	435	585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585893F Linda LED 1x24W/865 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 2x24W L127010.0163.100	58549	3F Linda LED 1x12W DALI L660	1	0.008	1.420	425	585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/865 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100	58550	3F Linda LED 2x12W DALI L660	1	0.013	1.920	425	585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585643F Linda LED 1x6W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.920585723F Linda LED 1x2W L66010.0162.320585833F Linda LED 1x2W M665 L127010.0162.320585853F Linda LED 1x2W/865 L127010.0163.100585903F Linda LED 1x2W/865 EP L127010.0163.100585913F Linda LED 1x2W/865 EP L127010.0163.100585933F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 2x2W L127010.0163.100	58551	3F Linda LED 1x24W DALI L1270	1	0.016	2.320	425	586543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100	58552	3F Linda LED 2x24W DALI L1270	1	0.024	3.100	425	585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 2x24W L127010.0243.100	58553	3F Linda LED 1x30W DALI L1570	1	0.019	2.800	425	585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/127010.0163.100	58554	3F Linda LED 2x30W DALI L1570	1	0.028	4.000	425	585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100	58561	3F Linda LED 1x12W L660	1	0.008	1.420	425	585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100	58563	3F Linda LED 1x6W L660	1	0.008	1.420	425	58572 3F Linda LED 2x12W L660 1 0.013 1.920 58583 3F Linda LED 1x24W L1270 1 0.016 2.320 58584 3F Linda LED 1x24W/865 L1270 1 0.016 2.320 58585 3F Linda LED 1x24W/805 L1270 1 0.016 2.320 58584 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W/830 L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58567	3F Linda LED 1x12W EP LA L660	1	0.013	1.950	425	585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W EP L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100	58569	3F Linda LED 1x6W EP LA L660	1	0.013	1.950	425	58584 3F Linda LED 1x24W/865 L1270 1 0.016 2.320 58585 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58572	3F Linda LED 2x12W L660	1	0.013	1.920	425	58585 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58583	3F Linda LED 1x24W L1270	1	0.016	2.320	425	58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58584	3F Linda LED 1x24W/865 L1270	1	0.016	2.320	425	58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58585	3F Linda LED 1x24W/830 L1270	1	0.016	2.320	425	58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100						425	58594 3F Linda LED 2x24W L1270 1 0.024 3.100	8590	3F Linda LED 1x24W/865 EP L1270	1	0.016	3.100	425		68591	3F Linda LED 1x24W/830 EP L1270	1	0.016	3.100	425	59505 25 Linda LED 0/20/W//965 L1070 1 0.000 0.100			1			425	30393 SF Linux LED 2X2499/005 L1270 I 0.024 3.100	58595	3F Linda LED 2x24W/865 L1270	1	0.024	3.100	425	58596 3F Linda LED 2x24W/830 L1270 1 0.024 3.100	8596	3F Linda LED 2x24W/830 L1270	1	0.024	3.100	425	58600 3F Linda LED 2x24W EP L1270 1 0.024 3.300	600	3F Linda LED 2x24W EP L1270		0.024	3.300	425	58601 3F Linda LED 2x24W/865 EP L1270 1 0.024 3.300				0.024		425	58602 3F Linda LED 2x24W/830 EP L1270 1 0.024 3.300	\$8602	3F Linda LED 2x24W/830 EP L1270	1	0.024	3.300	425	58605 3F Linda LED 1x30W L1570 1 0.019 2.800	68605	3F Linda LED 1x30W L1570	1	0.019	2.800	425
58459	3F Linda LED Ice 2x24W UR95 L1270	1	0.024	3.300	435																																																																																																																																																																																							
585493F Linda LED 1x12W DALI L66010.0081.420585503F Linda LED 2x12W DALI L66010.0131.920585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 2x30W DALI L157010.0192.800585643F Linda LED 2x30W DALI L157010.0284.000585633F Linda LED 1x12W L66010.0081.420586633F Linda LED 1x12W EP LA L66010.0081.420586673F Linda LED 1x6W L66010.0131.950585693F Linda LED 1x2W EP LA L66010.0131.950585843F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x2W K66010.0162.320585843F Linda LED 1x2W L66010.0162.320585843F Linda LED 1x2W K66010.0162.320585853F Linda LED 1x2W K66 L127010.0162.320585843F Linda LED 1x24W/850 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100<		3F Linda LED Ice 1x30W UR95 L1570	1	0.019		435																																																																																																																																																																																						
585503F Linda LED 2x12W DALI L66010.0131.920585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x12W L66010.0131.950585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x2W WEP LA L66010.0131.920585833F Linda LED 1x2W L66010.0162.320585843F Linda LED 1x2W L127010.0162.320585833F Linda LED 1x24W M65 L127010.0162.320585853F Linda LED 1x24W K65 L127010.0163.100585903F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W K65 EP L127010.0163.100585913F Linda LED 1x24W L630 EP L127010.0163.100585943F Linda LED 1x24W K65 EP L127010.0163.100585943F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100<	58463	3F Linda LED Ice 2x30W UR95 L1570	1	0.028	3.700	435																																																																																																																																																																																						
585513F Linda LED 1x24W DALI L127010.0162.320585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585893F Linda LED 1x24W/865 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 2x24W L127010.0163.100	58549	3F Linda LED 1x12W DALI L660	1	0.008	1.420	425																																																																																																																																																																																						
585523F Linda LED 2x24W DALI L127010.0243.100585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 1x2W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/865 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/865 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100	58550	3F Linda LED 2x12W DALI L660	1	0.013	1.920	425																																																																																																																																																																																						
585533F Linda LED 1x30W DALI L157010.0192.800585543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585643F Linda LED 1x6W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.920585723F Linda LED 1x2W L66010.0162.320585833F Linda LED 1x2W M665 L127010.0162.320585853F Linda LED 1x2W/865 L127010.0163.100585903F Linda LED 1x2W/865 EP L127010.0163.100585913F Linda LED 1x2W/865 EP L127010.0163.100585933F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 1x2W/865 EP L127010.0163.100585943F Linda LED 2x2W L127010.0163.100	58551	3F Linda LED 1x24W DALI L1270	1	0.016	2.320	425																																																																																																																																																																																						
586543F Linda LED 2x30W DALI L157010.0284.000585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 1x24W L127010.0163.100585943F Linda LED 1x24W L127010.0163.100	58552	3F Linda LED 2x24W DALI L1270	1	0.024	3.100	425																																																																																																																																																																																						
585613F Linda LED 1x12W L66010.0081.420585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 2x24W L127010.0243.100	58553	3F Linda LED 1x30W DALI L1570	1	0.019	2.800	425																																																																																																																																																																																						
585633F Linda LED 1x6W L66010.0081.420585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/127010.0163.100	58554	3F Linda LED 2x30W DALI L1570	1	0.028	4.000	425																																																																																																																																																																																						
585673F Linda LED 1x12W EP LA L66010.0131.950585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0163.100585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 1x24W/830 EP L127010.0163.100	58561	3F Linda LED 1x12W L660	1	0.008	1.420	425																																																																																																																																																																																						
585693F Linda LED 1x6W EP LA L66010.0131.950585723F Linda LED 2x12W L66010.0131.920585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W/830 L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585913F Linda LED 1x24W/830 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100	58563	3F Linda LED 1x6W L660	1	0.008	1.420	425																																																																																																																																																																																						
58572 3F Linda LED 2x12W L660 1 0.013 1.920 58583 3F Linda LED 1x24W L1270 1 0.016 2.320 58584 3F Linda LED 1x24W/865 L1270 1 0.016 2.320 58585 3F Linda LED 1x24W/805 L1270 1 0.016 2.320 58584 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W/830 L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58567	3F Linda LED 1x12W EP LA L660	1	0.013	1.950	425																																																																																																																																																																																						
585833F Linda LED 1x24W L127010.0162.320585843F Linda LED 1x24W/865 L127010.0162.320585853F Linda LED 1x24W/830 L127010.0162.320585893F Linda LED 1x24W EP L127010.0163.100585903F Linda LED 1x24W/865 EP L127010.0163.100585913F Linda LED 1x24W/800 EP L127010.0163.100585943F Linda LED 2x24W L127010.0243.100	58569	3F Linda LED 1x6W EP LA L660	1	0.013	1.950	425																																																																																																																																																																																						
58584 3F Linda LED 1x24W/865 L1270 1 0.016 2.320 58585 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58572	3F Linda LED 2x12W L660	1	0.013	1.920	425																																																																																																																																																																																						
58585 3F Linda LED 1x24W/830 L1270 1 0.016 2.320 58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58583	3F Linda LED 1x24W L1270	1	0.016	2.320	425																																																																																																																																																																																						
58589 3F Linda LED 1x24W EP L1270 1 0.016 3.100 58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58584	3F Linda LED 1x24W/865 L1270	1	0.016	2.320	425																																																																																																																																																																																						
58590 3F Linda LED 1x24W/865 EP L1270 1 0.016 3.100 58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100	58585	3F Linda LED 1x24W/830 L1270	1	0.016	2.320	425																																																																																																																																																																																						
58591 3F Linda LED 1x24W/830 EP L1270 1 0.016 3.100 58594 3F Linda LED 2x24W L1270 1 0.024 3.100						425																																																																																																																																																																																						
58594 3F Linda LED 2x24W L1270 1 0.024 3.100	8590	3F Linda LED 1x24W/865 EP L1270	1	0.016	3.100	425																																																																																																																																																																																						
	68591	3F Linda LED 1x24W/830 EP L1270	1	0.016	3.100	425																																																																																																																																																																																						
59505 25 Linda LED 0/20/W//965 L1070 1 0.000 0.100			1			425																																																																																																																																																																																						
30393 SF Linux LED 2X2499/005 L1270 I 0.024 3.100	58595	3F Linda LED 2x24W/865 L1270	1	0.024	3.100	425																																																																																																																																																																																						
58596 3F Linda LED 2x24W/830 L1270 1 0.024 3.100	8596	3F Linda LED 2x24W/830 L1270	1	0.024	3.100	425																																																																																																																																																																																						
58600 3F Linda LED 2x24W EP L1270 1 0.024 3.300	600	3F Linda LED 2x24W EP L1270		0.024	3.300	425																																																																																																																																																																																						
58601 3F Linda LED 2x24W/865 EP L1270 1 0.024 3.300				0.024		425																																																																																																																																																																																						
58602 3F Linda LED 2x24W/830 EP L1270 1 0.024 3.300	\$8602	3F Linda LED 2x24W/830 EP L1270	1	0.024	3.300	425																																																																																																																																																																																						
58605 3F Linda LED 1x30W L1570 1 0.019 2.800	68605	3F Linda LED 1x30W L1570	1	0.019	2.800	425																																																																																																																																																																																						

Code	Item		F	Page	
		Pcs	m³	Gross weight in kg	
58606	3F Linda LED 1x30W/865 L1570	1	0.019	2.800	425
58607	3F Linda LED 1x30W/830 L1570	1	0.019	2.800	425
58611	3F Linda LED 1x30W EP L1570	1	0.019	3.800	425
58612	3F Linda LED 1x30W/865 EP L1570	1	0.019	3.800	425
58613	3F Linda LED 1x30W/830 EP L1570	1	0.019	3.800	425
58616	3F Linda LED 2x30W L1570	1	0.028	3.800	425
58617	3F Linda LED 2x30W/865 L1570	1	0.028	3.700	425
58618	3F Linda LED 2x30W/830 L1570	1	0.028	3.700	425
58623	3F Linda LED 2x30W EP L1570	1	0.028	4.500	425
58624	3F Linda LED 2x30W/865 EP L1570	1	0.028	3.900	425
58625	3F Linda LED 2x30W/830 EP L1570	1	0.028	3.900	425
58630	3F Linda LED 2x24W CONC L1270	1	0.024	3.600	426
58632	3F Linda LED 2x30W CONC L1570	1	0.028	4.300	426
58638	3F Linda LED 1x30W Sensor L1570	1	0.019	3.000	437
58642	3F Linda LED 2x30W Sensor L1570	1	0.028	4.000	437
58645	3F Linda LED 1x30W Sensor CF L1570	1	0.019	3.000	437
58649	3F Linda LED 2x30W Sensor CF L1570	1	0.028	4.000	437
58659	3F Linda LED 2x24W AMPIO L1270	1	0.024	3.600	426
58661	3F Linda LED 2x30W AMPIO L1570	1	0.028	4.300	426
58705	3F Linda LED 1x12W ENP LA L660	1	0.013	1.750	425
58713	3F Linda LED 1x24W ENP L1270	1	0.016	2.550	425
58722	3F Linda LED HS 1x24W L1270	1	0.016	2.320	431
58724	3F Linda LED HS 1x30W L1570	1	0.019	2.800	431
58728	3F Linda LED HS 2x24W L1270	1	0.024	3.100	431
58730	3F Linda LED HS 2x30W L1570	1	0.028	3.700	431
58731	3F Linda LED Soft 1x12W L660	1	0.008	1.420	427
58732	3F Linda LED Soft 2x12W L660	1	0.013	1.920	427
58733	3F Linda LED Soft 1x24W L1270	1	0.016	2.320	427
58734	3F Linda LED Soft 1x30W L1570	1	0.019	2.800	427
58735	3F Linda LED Soft 1x24W DALI L1270	1	0.016	2.320	427
58736	3F Linda LED Soft 1x30W DALI L1570	1	0.019	2.800	427
58737	3F Linda LED Soft 2x24W L1270	1	0.024	3.100	427
58738	3F Linda LED Soft 2x24W DALI L1270	1	0.024	3.100	427
58751	3F Linda LED Soft 2x22W L1570	1	0.028	4.000	427
58752	3F Linda LED Soft 2x30W L1570	1	0.028	4.000	427
58753	3F Linda LED Soft 2x22W DALI L1570	1	0.028	4.000	427
58754	3F Linda LED Soft 2x30W DALI L1570	1	0.028	4.000	427
58762	3F Linda LED Basic 1x19W L1270	1	0.016	2.320	427
58763	3F Linda LED Basic 2x19W L1270	1	0.024	3.100	427
58764	3F Linda LED Basic 1x23W L1570	1	0.019	2.800	427
58765	3F Linda LED Basic 2x23W L1570	1	0.028	3.700	427
58766	3F Linda LED Basic ST 2x16W L1270	1	0.016	2.400	427
58767	3F Linda LED Basic ST 2x20W L1570	1	0.019	2.900	427
58786	3F Linda LED 1x24W Sensor DALI-BLE L1270	1	0.016	2.320	438
58787	3F Linda LED 1x30W Sensor DALI-BLE L1570	1	0.019	3.000	438
58788	3F Linda LED 2x24W Sensor DALI-BLE L1270	1	0.024	3.320	438
58789	3F Linda LED 2x30W Sensor DALI-BLE L1570	1	0.028	4.000	438
58806	3F Linda LED Trasparente 1x12W L660		0.008	1.420	433
58808	3F Linda LED Trasparente 1x24W L1270	1	0.016	2.320	433
58809 58810	3F Linda LED Trasparente 2x24W L1270 3F Linda LED Trasparente 1x30W L1570	1	0.024	3.100 2.800	433 433
58810	3F Linda LED Trasparente 1x30W L1570 3F Linda LED Trasparente 2x30W L1570	1	0.019	3.700	433
		1			
58881	3F LEM 1 LED 50 CR AMPIO	1	0.011	7.000	397
58882	3F LEM 2 LED 100 CR AMPIO		0.044	10.500	397 307
58883	3F LEM 3 LED 150 CR AMPIO	1	0.059	15.600	397
58884	3F LEM 4 LED 200 CR AMPIO	1	0.067	18.000	397 307
58885 58886	3F LEM 1+1 LED 100 CR AMPIO 3F LEM 5 LED 250 CR AMPIO	1	0.021 0.081	10.800 22.400	397 397
58887	3F LEM 5 LED 200 CR AMPIO 3F LEM 1 LED 50 CR CONC	1	0.081	7.000	397
					399
58888	3F LEM 2 LED 100 CR CONC	1	0.044	10.500	398

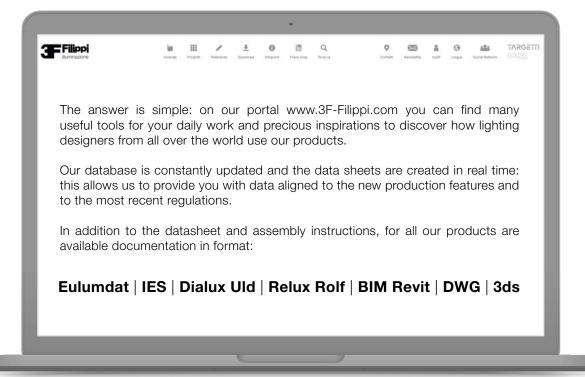
Code	Item Pack				Page	
		Pcs	m³	Gross weight in kg		
58889	3F LEM 3 LED 150 CR CONC	1	0.059	15.600	399	
58890	3F LEM 4 LED 200 CR CONC	1	0.067	18.000	399	
58893	3F LEM 2 LED 100 CR MEDIO	1	0.044	10.500	398	
58894	3F LEM 3 LED 150 CR MEDIO	1	0.059	15.600	398	
58895	3F LEM 4 LED 200 CR MEDIO	1	0.067	18.000	398	
58896	3F LEM 1+1 LED 100 CR MEDIO	1	0.021	10.800	398	
58897	3F LEM 5 LED 250 CR MEDIO	1	0.081	22.400	398	
58899	3F LEM 1 LED 50 DALI CR AMPIO	1	0.011	7.000	397	
58900	3F LEM 2 LED 100 DALI CR AMPIO	1	0.044	10.500	397	
58901	3F LEM 3 LED 150 DALI CR AMPIO	1	0.059	15.600	397	
58902	3F LEM 4 LED 200 DALI CR AMPIO	1	0.067	18.000	397	
58903	3F LEM 1+1 LED 100 DALI CR AMPIO	1	0.021	10.800	397	
58904	3F LEM 5 LED 250 DALI CR AMPIO	1	0.081	22.400	397	
58905	3F LEM 1 LED 50 DALI CR CONC	1	0.011	7.000	399	
58906	3F LEM 2 LED 100 DALI CR CONC	1	0.044	10.500	399	
58907	3F LEM 3 LED 150 DALI CR CONC	1	0.059	15.600	399	
58908	3F LEM 4 LED 200 DALL CR CONC	1	0.067	18.000	399	
58911	3F LEM 2 LED 100 DALL CR MEDIO	1	0.044	10.500	398	
58912	3F LEM 3 LED 150 DALL CR MEDIO	1	0.059	15.600	398	
58913	3F LEM 4 LED 200 DALL CR MEDIO	1	0.067	18.000	398	
58914 58915	3F LEM 1+1 LED 100 DALI CR MEDIO 3F LEM 5 LED 250 DALI CR MEDIO	1	0.021	10.800	398 398	
58953	3F LEM 1 HO LED 70 CR AMPIO	1	0.001	7.000	405	
58954	3F LEM 2 HO LED 140 CR AMPIO	1	0.011	10.800	405	
58955	3F LEM 3 HO LED 210 CR AMPIO	1	0.044	15.600	405	
58955	3F LEM 4 HO LED 280 CR AMPIO	1	0.059	18.600	405	
58957	3F LEM 1+1 HO LED 280 CH AMPHO 3F LEM 1+1 HO LED 140 CR AMPHO	1	0.007	11.100	405	
58958	3F LEM 5 HO LED 350 CR AMPIO	1	0.021	23.000	403	
58959	3F LEM 1 HO LED 70 CR CONC	1	0.011	7.000	406	
58960	3F LEM 2 HO LED 140 CR CONC	1	0.044	10.800	406	
58961	3F LEM 3 HO LED 210 CR CONC	1	0.059	15.600	406	
58965	3F LEM 2 HO LED 140 CR MEDIO	1	0.044	10.800	406	
58966	3F LEM 3 HO LED 210 CR MEDIO	1	0.059	15.600	406	
58967	3F LEM 4 HO LED 280 CR MEDIO	1	0.067	18.600	406	
58968	3F LEM 1+1 HO LED 140 CR MEDIO	1	0.021	11.100	406	
58969	3F LEM 5 HO LED 350 CR MEDIO	1	0.081	23.000	406	
58971	3F LEM 1 HO LED 70 DALI CR AMPIO	1	0.011	7.000	405	
58972	3F LEM 2 HO LED 140 DALI CR AMPIO	1	0.044	10.800	405	
58973	3F LEM 3 HO LED 210 DALI CR AMPIO	1	0.059	15.600	405	
58974	3F LEM 4 HO LED 280 DALI CR AMPIO	1	0.067	18.600	405	
58975	3F LEM 1+1 HO LED 140 DALI CR AMPIO	1	0.021	11.100	405	
58976	3F LEM 5 HO LED 350 DALI CR AMPIO	1	0.081	23.000	405	
58977	3F LEM 1 HO LED 70 DALI CR CONC	1	0.011	7.000	406	
58978	3F LEM 2 HO LED 140 DALI CR CONC	1	0.044	10.800	406	
58979	3F LEM 3 HO LED 210 DALI CR CONC	1	0.059	15.600	406	
58983	3F LEM 2 HO LED 140 DALI CR MEDIO	1	0.044	10.800	406	
58984	3F LEM 3 HO LED 210 DALI CR MEDIO	1	0.059	15.600	406	
58985	3F LEM 4 HO LED 280 DALI CR MEDIO	1	0.067	18.600	406	
58986	3F LEM 1+1 HO LED 140 DALI CR MEDIO	1	0.021	11.100	406	
58987	3F LEM 5 HO LED 350 DALI CR MEDIO	1	0.081	23.000	406	
59026	3F LEM 2 HT LED 60 CR AMPIO	1	0.044	12.000	409	
59027	3F LEM 3 HT LED 90 CR AMPIO	1	0.059	14.800	409	
59028	3F LEM 4 HT LED 120 CR AMPIO	1	0.067	17.500	409	
59030	3F LEM 5 HT LED 150 CR AMPIO	1	0.081	22.400	409	
59032	3F LEM 2 HT LED 60 CR CONC	1	0.044	12.000	410	
59033	3F LEM 3 HT LED 90 CR CONC	1	0.059	14.800	410	
59034	3F LEM 4 HT LED 120 CR CONC	1	0.067	17.500	410	
59039	3F LEM 4 HT LED 120 CR MEDIO	1	0.067	17.500	409	
59041	3F LEM 5 HT LED 150 CR MEDIO	1	0.081	22.400	409	
59080	3F LEM 2 SPORT LED 100 CR AMPIO	1	0.044	10.600	413	

Pcs m² Gross weight in kg 50081 SFLEM 3 SPORT LED 150 CR AMPIO 1 0.069 15.7700 413 59167 SFLEM 2 LED 100965 CR AMPIO 1 0.014 10.800 397 59158 SFLEM 3 LED 100965 CR AMPIO 1 0.044 10.800 397 59169 SFLEM 3 LED 100965 CR AMPIO 1 0.069 1 8.000 397 59161 SFLEM 14 LED 100965 CR AMPIO 1 0.021 1 8.000 397 59164 SFLEM 14 LED 100965 CR CONC 1 0.044 1 0.500 399 59164 SFLEM 14 LED 100985 CR CONC 1 0.067 18.000 399 59253 SFLEM 14 LED 200785 CR CONC 1 0.067 18.000 401 59254 SFLEM 14 LED 200 ALI Sensor CR AMPIO 1 0.061 17.000 401 59254 SFLEM 14 LED 200 ALI Sensor CR CONC 1 0.061 17.000 402 59255 SFLEM 14 LED 200 ALI Sensor CR CONC 1 0.061 17.000 402	Code	Item	Pack			Page
B9157 3F LEM 1 LED 50/865 CR AMPIO 1 0.011 7.000 397 B9168 3F LEM 2 LED 100/865 CR AMPIO 1 0.067 15.000 397 B9169 3F LEM 4 LED 200/865 CR AMPIO 1 0.067 15.000 397 B9161 3F LEM 4 LED 100/865 CR AMPIO 1 0.067 15.000 397 B9164 3F LEM 2 LED 100/865 CR CONC 1 0.059 15.600 399 B9165 3F LEM 4 LED 200/865 CR CONC 1 0.067 18.000 399 B9165 3F LEM 4 LED 200/865 CR CONC 1 0.069 13.000 401 B9263 3F LEM 4 LED 200 ALL Sensor CR AMPIO 1 0.081 17.000 401 B9253 3F LEM 2 LED 100 DALL Sensor CR CONC 1 0.081 19.000 401 B9263 3F LEM 2 LED 100 DALL Sensor CR CONC 1 0.081 19.000 401 B9263 3F LEM 2 LED 100 DALL Sensor CR CONC 1 0.081 19.000 401 B92643 3F LEM 2 LED 100 DALL Sensor CR CONC <th></th> <th></th> <th>Pcs</th> <th>m³</th> <th>Gross weight in kg</th> <th></th>			Pcs	m³	Gross weight in kg	
5918.8 3F LEM 2 LED 100/885 CR AMPIO 1 0.044 10.500 397 5919.0 3F LEM 3 LED 150/885 CR AMPIO 1 0.059 15.600 397 5910.0 3F LEM 1 LED 100/885 CR AMPIO 1 0.021 10.800 397 5918.1 3F LEM 1 LED 100/885 CR CONC 1 0.044 10.600 399 5916.5 3F LEM 3 LED 150/885 CR CONC 1 0.069 15.600 399 5916.5 3F LEM 4 LED 200/885 CR CONC 1 0.061 17.000 401 5925.3 F LEM 3 LED 150 DALI Sensor CR AMPIO 1 0.061 17.000 401 5925.3 F LEM 3 LED 150 DALI Sensor CR AMPIO 1 0.061 17.000 401 5925.3 F LEM 3 LED 150 DALI Sensor CR CONC 1 0.081 17.000 402 5926.3 F LEM 3 LED 150 DALI Sensor CR MEDIO 1 0.081 17.000 401 5926.3 F LEM 3 LED 150 DALI Sensor CR MEDIO 1 0.081 17.000 401 5926.4 F LM 4 LED 200 DALI S	59081	3F LEM 3 SPORT LED 150 CR AMPIO	1	0.059	15.700	413
59159 3F LEM 3 LED 150/865 CR AMPIO 1 0.059 15.600 397 69160 3F LEM 4 LED 200/865 CR AMPIO 1 0.067 18.000 397 69161 3F LEM 14 LED 100/865 CR AMPIO 1 0.057 18.000 399 59163 3F LEM 3 LED 150/865 CR CONC 1 0.059 15.600 399 59163 3F LEM 2 LED 100 DALS Sensor CR AMPIO 1 0.059 13.000 401 59254 3F LEM 2 LED 100 DALL Sensor CR AMPIO 1 0.061 17.000 401 59255 3F LEM 2 LED 100 DALL Sensor CR AMPIO 1 0.061 17.000 402 59260 3F LEM 3 LED 100 DALL Sensor CR CONC 1 0.061 17.000 402 59261 3F LEM 4 LED 200 DALL Sensor CR MEDIO 1 0.061 17.000 401 59263 3F LEM 3 LED 100 DALL Sensor CR MEDIO 1 0.061 17.000 401 59265 3F LEM 3 LED 200 DALL Sensor CR MEDIO 1 0.061 17.000 401 59266 1 LEM 3 L	59157	3F LEM 1 LED 50/865 CR AMPIO	1	0.011	7.000	397
59160 3F LEM 4 LED 200/865 CR AMPIO 1 0.067 18.000 397 69161 3F LEM 1+1 LD 100/865 CR CONC 1 0.021 10.800 397 59164 3F LEM 2 LED 100/865 CR CONC 1 0.059 15.600 399 59165 3F LEM 4 LED 200/865 CR CONC 1 0.067 18.000 491 59263 3F LEM 2 LED 100 LL Sensor CR AMPIO 1 0.061 17.000 401 59253 3F LEM 2 LED 100 DALL Sensor CR AMPIO 1 0.061 19.500 401 59255 3F LEM 4 LED 200 DALL Sensor CR CNC 1 0.061 19.500 402 59265 3F LEM 4 LED 100 DALL Sensor CR CNC 1 0.061 19.500 402 59265 3F LEM 4 LED 201 Sensor CR MEDIO 1 0.051 19.500 402 59265 3F LEM 4 LED 201 JU ALL Sensor CR MEDIO 1 0.051 19.500 402 59265 3F LEM 4 LED 201 JU ALL Sensor CR MEDIO 1 0.051 19.500 401 69266 1 0.031 4.500 271 2000 19.201 401 2000	59158	3F LEM 2 LED 100/865 CR AMPIO	1	0.044	10.500	397
59161 SF LEM 1+1 LED 100/865 CR AMPIO 1 0.021 10.800 397 59164 3F LEM 3 LED 100/865 CR CONC 1 0.044 10.500 398 59165 3F LEM 4 LED 200/865 CR CONC 1 0.069 15.600 399 59253 3F LEM 4 LED 100 DALI Sensor CR AMPIO 1 0.061 17.000 401 59254 3F LEM 4 LED 200 DALI Sensor CR AMPIO 1 0.061 17.000 402 59256 3F LEM 4 LED 200 DALI Sensor CR CONC 1 0.069 13.000 402 59260 3F LEM 3 LED 100 DALI Sensor CR CONC 1 0.081 17.000 402 59265 3F LEM 3 LED 100 DALI Sensor CR MEDIO 1 0.081 17.000 401 69265 3F LEM 3 LED 100 DALI Sensor CR MEDIO 1 0.081 17.000 401 69266 3F LEM 3 LED 100 DALI Sensor CR MEDIO 1 0.081 17.000 401 69267 3F LEM 3 LED 200 DALI Sensor CR MEDIO 1 0.081 17.000 401 69078 L	59159	3F LEM 3 LED 150/865 CR AMPIO	1	0.059	15.600	397
59164 3F LEM 2 LED 100/865 CR CONC 1 0.044 10.500 399 59165 3F LEM 3 LED 160/865 CR CONC 1 0.067 18.000 399 59253 3F LEM 3 LED 100 DALI Sensor CR AMPO 1 0.059 13.000 401 59255 3F LEM 4 LED 200 DALI Sensor CR AMPO 1 0.081 19.500 401 59256 3F LEM 4 LED 200 DALI Sensor CR CONC 1 0.081 19.500 402 59260 3F LEM 3 LED 150 DALI Sensor CR CONC 1 0.081 19.500 402 59266 3F LEM 4 LED 200 DALI Sensor CR CONC 1 0.081 19.500 402 59266 3F LEM 3 LED 150 DALI Sensor CR MEDIO 1 0.081 17.000 401 59267 3F LEM 3 LED 150 DALI Sensor CR MEDIO 1 0.081 19.500 401 59268 3F LEM 3 LED 150 DALI AAD 596x596 1 0.031 4.500 271 260092 L 353x14W LED SP L496 1 0.031 5.000 271 260308 L 353x14W LED SP L4	59160	3F LEM 4 LED 200/865 CR AMPIO	1	0.067	18.000	397
\$9165 3F LEM 3 LED 150/865 CR CONC 1 0.059 15.600 399 \$9166 3F LEM 4 LED 200/865 CR CONC 1 0.059 13.000 401 \$9253 3F LEM 2 LED 100 DALI Sensor CR AMPIO 1 0.061 17.000 401 \$9254 3F LEM 4 LED 200 DALI Sensor CR AMPIO 1 0.061 17.000 401 \$9259 3F LEM 2 LED 100 DALI Sensor CR CONC 1 0.061 17.000 402 \$9260 3F LEM 3 LED 150 DALI Sensor CR CONC 1 0.061 17.000 402 \$9265 3F LEM 3 LED 100 DALI Sensor CR MEDIO 1 0.061 17.000 401 \$9266 3F LEM 3 LED 100 DALI Sensor CR MEDIO 1 0.081 17.000 401 \$9267 3F LEM 3 LED 200 DALI Sensor CR MEDIO 1 0.081 17.000 401 \$9268 3F LEM 3 LED 200 DALI Sensor CR MEDIO 1 0.081 17.000 401 \$92078 35 Statiw LED 200 ALI Sensor CR MEDIO 1 0.031 4.500 271 260078	59161	3F LEM 1+1 LED 100/865 CR AMPIO	1	0.021	10.800	397
59166 5° LEM 4 LED 200685 CR CONC 1 0.067 18.000 391 59254 3° LEM 2 LED 100 DALI Sensor CR AMPIO 1 0.0681 17.000 401 59255 3° LEM 4 LED 200 DALI Sensor CR AMPIO 1 0.081 17.000 401 59256 3° LEM 4 LED 200 DALI Sensor CR CONC 1 0.061 17.000 402 59260 3° LEM 2 LED 100 DALI Sensor CR CONC 1 0.081 17.000 402 59261 3° LEM 4 LED 200 DALI Sensor CR CONC 1 0.081 17.000 401 59266 3° LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.061 17.000 401 59266 3° LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 17.000 401 59267 3° LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 17.000 401 260078 L 353x25W LED 3A0 596x596 1 0.031 4.500 271 260080 L 353x4W LED 5P 54V 596x596 1 0.031 5.000 271 260393 Baraluce	59164	3F LEM 2 LED 100/865 CR CONC	1	0.044	10.500	399
59253 3F LEM 2 LED 100 DALI Sensor CR AMPIO 1 0.059 13.000 401 59254 3F LEM 4 LED 200 DALI Sensor CR AMPIO 1 0.081 110.000 401 59255 3F LEM 2 LED 100 DALI Sensor CR CONC 1 0.059 13.000 402 59250 3F LEM 2 LED 100 DALI Sensor CR CONC 1 0.061 19.000 402 59261 3F LEM 4 LE 200 DALI Sensor CR CONC 1 0.081 19.000 402 59266 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.000 401 59266 3F LEM 4 LED 200 ADLI Sensor CR MEDIO 1 0.081 19.500 401 59267 3F LEM 4 LED 200 ADLI Sensor CR MEDIO 1 0.031 4.500 271 260078 L35x:28V LED 3AD 596x596 1 0.031 5.000 271 260080 L35x:28V LED DALI SAP 54V 596x596 1 0.031 5.000 271 260081 L35x:28V LED DALI SAP 54V 596x596 1 0.031 5.000 294 269332	59165	3F LEM 3 LED 150/865 CR CONC	1	0.059	15.600	399
59284 3F LEM 3 LED 150 DALI Sensor CR AMPIO 1 0.061 17.000 401 59255 3F LEM 4 LED 200 DALI Sensor CR AMPIO 1 0.081 19.500 402 59259 3F LEM 3 LED 150 DALI Sensor CR CONC 1 0.081 17.000 402 59260 3F LEM 3 LED 150 DALI Sensor CR CONC 1 0.081 19.500 402 59265 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 59266 3F LEM 3 LED 150 DALI Sensor CR MEDIO 1 0.081 17.000 401 59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 260078 L 353x26W LED 3AD 596x596 1 0.031 4.500 271 260080 L 353x14W LED SP 4V 596x596 1 0.031 5.000 271 260330 Baraluce L 1+30W LED SP 12462 1 0.023 4.600 294 269340 Baraluce L 1+30W LED SP 5P L368 1 0.023 4.800 293 269340 Baraluce L 1+	59166	3F LEM 4 LED 200/865 CR CONC	1	0.067	18.000	399
59255 3F LEM 4 LED 200 DALI Sensor CR CONC 1 0.081 19.500 401 59260 3F LEM 2 LED 100 DALI Sensor CR CONC 1 0.081 17.000 402 59260 3F LEM 4 LED 200 DALI Sensor CR CONC 1 0.081 17.000 402 59261 3F LEM 4 LED 200 DALI Sensor CR CONC 1 0.081 17.000 401 59266 3F LEM 2 LED 100 DALI Sensor CR MEDIO 1 0.081 17.000 401 59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 59267 3F LEM 4 LED 200 ADLI Sensor CR MEDIO 1 0.031 4.500 271 260078 L353x25W LED DALI SENSOF GR MEDIO 1 0.031 5.000 271 260080 L353x14W LED DALI SP 54V 596x596 1 0.031 5.000 271 260332 Baraluce L 1+X0W LED SP L1496 1 0.023 4.600 294 269334 Barraluce L 1+X0W LED SP L1496 1 0.023 4.600 293 269348 Barr	59253	3F LEM 2 LED 100 DALI Sensor CR AMPIO	1	0.059	13.000	401
59259 3F LEM 2 LED 100 DALI Sensor CR CONC 1 0.059 13.000 402 59260 3F LEM 3 LED 150 DALI Sensor CR CONC 1 0.081 17.000 402 59261 3F LEM 2 LED 100 DALI Sensor CR ONC 1 0.081 19.500 402 59265 3F LEM 2 LED 100 DALI Sensor CR MEDIO 1 0.081 17.000 401 59266 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 59268 1 0.031 45.500 271 260078 L 533x14W LED SAU S96x596 1 0.031 5.000 271 26038 Barraluce L 1:30W LED SP L948 1 0.023 4.600 294 263338 Barraluce L 1:30W LED SP 1946 1 0.023 4.600 294 263348 Barraluce L 1:30W LED SP 12962 1 0.046 9.200 293 263346 Barraluce L 1:30W LED OP F 1486 1 0.	59254	3F LEM 3 LED 150 DALI Sensor CR AMPIO	1	0.081	17.000	401
59260 3F LEM 3 LED 150 DALI Sensor CR CONC 1 0.081 17.000 402 59261 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.059 13.000 401 59266 3F LEM 3 LED 150 DALI Sensor CR MEDIO 1 0.061 17.000 401 59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 26078 L 353x25W LED 3AD 596x596 1 0.031 4.500 271 260080 L 353x14W LED SP 54V 596x596 1 0.031 5.000 271 260094 L 353x14W LED SP 1496 1 0.023 4.600 294 269338 Barraluce L 1x30W LED SP 1496 1 0.023 4.600 294 269340 Barraluce L 1x30W LED SP 1496 1 0.023 4.900 294 269340 Barraluce L 1x30W LED SP 1496 1 0.023 4.900 294 269340 Barraluce L 1x30W LED SP 5P L932 1 0.046 9.800 293 269348 Barraluce L 1x30W LED OP 5P L9466	59255	3F LEM 4 LED 200 DALI Sensor CR AMPIO	1	0.081	19.500	401
59261 3F LEM 4 LED 200 DALI Sensor CR CONC 1 0.081 19.500 402 59265 3F LEM 2 LED 100 DALI Sensor CR MEDIO 1 0.059 13.000 401 59266 3F LEM 2 LED 100 DALI Sensor CR MEDIO 1 0.081 17.000 401 59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 260078 L 353x25W LED DALI 3AO 596x596 1 0.031 4.500 271 260080 L 353x14W LED DALI SP 54V 596x596 1 0.031 5.000 271 260381 Baraluce L 1x30W LED SP L1496 1 0.023 4.600 294 269338 Baraluce L 1.4X30W LED SP L12962 1 0.046 9.200 294 269348 Baraluce L 1.4X30W LED SP E12962 1 0.046 9.800 293 269348 Baraluce L 1.4X30W LED SP E12962 1 0.046 9.800 293 269348 Baraluce L 1.4X30W LED OP L9492 1 0.046 9.800 293 269348 Baraluce L 1.4X3	59259	3F LEM 2 LED 100 DALI Sensor CR CONC	1	0.059	13.000	402
59265 3F LEM 2 LED 100 DALI Sensor CR MEDIO 1 0.059 13.000 401 59267 3F LEM 3 LED 150 DALI Sensor CR MEDIO 1 0.081 17.000 401 59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 260078 L 353x25W LED DALI 3AO 596x596 1 0.031 4.500 271 260080 L 353x14W LED SP 54V 596x596 1 0.031 5.000 271 260084 L 353x14W LED DALI SP 54V 596x596 1 0.031 5.000 271 260332 Barraluce L 1+x30W LED SP L1496 1 0.023 4.600 294 263338 Barraluce L 1+x30W LED SP 59 L232 1 0.046 9.800 294 263346 Barraluce L 1+x30W LED OP 59 L2932 1 0.046 9.800 293 263356 Barraluce L 1+x30W LED OP 59 L1932 1 0.046 9.800 293 263356 Barraluce L 1+x30W LED OP 59 L1932 1 0.046 9.800 293	59260	3F LEM 3 LED 150 DALI Sensor CR CONC	1	0.081	17.000	402
59266 3F LEM 3 LED 150 DALI Sensor CR MEDIO 1 0.081 17.000 401 59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 260078 L 353x25W LED 3AO 596x596 1 0.031 4.500 271 260080 L 353x14W LED SP 54V 596x596 1 0.031 5.000 271 260092 L 353x14W LED SP 54V 596x596 1 0.031 5.000 271 260330 Barraluce L 1x30W LED SP L1496 1 0.023 4.600 294 269334 Barraluce L 1+1x30W LED SP L1496 1 0.023 4.900 294 269346 Barraluce L 1+1x30W LED SP 54V 1596x2 1 0.046 9.200 294 269346 Barraluce L 1+1x30W LED OP L1496 1 0.023 4.900 293 269346 Barraluce L 1+1x30W LED OP L1496 1 0.023 4.900 293 269346 Barraluce L 1+1x30W LED OP S L1466 1 0.046 9.200 293 269346 Barraluce L 1+30W LED OP S L14	59261	3F LEM 4 LED 200 DALI Sensor CR CONC	1	0.081	19.500	402
59267 3F LEM 4 LED 200 DALI Sensor CR MEDIO 1 0.081 19.500 401 260078 L 353x25W LED 3AO 596x596 1 0.031 4.500 271 260080 L 353x25W LED DALI 3AO 596x596 1 0.031 4.500 271 260092 L 353x14W LED DALI SP 54V 596x596 1 0.031 5.000 271 260393 Barraluce L 1x30W LED SP L1496 1 0.023 4.600 294 263338 Barraluce L 1x30W LED SP L1496 1 0.023 4.900 294 263348 Barraluce L 1x30W LED SP 54V 596x596 1 0.023 4.900 294 263348 Barraluce L 1x30W LED SP 12962 1 0.046 9.200 293 269346 Barraluce L 1x30W LED OP L392 1 0.046 9.200 293 269346 Barraluce L 1x30W LED OP SP L1466 1 0.023 4.900 293 269346 Barraluce L 1x30W LED OP SP L1466 1 0.023 4.900 293 269356 Barraluce L 1x30W LED OP SP L392 <td>59265</td> <td>3F LEM 2 LED 100 DALI Sensor CR MEDIO</td> <td>1</td> <td>0.059</td> <td>13.000</td> <td>401</td>	59265	3F LEM 2 LED 100 DALI Sensor CR MEDIO	1	0.059	13.000	401
260078L 353x25W LED 3AO 596x59610.0314.500271260080L 353x25W LED DALI 3AO 596x59610.0315.000271260092L 353x14W LED SP 54V 596x59610.0315.000271260094L 353x14W LED SP L149610.0234.600294269332Barraluce L 1x30W LED SP L149610.0234.600294269333Barraluce L 1x30W LED SP 55 P L296210.0469.200294269340Barraluce L 1x30W LED SP 55 P L293210.0469.800294269346Barraluce L 1x30W LED OP 55 P L293210.0469.800293269346Barraluce L 1x30W LED OP L196610.0234.600293269346Barraluce L 1x30W LED OP SP L293210.0469.200293269356Barraluce L 1x30W LED OP 59 L146610.0234.600293269356Barraluce L 1x30W LED OP 59 L146610.0234.600293269356Barraluce L 1x30W LED OP 59 L146610.0234.600293269356Barraluce L 1x30W LED OP 59 L293210.0469.800293270931L 661x24W LED 2S 221x125610.0426.200281270935L 661x30W LED 2S 221x125610.0426.200281270937L 661x30W LED SP 221x125610.0426.400281270939L 561x24W LED SP 221x125610.0426.4002812	59266	3F LEM 3 LED 150 DALI Sensor CR MEDIO	1	0.081	17.000	401
260080L 353x25W LED DALI 3AO 596x59610.0314.500271260092L 353x14W LED SP 54V 596x59610.0315.000271260094L 353x14W LED SP 54V 596x59610.0315.000271263330Barraluce L 1:30W LED SP L149610.0234.600294263332Barraluce L 1:1x30W LED SP L292210.0469.200294263348Barraluce L 1:1x30W LED SP 5P L293210.0469.800294263348Barraluce L 1:1x30W LED OP L196610.0234.600293269348Barraluce L 1:1x30W LED OP L196210.0469.200293269348Barraluce L 1:1x30W LED OP SP L146610.0234.600293269348Barraluce L 1:1x30W LED OP SP L146610.0234.600293269348Barraluce L 1:1x30W LED OP SP L293210.0469.200293269348Barraluce L 1:1x30W LED OP SP L293210.0469.200293269348Barraluce L 1:1x30W LED OP SP L293210.0469.200293270931L 561x12W LED 2S 221x6710.0173.000281270933L 561x2W LED 2S 221x6710.0426.200281270934L 562x30W LED SP 21x125610.0426.400281270935L 561x2W LED SP 21x155610.0325.200281270937L 561x12W LED SP 21x155610.0325.200281 <t< td=""><td>59267</td><td>3F LEM 4 LED 200 DALI Sensor CR MEDIO</td><td>1</td><td>0.081</td><td>19.500</td><td>401</td></t<>	59267	3F LEM 4 LED 200 DALI Sensor CR MEDIO	1	0.081	19.500	401
260092L 353x14W LED SP 54V 596x59610.0315.000271260094L 353x14W LED DALI SP 54V 596x59610.0315.000271269330Barraluce L 1x30W LED SP L149610.0234.600294269332Barraluce L 1+1x30W LED SP 1296210.0469.200294269338Barraluce L 1+1x30W LED SP 5 p146610.0234.900294269340Barraluce L 1+1x30W LED SP 5 p1293210.0469.800293269348Barraluce L 1+30W LED OP L149610.0234.600293269348Barraluce L 1+30W LED OP 1296210.0469.200293269354Barraluce L 1+30W LED OP 5 p146610.0234.900293269355Barraluce L 1+30W LED OP 5 p1293210.0469.800293269356Barraluce L 1+30W LED OP 5 p1293210.0469.800293270931L 561x30W LED 2S 221x65610.0325.000281270937L 561x30W LED 2S 221x125610.0426.200281270939L 562x24W LED 2S 221x125610.0325.200281270937L 561x30W LED SP 221x155610.0325.200281270939L 561x30W LED SP 221x155610.0325.200281270957L 561x30W LED SP 221x155610.0325.200281270959L 561x30W LED SP 221x155610.0426.400281270959<	260078	L 353x25W LED 3AO 596x596	1	0.031	4.500	271
260094L 353x14W LED DALI SP 54V 596x59610.0315.000271269330Barraluce L 1x30W LED SP L149610.0234.600294269332Barraluce L 1+1x30W LED SP L296210.0469.200294269348Barraluce L 1+1x30W LED SP 5P L146610.0234.900294269340Barraluce L 1+1x30W LED SP 5P L293210.0469.800293269346Barraluce L 1+1x30W LED OP L149610.0234.600293269347Barraluce L 1+1x30W LED OP L149610.0234.900293269354Barraluce L 1+1x30W LED OP SP L146610.0234.900293269354Barraluce L 1+1x30W LED OP SP L293210.0469.800293269355Barraluce L 1+1x30W LED OP 5P L293210.0469.800293270931L 561x12W LED 2S 221x64710.0173.000281270935L 561x24W LED 2S 221x125610.0325.000281270937L 562x12W LED 2S 221x45710.0173.200281270937L 562x30W LED SP 221x64710.0173.200281270937L 561x12W LED SP 221x125610.0325.200281270951L 561x30W LED SP 221x155610.0325.200281270951L 561x30W LED SP 221x64710.0173.400281270955L 562x24W LED SP 221x64710.0325.200281270955<	260080	L 353x25W LED DALI 3AO 596x596	1	0.031	4.500	271
269330Barraluce L 1x30W LED SP L149610.0234.600294269332Barraluce L 1+1x30W LED SP L296210.0469.200294269338Barraluce L 1x30W LED SP 5P L146610.0234.900294269340Barraluce L 1+1x30W LED SP 5P L293210.0469.800294269346Barraluce L 1x30W LED OP L149610.0234.600293269346Barraluce L 1+1x30W LED OP L296210.0469.200293269354Barraluce L 1+1x30W LED OP 5P L196610.0234.900293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293270931L 561x12W LED 2S 221x64710.0173.000281270935L 561x2W LED 2S 221x125610.0426.200281270937L 562x12W LED 2S 221x155610.0173.200281270939L 562x24W LED 2S 221x156610.0325.200281270937L 561x12W LED SP 221x156610.0325.200281270937L 561x12W LED SP 221x156610.0325.200281270951L 561x30W LED SP 221x156610.0325.200281270951L 561x30W LED SP 221x156610.0426.400281270953L 562x12W LED SP 221x156610.0426.400281270955L	260092	L 353x14W LED SP 54V 596x596	1	0.031	5.000	271
269332Barraluce L 1+1x30W LED SP L296210.0469.200294269338Barraluce L 1x30W LED SP 5P L146610.0234.900294269340Barraluce L 1+1x30W LED OP 5P L293210.0469.800293269346Barraluce L 1x30W LED OP L149610.0234.600293269348Barraluce L 1+30W LED OP 5P L146610.0234.900293269356Barraluce L 1x30W LED OP 5P L146610.0234.900293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293269356Barraluce L 1+1x30W LED S 221x45710.0173.000281270931L 561x2W LED 2S 221x155610.0426.200281270935L 561x30W LED 2S 221x155610.0426.200281270937L 562x2W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x45710.0173.200281270959L 561x2W LED SP 221x155610.0325.200281270959L 561x2W LED SP 221x15610.0325.200281270951L 561x30W LED SP 221x15610.0426.400281270951L 561x30W LED SP 221x15610.0325.200281270953L 562x4W LED SP 221x15610.0325.400281270954L 562x2	260094	L 353x14W LED DALI SP 54V 596x596	1	0.031	5.000	271
269338Barraluce L 1x30W LED SP 5P L146610.0234.900294269340Barraluce L 1+1x30W LED SP 5P L293210.0469.800293269348Barraluce L 1x30W LED OP L149610.0234.600293269348Barraluce L 1+1x30W LED OP L296210.0469.200293269354Barraluce L 1x30W LED OP 5P L146610.0234.900293269356Barraluce L 1x30W LED OP 5P L293210.0469.800293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293270931L 561x12W LED 2S 221x64710.0173.000281270933L 561x24W LED 2S 221x155610.0426.200281270937L 562x12W LED 2S 221x64710.0173.200281270939L 562x24W LED S2 221x155610.0426.400281270957L 561x12W LED S2 221x155610.0426.400281270957L 561x12W LED S2 221x155610.0426.400281270957L 561x12W LED S2 221x155610.0325.200281270959L 561x24W LED SP 221x155610.0325.200281270959L 561x24W LED SP 221x155610.0325.200281270959L 561x24W LED SP 221x155610.0426.400281270959L 561x24W LED SP 221x155610.0426.400281270959L 561x30W LED SP	269330	Barraluce L 1x30W LED SP L1496	1	0.023	4.600	294
269340Barraluce L 1+1x30W LED SP 5P L293210.0469.800294269346Barraluce L 1x30W LED OP L149610.0234.600293269348Barraluce L 1+1x30W LED OP L296210.0469.200293269354Barraluce L 1x30W LED OP 5P L146610.0234.900293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293270931L 561x12W LED 2S 221x64710.0173.000281270933L 561x2W LED 2S 221x125610.0426.200281270935L 561x30W LED 2S 221x155610.0173.200281270937L 562x12W LED 2S 221x125610.0325.200281270939L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x155610.0325.200281270959L 561x30W LED SP 221x155610.0325.200281270959L 561x30W LED SP 221x155610.0325.200281270959L 561x30W LED SP 221x155610.0325.200281270959L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x156610.0325.400281270965L 562x24W LED SP 221x156610.0325.400281270965L 562x24W LED SP 221x1566	269332	Barraluce L 1+1x30W LED SP L2962	1	0.046	9.200	294
269346Barraluce L 1x30W LED OP L149610.0234.600293269348Barraluce L 1+1x30W LED OP L296210.0469.200293269354Barraluce L 1x30W LED OP 5P L146610.0234.900293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293270931L 561x12W LED 2S 221x64710.0173.000281270933L 561x24W LED 2S 221x125610.0426.200281270937L 562x12W LED 2S 221x64710.0173.200281270939L 562x24W LED 2S 221x155610.0325.200281270939L 562x30W LED 2S 221x155610.0173.200281270939L 562x30W LED S 221x155610.0173.200281270957L 561x12W LED S 221x155610.0173.200281270959L 561x24W LED S 221x155610.0173.200281270959L 561x30W LED S 221x155610.0173.200281270959L 561x30W LED S 221x155610.0325.200281270959L 561x30W LED S 221x155610.0426.400281270961L 561x30W LED S 221x155610.0173.400281270963L 562x12W LED S 221x125610.0173.400281270965L 562x24W LED S 221x125610.0325.400281270965L 562x24W LED S 221x125610.032 <td>269338</td> <td>Barraluce L 1x30W LED SP 5P L1466</td> <td>1</td> <td>0.023</td> <td>4.900</td> <td>294</td>	269338	Barraluce L 1x30W LED SP 5P L1466	1	0.023	4.900	294
269348Barraluce L 1+1x30W LED OP L296210.0469.200293269354Barraluce L 1x30W LED OP 5P L146610.0234.900293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293270931L 561x12W LED 2S 221x64710.0173.000281270933L 561x24W LED 2S 221x125610.0325.000281270935L 561x30W LED 2S 221x155610.0426.200281270937L 562x12W LED 2S 221x125610.0173.200281270939L 562x24W LED 2S 221x155610.0325.200281270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x155610.0173.200281270959L 561x24W LED SP 221x155610.0173.200281270959L 561x30W LED SP 221x155610.0325.200281270959L 561x30W LED SP 221x155610.0173.200281270959L 561x30W LED SP 221x155610.0325.200281270951L 561x30W LED SP 221x155610.0426.400281270963L 562x24W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x125610.0325.400281270965L 562x24W LED SP 221x125610.0325.400281270965L 562x24W LED SP 221x125610.03	269340	Barraluce L 1+1x30W LED SP 5P L2932	1	0.046	9.800	294
269354Barraluce L 1x30W LED OP 5P L146610.0234.900293269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293270931L 561x12W LED 2S 221x64710.0173.000281270933L 561x24W LED 2S 221x125610.0325.000281270935L 561x30W LED 2S 221x155610.0426.200281270937L 562x12W LED 2S 221x64710.0173.200281270939L 562x24W LED 2S 221x155610.0325.200281270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x64710.0173.200281270959L 561x24W LED SP 221x155610.0325.200281270959L 561x2W LED SP 221x155610.0325.200281270959L 561x2W LED SP 221x155610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x155610.0173.400281270963L 562x24W LED SP 221x155610.0173.400281270965L 562x24W LED SP 221x155610.0173.400281270965L 562x24W LED SP 221x155610.0325.400281270965L 562x24W LED SP 221x156610.032	269346	Barraluce L 1x30W LED OP L1496	1	0.023	4.600	293
269356Barraluce L 1+1x30W LED OP 5P L293210.0469.800293270931L 561x12W LED 2S 221x64710.0173.000281270933L 561x24W LED 2S 221x125610.0325.000281270935L 561x30W LED 2S 221x155610.0426.200281270937L 562x12W LED 2S 221x64710.0173.200281270939L 562x24W LED 2S 221x125610.0325.200281270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x155610.0173.200281270959L 561x24W LED SP 221x155610.0173.200281270959L 561x30W LED SP 221x155610.0173.200281270959L 561x30W LED SP 221x155610.0325.200281270951L 561x30W LED SP 221x155610.0325.200281270963L 562x12W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x155610.0173.400281270965L 562x24W LED SP 221x155610.0173.400281270965L 562x24W LED SP 221x155610.0325.400281270965L 562x24W LED SP 221x155610.0173.400281270965L 562x24W LED SP 221x15610.0325.400281270965L 562x24W LED SP 221x15610.0325.400 </td <td>269348</td> <td>Barraluce L 1+1x30W LED OP L2962</td> <td>1</td> <td>0.046</td> <td>9.200</td> <td>293</td>	269348	Barraluce L 1+1x30W LED OP L2962	1	0.046	9.200	293
270931L 561x12W LED 2S 221x64710.0173.000281270933L 561x24W LED 2S 221x125610.0325.000281270935L 561x30W LED 2S 221x155610.0426.200281270937L 562x12W LED 2S 221x64710.0173.200281270939L 562x24W LED 2S 221x125610.0325.200281270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x64710.0173.200281270959L 561x24W LED SP 221x125610.0173.200281270959L 561x30W LED SP 221x155610.0173.200281270959L 561x30W LED SP 221x155610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x155610.0173.400281270965L 562x24W LED SP 221x125610.0173.400281270965L 562x24W LED SP 221x125610.0325.400281	269354	Barraluce L 1x30W LED OP 5P L1466	1	0.023	4.900	293
270933L 561x24W LED 2S 221x125610.0325.000281270935L 561x30W LED 2S 221x155610.0426.200281270937L 562x12W LED 2S 221x64710.0173.200281270939L 562x24W LED 2S 221x125610.0325.200281270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x64710.0173.200281270959L 561x24W LED SP 221x125610.0173.200281270959L 561x30W LED SP 221x155610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x155610.0173.400281270965L 562x24W LED SP 221x125610.0173.400281270965L 562x24W LED SP 221x125610.0325.400281	269356	Barraluce L 1+1x30W LED OP 5P L2932	1	0.046	9.800	293
270935L 561x30W LED 2S 221x155610.0426.200281270937L 562x12W LED 2S 221x64710.0173.200281270939L 562x24W LED 2S 221x125610.0325.200281270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x64710.0173.200281270959L 561x24W LED SP 221x125610.0325.200281270959L 561x30W LED SP 221x155610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x125610.0325.400281270965L 562x24W LED SP 221x125610.0173.400281270965L 562x24W LED SP 221x125610.0325.400281	270931	L 561x12W LED 2S 221x647	1	0.017	3.000	281
270937L 562x12W LED 2S 221x64710.0173.200281270939L 562x24W LED 2S 221x125610.0325.200281270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x64710.0173.200281270959L 561x24W LED SP 221x125610.0325.200281270951L 561x30W LED SP 221x155610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x125610.0325.400281	270933	L 561x24W LED 2S 221x1256	1	0.032	5.000	281
270939L 562x24W LED 2S 221x125610.0325.200281270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x64710.0173.200281270959L 561x24W LED SP 221x125610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x125610.0325.400281	270935	L 561x30W LED 2S 221x1556	1	0.042	6.200	281
270941L 562x30W LED 2S 221x155610.0426.400281270957L 561x12W LED SP 221x64710.0173.200281270959L 561x24W LED SP 221x125610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x125610.0173.400281	270937	L 562x12W LED 2S 221x647	1	0.017	3.200	281
270957L 561x12W LED SP 221x64710.0173.200281270959L 561x24W LED SP 221x125610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x125610.0325.400281	270939	L 562x24W LED 2S 221x1256	1	0.032	5.200	281
270959L 561x24W LED SP 221x125610.0325.200281270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x125610.0325.400281	270941	L 562x30W LED 2S 221x1556	1	0.042	6.400	281
270961L 561x30W LED SP 221x155610.0426.400281270963L 562x12W LED SP 221x64710.0173.400281270965L 562x24W LED SP 221x125610.0325.400281	270957	L 561x12W LED SP 221x647	1	0.017	3.200	281
270963 L 562x12W LED SP 221x647 1 0.017 3.400 281 270965 L 562x24W LED SP 221x1256 1 0.032 5.400 281	270959	L 561x24W LED SP 221x1256	1	0.032	5.200	281
270965 L 562x24W LED SP 221x1256 1 0.032 5.400 281	270961	L 561x30W LED SP 221x1556	1	0.042	6.400	281
	270963	L 562x12W LED SP 221x647	1	0.017	3.400	281
270967 L 562x30W LED SP 221x1556 1 0.042 6.600 281	270965	L 562x24W LED SP 221x1256	1	0.032	5.400	281
	270967	L 562x30W LED SP 221x1556	1	0.042	6.600	281

Via del Savena, 28 Zona Industriale "Piastrella" Pian Di Macina 40065 Pianoro - Bologna - Italia Telefono: 051.6529611 Fax: 051.775884 E-mail: 3f-filippi@3f-filippi.it Web: **www.3f-filippi.com**

Headquarters

Via del Savena, 28 Zona Industriale "Piastrella" Pian Di Macina 40065 Pianoro - Bologna - Italy


Telephone: +39 051 652 9611 Fax: +39 051 775 884 E-mail: export@3f-filippi.it Web: **www.3f-filippi.com**

Credits

The use of text, images, drawings or any other content from this General Catalogue, or their modification or reproduction, in whole or in part, is strictly prohibited without the express authorisation of 3F Filippi S. P.A.

Conjection pany or product names or registered trademarks referred to in this publication are the phopesty off thetir ioorgespontaiwing sworeasy other content from this General Catalogue, or their modification or reproduction, in whole or in part, is strictly prohibited without the express authorisation **Photography** P.A.

Any company or product names or registered **KateminaBisage**ferred to in this publication are the **DanjeltyWafdBein**corresponding owners. Fabio Lercara Francesco Rioda Ing. Ferrari S.p.A. **Photography** Miro Zagnoli **BetpredEtradjao KatsiointerCara Darisele Vanzistano GlabriZatijioti**grafi **MgrtEerCarj** A.p.A. Andrea Martiradonna

www.3F-Filippi.com

lightUpdate newsletter

To keep up to date on our initiatives and new products, subscribe to lightUpdate: news, events and new products directly in your email inbox. Information at the speed of Light.

export@3f-filippi.it +39 051 775 884

Head office and factory

Via del Savena 28, Z.I. Piastrella 40065 Pian di Macina, Pianoro (Bologna), Italy Tax Code. 01033260371 - VAT no. IT00529461204 Share Capital € 3,000,000 fully paid up Bologna Register of Companies no. 01033260371 REA (economic administrative index) No. 234613

3F Filippi S.p.A. is constantly striving to improve its products. Therefore, it reserves the right to modify the contents of this publication without prior notice. Check for any updates by visiting our website at www.3F-Filippi.com, or contact our Sales Network.